
Discovery of multi-component portfolio strategies with continuous
tuning to the changing market micro-regimes using input-
dependent boosting

V.V. Gavrishchaka1
, O. Barinova2, A. Vezhnevets2, and M.A.

Monina3
1Alexandra Investment Management, New York, NY, USA
2Moscow State University, Dept. of Computational Mathematics and
Cybernetics, Graphics and Media Lab, Moscow, Russian Federation
3Moscow State University of Instrument Engineering and Computer
Science, Moscow, Russian Federation

Abstract

Recently proposed boosting-based optimization offers a generic framework for
the discovery of compact and interpretable portfolios of complimentary trading
strategies with stable (non-resonant) performance over wide range of market
regimes and robust generalization abilities. Inherent complexity control allows
the framework to work with very large pools of heterogeneous base strategies
with well-established properties. However, in its current version, the framework
outputs a collection of dynamic strategies with fixed parameters and constant
weights defining capital allocations. This excludes any adaptive regime
adjustment or switching on the portfolio level for additional profitability from
regime-specific patterns. In this work we extend boosting-based optimization
framework by including capability to discover portfolio strategies with
continuous and adiabatically smooth adjustment to the current market micro-
regime. Such regime adaptivity is naturally provided by the input-dependent
boosting. The proposed generalization preserves clarity and interpretability of
the original framework since the dynamic base strategies of the multi-component
portfolio and their optimal parameters remain fixed. However, the weights of the
base strategies are adaptively varied in time according to the implicit rule
discovered by boosting. Operational details of the new framework and
encouraging results are illustrated using real market data. More rigorous
theoretical foundation for the general concept of the boosting-based optimization
is also outlined.
Keywords: adaptive boosting, ensemble learning, regime switching, trading
strategies, portfolio optimization.

1 Introduction

One of the most pronounced challenges in financial markets modeling and
forecasting is nonstationarity of the individual time series and co-dependency
relations. Usually it is very difficult or practically impossible to find a single
global model based on observable and well-defined variables with desired
performance in all market regimes. However, with certain degree of
simplification such complex nonstationary dynamics can be approximated as
switching between different regimes of market dynamics where each such
regime is relatively simple and easy to describe by its own parsimonious model.
More generally, one can introduce additional non-observable (hidden) state
variables to represent market regimes and dynamical transitions between them.

Intuitively, timely switching or smooth transition between different regimes in
such structured models could significantly improve modeling and forecasting of
the nonstationary time series. More importantly, this may help to create dynamic
trading strategies that consistently exploit regime-specific market patterns.
However, although introduction of the hidden variables in the simplified
econometric models [Fabozzi] could lead to better prediction accuracy and
overall explanatory power [application papers], the usefulness of such models for
the discovery of the realistic trading strategies is often very limited. Moreover,
potential of model improvement through the introduction of the finer structure of
the market regimes (states) is also very limited since adequate model estimation
is possible only when historical training data contains enough transitions
between different regimes which is often not the case in most financial
applications.

Certain simplifications, apriory assumptions and other drawbacks of the
typical econometric models can be alleviated using dynamic machine learning
approaches. For example, recurrent neural networks (NN) maintain an adaptive
internal memory of past inputs that allows implicit regime adjustment or
switching and do not require any specific assumptions about hidden state
variables and mechanisms of regime transition [Hykin, Wan, Disser]. However,
training procedures for such NNs are often significantly more complex and less
stable compared to already standard feed-forward NNs such as multi-layer
perceptron (MLP) that are not dynamic [Hykin, Disser]. Moreover, complex
dynamic NNs lack interpretability and operational stability control that are very
important requirements in financial applications.

Both statistical and machine learning forecasting models are trained using
objectives that are not directly relevant to the trading strategy which limits
usefulness of such models even when formal forecasting performance measures
are reasonable [GB]. Technical trading strategies, directly optimized to achieve
desirable profit/loss (PL) distributions, usually have more practical value than
pure forecasting models mentioned above. However, single trading strategy with
reasonable complexity (to ensure out-of-sample performance) still cannot
warranty stability across different market regimes.

Many modern automatic systems for systematic trading offer an option for the
dynamic capital reallocation among different strategies using explicit user-
specified rule that may be a function of the most recent PL time series generated
by each strategy and other factors. The goal of such approach is to alleviate
limitations of the single trading strategy that may be profitable only in certain
market regimes while maintaining simplicity and interpretability of such
portfolio of trading strategies. However, these systems do not provide any
generic and theoretically-sound frameworks capable to discover such regime-
adjusted portfolio strategies with stable performance over wide range of market
regimes. For example, usage of resonance strategies tuned to the specific market
regimes and simplified empirical switching between different strategies could be
very unstable since it requires a very accurate timing which is difficult to achieve
in most modern markets.

