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Abstract. We consider the problem of estimating 3-d structure from a
single still image of an outdoor urban scene. Our goal is to efficiently
create 3-d models which are visually pleasant. We chose an appropri-
ate 3-d model structure and formulate the task of 3-d reconstruction
as model fitting problem. Our 3-d models are composed of a number
of vertical walls and a ground plane, where ground-vertical boundary
is a continuous polyline. We achieve computational efficiency by special
preprocessing together with stepwise search of 3-d model parameters di-
viding the problem into two smaller sub-problems on chain graphs. The
use of Conditional Random Field models for both problems allows to var-
ious cues. We infer orientation of vertical walls of 3-d model vanishing
points.

1 Introduction

Inferring the 3-d structure of pictured scene from single image is a challenging
problem for current computer vision systems. Whereas understanding geometry
of the scene for a human is quite easy, this problem remains open for a computer
due to intrinsic ambiguity introduced by perspective projection. However, for
man-made environments such as urban scenes where certain structural regulari-
ties are present, introducing additional constraints on the scene geometry might
help to disambiguate the problem.

Most methods for estimation of 3-d models from a single image make strong
assumptions about the scene geometry. For example, Delage, Lee and Ng [3][4]
considered indoor images and classified the image into ground and vertical walls
to produce a simple visually pleasing 3-d model. In [1][2] Hoiem, Efros and Hebert
proposed to use similar constraints to model outdoor scenes. They classified
image regions into geometric classes and then used classification results to create
coarse pop-up type scene model composed of ground, walls and sky. Criminisi,
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(a) (b) (c) (d)

Fig. 1. Outline of the proposed algorithm (a) Source image (b) Preprocessed
image: tilt correction, horizon detection and vanishing point estimation (c) Different
positions of ground-vertical border along the vertical axis (d) Resulting model

Reid and Zisserman [5] determined affine structure of the image using vanishing
points with application in 3-d graphical modeling.

In contrast, Saxena, Sun and Ng [7][8][9] made no explicit assumptions about
the structure of the scene. They inferred both the 3-d orientation and location
of the small planar regions in the image using a Markov Random Field by learn-
ing the relation between the image features and the location/orientation. MAP
estimate in their model is efficiently performed by solving a linear program.

Our goal is to automatically create visually pleasant 3-d models. We choose
a subset of the images (urban scenes) and fix an appropriate structure of 3-d
model that allows to formulate the task of 3-d reconsruction as model fitting
problem.

The structure of our 3-d models is as follows. We assume that the environment
is composed of a flat ground with vertical walls where ground-vertical boundary
is a continuous polyline (see Fig. 2). Each vertical wall of 3-d model corresponds
to the building wall in the scene. Structural regularities of man-made environ-
ments allow tilt-correction of an image, horizon and vanishing point estimation,
that provides information aboout scene geometry. Geometric structure of our
3-d models resembles the one used in [1][2] and [3][4], but in contrast to these
works our 3-d model structure is rigidly fixed and can be inferred explicitly.

Assumption about continuity of ground-vertical boundary being realistic for
most of urban scenes makes resulting estimates more stable and reduces the
dimension of the search space. Configuration of ground-vertical boundary de-
termines geometry of 3-d model. Given an image of urban scene, our algorithm
automatically infers parameters of polyline and produces 3-d model. The ques-
tion of detecting ground/vertical ”occlusion boundary” automatically has also
been looked at in [6]. In contrast to this work we search for ground-vertical
boundary in explicit form.

Another focus of this work is the efficiency of 3-d reconstruction algorithm,
which becomes particularly important when processing images of reasonable
resolution. Using probabilistic framework we suggest stepwise search of ground-
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Fig. 2. 3-d model structure 3-d model is composed of a number of vertical and a
ground plane

vertical boundary parameters. Model fitting problem is divided into two smaller
sub-problems on chain graphs. We construct Conditional Random Field models
incorporating various types of information (appearance, geometric properties
and context) for both problems. Inference in each model is highly efficient due
to simplicity of graph structure. An outline of our algorithm is presented in Fig.
1.