Recently proposed boosting-based optimization provides a generic framework
for the discovery of portfolios of trading strategies with stable (non-resonant)
performance over wide range of market regimes using intelligent combination of
the complimentary, low-complexity base strategies with well-known properties
[VG]. This framework offers practical solutions for many problems encountered
in other approaches. However, in its current version, the framework outputs a
collection of dynamic strategies with fixed parameters and constant weights
defining capital allocations. This excludes any adaptive regime adjustment or
switching on the portfolio level for additional profitability from regime-specific
patterns. In this work we extend boosting-based optimization framework by
including capability to discover portfolio strategies with continuous and
adiabatically smooth adjustment to the current market micro-regime. In many
practical settings, the proposed framework could resolve or alleviate limitations
of other approaches used for discovery of the regime-adjusted portfolio
strategies.

2 Limitations of the existing regime-switching and regime-
adjusted models

A flexible and generic approach to incorporate multiple interchanging regimes
or states is to use models with hidden variables, i.e., auxiliary variables that are
not directly observable [GeneralRef]. A well-known example of such a
framework is hidden Markov models (HMM) that are successfully used alone or
in combination with other statistical or machine learning algorithms in speech
recognition systems [..], bioinformatics [..], and other applications. Examples of
hidden variable models used in financial econometrics include regime-switching
models, the GARCH family of models, and credit risk models, where hidden
variables are used to represent different economic/market regimes, volatility, and
credit worthiness, respectively [Fabozzi and references therein].

One of the widely used types of models with hidden variables is a linear state-
space model that can be written in the following way [Fabbozi]:

ττττ

ττττ

η
ε
++=

++=

+ DxCzz
BxAzy

1

 (1)

Here xτ, yτ, and zτ are the vectors of deterministic inputs, observable outputs, and
latent (nonobservable) state variables, respectively. Observation and transition
equation white noise are given by ετ and ητ. Observation matrix, input matrix of
the observation equation, transition matrix, and input matrix to the transition
equation are given by A, B, C, and D.

A typical maximum likelihood (ML) based estimation for (1) would require
approximate calculation of the nonobservable states z, which enters
corresponding likelihood expression together with observable variables. Kalman
filter [KFReference] is usually used to provide optimal estimation of the state
variables. Originally, Kalman filter was designed as an adaptive filter that
provide optimal estimation and forecasting of the “true” states of the dynamical
system from the multi-dimensional noisy observations in engineering
applications. The filter is initialized with the initial conditions and computations
are carried out recursively to the desired time, i.e. full historical information is
used to make current estimation and forecasting.

The intuitive notion of the “states of the market” (e.g. bull, bear, and side
markets) is well known to market practitioners. From a modeling perspective,
this implies that different models and strategies should be used in different
market states. If we add rules that prescribe the switching from one model (or set
of models) to another one when market state changes, we arrive at the regime-
switching model [Fabozi, Hamilton].

A broad class of regime-switching models are the Markov-switching vector
autoregressive models (MS-VAR) [Fabozi, FinMetrix]. Markov-switching model
is a VAR model whose coefficients are driven by a Markov chain:

),()()(
1

syLsAsy
p

i

i
i τττ εμ +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+= ∑

=

 (2)

where the matrices Ai(s) are the coefficients of the process at lag i in state s and
the noise terms ετ (s) are independent normal variables. The process is driven by
a k-states Markov chain. A Markov chain is a discrete variable which can assume
at each instant one of k possible values with transition probabilities:

ijpjsisP === −)|(1ττ (3)
The realized state s determines the coefficients and the vector of the intercepts of
the process at each moment, so that the innovation term of the process is
distributed as a mixture of Gaussian distributions. The state variable that could
be used to represent market regime is a hidden factor. Due to the state (regime)
switching MS-VAR becomes a nonlinear model even though it is based on linear
components.

ML-based estimation of the MS-VAR model is presently the mostly widely
used approach [Fabozi]. Similar to space-state model (1) and other models with
hidden variables, one writes a likelihood function that depends on both
observables and hidden variables. In the case of linear state-space models (1),

Kalman filter is naturally applicable and used to estimate values of hidden
variables (states). However, in nonlinear MS-VAR models, Expectation-
Maximization (EM) algorithm is used instead. The algorithm is an optimization
procedure for finding the maximum of log-likelihood functions in the presence
of missing or hidden variables [EMReference]. The idea of EM algorithm is to
iterate between the estimate of the best parameters given the missing (hidden)
data and the estimate of the missing (hidden) data given the best estimate of
parameters.