The paper is structured as follows. In the next section we describe special
preprocessing of an image which includes tilt-correction and vanishing points
estimation. Section 3 explains how the high-level model for building-ground
boundary is divided into two Conditional Random Field models. Sections 4 and
5 explain each model in details. Modeling procedure is described in Section 6.
Experiments and conclusions are given in the final two sections.

2 Image preprocessing

In this work image preprocessing is an essential part of the system. The outline
of preprocessing is as follows. First, we apply Canny edge detection [10] to an
image and then extract straight lines using a method described in [11]. Extracted
lines are further used for tilt correction, horizon level estimation and vanishing
points estimation. Preprocessing steps are demonstrated in Fig. 3.

2.1 Tilt correction

In order to capture a building entirely, in one photo, a camera is usually pitched
up. This leads to so called keystone effect (see Fig. 4). In keystoned images
rectangles, like window frames, become trapezoids that are wider at the bottom
(in case of pitching up). The vertical (with respect to the ground plane) lines
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(a) (b) (c) (d)

Fig. 3. Preprocessing scheme (a) Source image (b) Tilt corrected image (c) Ex-
tracted lines after filtering (d) Horizon estimation and vanishing point estimation.
Lines, which refer to the same vanishing point, are shown with the same colors

become inclined. Non-zero camera roll angle additionally leads to the inclined
horizon line.

The structure of our 3-d model requires building side borders to be vertical
in the images. Given a tilted image, we need to compute a corresponding virtual
view with zero pitch and roll angles. For this task we use automatic tilt correc-
tion algorithm similar to the one, described in [12]. It uses the extracted line
segments that correspond to a vertical vanishing point and searches for the best
rotational homography, which transforms them into vertical lines. Due to the
abundant presence of vertical lines in man-made environments this algorithm is
quite robust. An example of tilt correction result is demonstrated in Fig. 3(b).
The same homography transform is then applied to all straight line segments.

Fig. 4. Camera pitch and roll correction I ′ - a virtual view corresponding to a
source image plane I

2.2 Horizon level and vanishing points estimation

Horizon level estimation. Due to perspective rules all vanishing points lie
at the same straight line, which is called horizon. Our algorithm for horizon
level estimation is based on the idea that horizon is transformed into level line
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after tilt correction and all vanishing points are assumed to have the same y-
coordinate. We can take y-coordinate of any vanishing point for horizon level. In
this work we choose a vanishing point with maximum support. This vanishing
point is estimated in a way similar to [5].

We use locally optimized RANSAC [14] for vanishing points estimation. A
pair of lines is chosen at random and their intersection is taken for vanishing
point. Then all the lines that if proceeded lie close to this point are considered
as inliers. After that vanishing point is recalculated as a closest point to all the
inliers using least squares fit. The set of inliers is reestimated according to the
new recalculated vanishing point. This process is repeated several times, and at
the end we choose a vanishing point with maximum support.

Lines filtering. Urban scenes are usually cluttered and so a considerable
amount of detected straight lines are not relevant to any vanishing point. Clut-
tered edges are harmful for vanishing point estimation and should better be
pruned out. In this work those lines are filtered out using machine learning like
in [13].

Extracted line segments are classified by boosted trees trained on a set of
manually labeled images into two categories: horizontal lines and clutter. We
use color cues, geometric cues and gradient cues for classification. Geometric
cues include coordinates of segment end points, its direction and length, and the
fraction of segments that are almost parallel with it. Color cues include means
and variances of color components and intensity calculated over the area around
each line segment. We also use mean value of gradient along the line segment
which characterizes edge strength. Fig. 3(c) shows lines left after filtering.

Vanishing points estimation. In this work vanishing point estimation
is performed in two steps. First we perform lines grouping and then estimate
vanishing point for each group of lines.

Lines grouping procedure is based on the fact that all lines which refer to
the same vanishing point cross horizon level close to each other. Consider distri-
bution of x-coordinates of crossings between horizon and line segments. Groups
of parallel lines form the modes of this distribution. We seek for the modes of
distribution using mean shift clustering [15].

Since y-coordinates of vanishing points are already known, we need to es-
timate only their x-coordinates. X-coordinate of one vanishing point for each
group of lines is estimated with an algorithm quite similar to the one for horizon
estimation. The difference is that we choose single line instead of a pair each time
and take it’s intersection with horizon level as a vanishing point. Lines marked
as outliers by RANSAC are filtered out and are not used further for estimation
orientation of the walls. Vanishing points and horizon level estimation are shown
in Fig. 3(d).

3 Stagewise inference of 3-d model parameters

In this work we assume that ground-vertical boundary is specified by a con-
tinuous polyline. Due to perspective constraints, each polyline segment passes



6 O. Barinova, V. Konushin, A. Yakubenko, K. Lee, H. Lim, and A. Konushin

Fig. 5. Ground-vertical boundary Labeled chains represent results of polyline frac-
tures estimation and polyline vertical positioning

through a vanishing point. Let’s fix the left end of polyline (p1
x, p

1
y), then a single

polyline segment connects (p1
x, p

1
y) with corresponding vanishing point (v1

x, h).
Let’s denote the crossing of the first segment with the border between first and
second walls by (p2

x, p
2
y). Then single line segment passes through (p2

x, p
2
y) and

(v2
x, h) etc. This implies that if x-coordinates of all polyline fractures and cor-

responding vanishing points are fixed then only a single polyline passes through
(p1

x, p
1
y) (see Fig. 5). Polyline is completely determined by a set af 2n+ 1 param-

eters {p1
x, ..., p

n
x ; v1

x, ..., v
n
x ;h; p1

y}.
Using conditional probability formula allows dividing search for model pa-

rameters into two subproblems:
P (p1

x, ..., p
n
x ; v1

x, ..., v
n
x ;h; p1

y|I) =

P (p1
y|p1

x, ..., p
n
x ; v1

x, ..., v
n
x ;h; I)P (p1

x, ..., p
n
x ; v1

x, ..., v
n
x ;h|I) (1)

The first subproblem includes estimation of x-coordinates of polyline’s frac-
tures p2

x, ..., p
n
x and vanishing points v1

x, ...v
n
x corresponding to each line segment.

As far as vanishing points coordinates have been calculated at the stage of pre-
processing, we just need to come up with correspondence between vanishing
points and model walls. In this work for each wall that lies in between pi

x and
pi+1

x we choose corresponding vanishing point that most of horizontal lines be-
tween pi

x and pi+1
x refer to. So at the first problem evolves into estimation of

n− 1 x-coordinates of the polyline’s fractures.
The second problem involves vertical positioning of the polyline with fixed

p2
x, ..., p

n−1
x ; v1

x, ...v
n
x ;h parameters. If any point of polyline is known to lie below

(above) the horizon level then polyline is guaranteed to lie entirely below (above)
the horizon level. This finding involves a constraint p1

y < h that reduces a search
space for p1

y to a segment below horizon level.
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4 A conditional random field model for fractures of
ground-vertical boundary

Partition of picture into vertical walls representad by a labeled chain graph (see
Fig. 5). Each node of the graph corresponds to a vertical band in the image. Label
l of a graph node means that corresponding vertical band in a image belongs to
model wall with index l. Total number of labels K is chosen beforehand. As long
as we allow different walls to share the same vanishing point, adjacent walls can
actually lie on the same plane. Thus parameter K can be viewed as maximum
possible number of vertical walls in 3-d model.

We introduce additional constrains on the labeling that gurantee resulting
model walls to be connected. For each pair of adjacent graph nodes the label of
the right node cant be less than the label of the left one, or p(li+1 < li) = 0,
label of right node can not differ from the label of the left node by more than 1,
or p(li+1− li > 1) = 0, left end of the chain is always labeled by 1, p(l1 6= 1) = 0,
right end of the graph is always labeled by K, p(lw 6= n) = 0, where K is
maximum number of vertical walls.

The entire set of such graph labelings can be described in feature space with
the parameter set θ. Desired output consists of the parameter set θ, plus a
labeling l.

The use of a Conditional Random Field allows incorporation of appearance,
geometric and context cues in a single unified model. The intuition behind the
model used in this work is the following. Horizontal lines which lie on the same
building wall all meet at a same vanishing point, while adjacent building walls
are not parallel and refer to different vanishing points. Due to lighting conditions
color of each building wall in the image has low variance while different building
walls have different colors. The borders between adjacent building walls are
characterized with local discontinuities in color and orientation of lines.

CRF model for vertical walls takes the following form:

P (l|I, θ) =
w∏

x=1

p(li|θ)×
w−1∏
i=1

p(li, li+1), (2)

where w is a number of graph nodes, unary potential p(li, θ) captures distri-
bution of features inside every vertical wall, pairwise potential p(li, li+1) captures
the ”edginess” between two adjacent graph nodes; θ is a vector of internal pa-
rameters of CRF model.

We use Expectation Maximization algorithm (EM) for CRF likelihood max-
imization. The first step (the ”E” step) that includes searching for the best
labeling l given fixed cluster parameters θ can be effectively solved using dy-
namic programming. The second step (the ”M” step) is to fix the labeling l and
find the best clusters parameters.

We adopt a nonparametric approach [20] for calculating unary potential. Sup-
pose we are given a kernel function K(fi; fj) which measures the affinity between
features fi of graph node i and features fj of graph node j. Value of K(fi; fj)
shows how much we believe the two points originated from the same process
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when all we know is their coordinates. Suppose that we have an approximation
of an optimal labeling of the chain. Then a nonparametric density estimator for
probability that graph node i belongs to a label l given set of N points drawn
from the distribution of features inside l-th wall is calculated as:

P (l|fl1, .., flN ) =
1
N

N∑
j=1

K(fi, flj), (3)

where fl1, .., flN are features of reference graph node that belong to l-th wall.
Vector θ = f11, .., f1N , ..., fK1, .., fKN contains features of graph nodes that belong
to each label after each E-step of EM. Reference graph nodes in this work are
chosen equally spaced inside each wall.

(a) (b) (c) (d)

Fig. 6. Training examples (a),(b) borders of 3-d model walls are manually marked
for training the first model (c),(d) optimal positions of polyline along the vertical axis
are manually marked for training second model, fixed polyline fractures are inferred
from the first model

4.1 CRF model training

In this work we used a method based on piecewise training [17]. Piecewise train-
ing involves dividing the CRF model into pieces, each trained independently. So
we need to find K(fi; fj) and p(li, li+1) and use hand-labeled images of urban
scenes for this purpose. The ground truth for learning included pictures where
borders of vertical planes were marked manually (see Fig. 6(a)(b))).

Both K(fi; fj) and p(li, li+1) are searched in exponential form:

K(fi; fj) = [1 + exp(−
M∑

m=1

λm|f (m)
i − f (m)

j |)]−1 (4)

p(li, li+1) = [1 + exp(
M∑

m=1

µm|f (m)
i − f (m)

i+1 |)]
−1, (5)

where f (m)
i is the m-th component of feature vector, λ = (λ1, ...., λm) and µ =

(µ1, ...., µm) - coefficients of exponential models.
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We use logistic regression for searching λ over a training set. Training set
for learning K(fi; fj) consists of pairs of features labeled with −1s if both cor-
responding graph nodes belong to the same wall and +1s if graph nodes belong
to different walls. CRF pairwise term is learned from only positive examples,
because of high class imbalance. Training set for learning p(li, li+1) consists of
pairs of features which correspond to a pair of graph nodes around a marked
edge. We use the first principal component obtained by PCA as coefficients in
exponential model.

Due to requirements of computational efficiency of the algorithm, we use
quite simple features f for estimation of ground-vertical boundary fractures.
Consider ith graph node, that corresponds to a vertical band of pixels between
ai and bi. All features fi are calculated over R rectangular regions limited by
horizon level at the bottom with left borders ai−δr, r = 1, ..., R and right borders
bi + δr, r = 1, ..., R respectively.

Feature vector includes simple color statistics and frequencies of lines refer-
ring to every vanishing point. To simplify calculation of these features we exploit
integral images [22].

5 Vertical positioning of polyline

We formulate problem of polyline vertical positioning on a chain (see Fig. 4).
Each graph node correspond to a fixed value of p1

y and in consequence a single
boundary position. The goal is to assign 1s to graph nodes that refer to vertical
walls of 3-d model and 0s to graph nodes referring to ground plane.

We again introduce Conditional Random Field, which incorporates different
characteristics of ground-vertical boundary. The model takes into accout local
color discontinuities around the boundary, similarity of ground color on different
pictures, differences in color between each building and the ground below it, dis-
tinctive angles between of polyline’s segments corresponding to visually-pleasant
3-d models.

Our CRF model for this problem has the following form:

P (l|I) =
h∏

i=1

p(li)×
h−1∏
i=1

p(li, li+1) (6)

where h is a number of graph nodes, unary potential p(li) captures color
distribution inside region between polyline and horizon level and a region below
polyline, p(li, li+1) captures local discontinuities around polyline position and
angles between segments of polyline.

We again use piecewise training of CRF. In our experiments training set
consists of pictures, where users manually marked ground truth positions of
polyline which lead to visually pleasant models (see Fig. 6 (c)(d)). We exploit
calibrated probabilistic outputs from boosting [19] for both unary and pairwise
potentials. For example, unary potential takes a form:

p(li) = [1 + exp(A1 · F (f̃i +B1)]−1, (7)
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where f̃i is a feature vector of ith graph node, F (.) is boosting output, A1 and
B1 are Platt scaling parameters [19]. To avoid issues with imbalanced classes we
use random undersampling [21].

Features f̃i for unary potential include mean values of color and intensity
around polyline. Features ˜̃f i for pairwise potential include mean and minimum
angles between polyline segments and horizon, mean and minimum angles be-
tween adjacent polyline segments, mean, maximum and minimum y-cordinate
of polyline, differences in color between regions below and above the polyline.
Again all color features are calculated over different rectangular regions around
polyline segments and integral images are exploited for speed-up of calculation.

6 Modeling

Given the continuous polyline, horizon level in pixels and camera focal length in
pixels it is possible to construct the 3D scene. Our modeling scheme resembles
the one, proposed in [23]. Scene is modeled as a horizontal polygon for the ground
plane and a set of connected vertical trapeziform polygons for the rest of the
scene. One vertical polygon is reconstructed for each straight segment of the
polyline. The texturing is performed by straightforward projective mapping of
tilt-corrected images onto reconstructed geometry. The idea of the algorithm is
illustrated in Fig. 2.

Each vertex of the polyline in the image and bottom corners of the image
should be projected onto the horizontal ground plane of the 3D scene in order
to determine the ground plane polygon. After that vertical planes with infinite
heights can be also reconstructed. Top line in the image should be projected onto
the reconstructed vertical planes to determine height of each vertical polygon.
Since image is tilt corrected we can consider virtual views with zero pitch and roll
angles, which mean that camera view vector is parallel to the ground plane and
image center Y coordinate is equal to horizon level in the image. Z coordinate of
the camera center affects only the scale of the resulting model and if it is specified
exactly, we get a metric reconstruction as a result. Focal length in pixels can be
calculated from EXIF data of JPEG file.

7 Experiments

Our image database is composed of 200 photos taken in a number of districts
of Moscow and Seoul. Our test database also includes some photos taken in
Moscow, Seoul and some images from Make3D and Automatic Photo Pop-up
image bases [25, 26]. We aim at outdoor urban scenes, so many of images of
landscapes, indoor scenes, etc. from those databases are not included in our test
set. These images are resized so that each image resolution is approximately 1.5
megapixel.

We have tested our algorithm, Make3D and Automatic Photo Pop-up on our
test image database. Some of the test images and screenshots of the resulting
models are shown in Fig. 7.
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Fig. 7. Comparison of the proposed algorithm with Automatic Photo Pop-
up and Make3d
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We did not use any heuristic measures for the quality of the models. The
only criteria was the subjective opinion on the visual quality of the 3D model.
Resulting models were demonstrated to 4 users. Users were asked to answer
whether the model had fine or unsatisfactory visual quality. The results of this
visual comparison are shown in Table 1.

Our algorithm Automatic Photo Pop-up Make3d

Fine results (%) 43% 36% 25%

Best among 3 algorithms (%) 52% 27% 21%

Table 1. Comparison of our algorithm with Automatic Photo Pop-up and Make 3d
algorthms on our Seoul test database

Due to our building-specific model, results of the proposed algorithm are vi-
sually more plausible, than the results of the compared algorithms. Hoiem el.
al. and Make3D reported about 33% and 65% of visually pleasing models corre-
spondingly, but due to the specific structure of the images used for testing the
compared algorithms performed worse. Another advantage of the proposed algo-

  
  

  

  

                                                                                                                                                 (a)                                            (b)                                (c)                                  (d)               

Fig. 8. Bad results (a)-original image, (b)-resulting ground-vertical boundary, (c),(d)-
screenshots of 3-d model. The first example demonstrates error in polyline vertical posi-
tioning, second example shows errors in estimation of polyline fractures, third example
shows the case when ou assumption about continuity of ground-vertical boundary does
not suit to scene geometry.
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rithm is its low computational time and consumed memory. In our experiments
with 1.5 megapixel images, using PC Pentium 2.8 GHz with 1 GB RAM, aver-
age modeling time was about 8 seconds, while required memory didnt exceed 30
MBs. Hoiem et. al. reported about 1.5 minutes processing time for 800x600 image
on 2.13 GHz Athlon using unoptimized MATLAB code. It was not mentioned
about memory consumption, but in our experiments Auto Pop Up algorithm
required up to 120 MBs. Algorithm proposed in [7][8][9] is slower and consumes
more memory, than Automatic Photo Pop-up.

In some cases the proposed algorithm does not produce good looking resulting
3-d models. The most often reasons are incorrectly estimated fractures of the
polyline or errors in its estimated position along the vertical axis. Another source
of error is in the assumption on the scene layout and the constraint of the
continious polyline of the ground-vertical boundary. Examples of such errors are
demonstrated in Fig. 8.

Our algorithm, trained on images taken in a small number of districts, showed
promising results. We believe that having a larger and more diverse dataset of
training images would improve the algorithm.

8 Conclusions

We presented an algorithm for inferring rough 3-d structure from a single image
of urban scene. Unlike Saxena et al we impose constraints on the geometry
assuming that scene is composed of ground and a number of vertical walls,
which is the case for urban scenes. In contrast to Hoiem et al we search for
ground-vertical boundary, which completely defines the model in explict form.

Employing greedy search of 3-d model parameters we divide the problem into
two smaller sub-problems. For each subproblem we incorporate appearance, geo-
metric properties and context into CRF model trained with supervised learning
and then solve for geometry via MAP inference. We compared our method with
those proposed by Saxena et al and Hoiem et al on our test set composed of pic-
tures of Seoul, Moscow and pictures downloaded from internet. This comparison
have shown that our method provides 3-d model with comparable or superior
visual quality at significantly less computational expense.
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