The obvious limitation of econometric models with hidden state variables
mentioned above is the usage of the simplified and pre-specified functional
forms as in (1) and (2), (3). Compared to similar econometric models without
hidden variables, the requirements for the data sample size will grow much faster
with the model complexity increase. For example, even for simple regime-
switching model given by (2)-(3), the increase of the regime number beyond 2 or
3 could make adequate estimation of the model unrealistic since the available
training data would not have enough transitions between different regimes to
ensure reasonable out-of-sample performance. Moreover, even when formal
forecasting performance measures are reasonable for explanatory purposes or
large-scale risk management applications, the direct usefulness of the
econometric-type models to trading strategies may often be limited due to the
difference in objectives [GB].

Machine learning approaches offer significantly more flexibility in many
different applications including modeling of the non-stationary or multi-regime
time series. However, the well-known feed-forward NNs such as widely used
MLP with standard back-propagation training algorithm may be used to perform
nonlinear prediction only on stationary time series. It is done by using delayed
vector of inputs as follows:

),...,,(21 pxxxFy −−−= ττττ (4)
Here F is a general functional dependence that NN will try to approximate when
p delayed input variables will be presented at the input and one output variable
will be generated at the NN output. The adequate choice of the lag space could
be a difficult problem-dependent task. However, after the lag space is chosen, it
remains constant. This limits NN’s adaptivity and makes it a static model which
can describe only stationary time series.

To make NN dynamic it must be given an “internal” memory [Elman, Hykin].
To accomplish this and to retain simplicity of the feed-forward architecture, one
can introduce time delays into the synaptic structure of the NN and to adjust their
values during the learning phase. Such time delays are also neurobiologically
motivated. One of such practical models where MLP with synapses represented
by a finite-duration impulse response (FIR) filter was introduced by Wan
[WanDiss]. The efficient training procedure called temporal back-propagation
was also proposed for such FIR MLP [WanDiss, Hykin]. One of the examples
when effectiveness of the FIR MLP was demonstrated is the winning of the time
series prediction competition [TSCompetRef].

A more general dynamic model denoted as a recurrent NN is obtained when
the connectivity of the feed-forward network is extended to include feedback

connections from the outputs of the units back to their inputs [Hykin,
ReccNNDiss]. The most general recurrent NN is obtained if the output from
every unit in the NN is fed back to the inputs of all units. The advantage of the
recurrent NNs compared to the feed-forward NNs is due to an internal memory
of past inputs introduced by the feedback connections. This internal memory is
adaptive, i.e., during training it may be adapted to encompass those previous
inputs which are relevant to the current problem. Such adaptive memory may
completely relieve the user from specifying a lag space, since a fully recurrent
NN is able to work entirely from its own internal memory, created from only a
single external input [ReccNNRef]:

)(1−= ττ xFy (5)
However, despite their advantages recurrent NNs have not gained popularity

similar to that of feed-forward NNs. Generally, it is more difficult to handle
recurrent NNs in practice. In particular it has been found that training using
widely accepted algorithms (e.g., gradient descent method and its extensions) is
not sufficiently “powerful” to train recurrent NNs [ReccNNRef]. The problem
could be in slow convergence or in complete failure to provide practically
acceptable solution.

Even when training challenges are resolved, the remaining common problems
with NNs and similar black-box machine learning models are poor
interpretability and occasional instable behavior which is hard to control and
predict. Although these drawbacks are especially undesirable in financial
applications, the high noise-to-signal ratio in financial time series enhances
probability of unstable behavior of such models.

One of the machine learning approaches to compensate for deficiency of the
individual models is to combine several models to form a committee [Bishop,
Hustee]. Committee can compensate limitations of the individual models due to
both incomplete data and specifics of the algorithms (e.g., multiple local minima
in the NN error surface). A number of different ensemble learning techniques to
build optimal committees have been proposed over the years in different research
communities [e.g., VG and references therein]. The most relevant framework of
this type in the context of the regime-switching or regime-adjusted models is
mixture of expert (ME) model [Jacobs].

The probabilistic form of ME model can be written as [Bishop]

∑
=

=
T

t
tt xypxxyp

1

)|()()|(π (6)

Here mixing coefficients πt(x) are known as gating functions and the individual
component densities pt(y|x) are called experts. This terminology is due to the fact
that different components can model the distribution in different regions of input
space (they are “experts” at making predictions in their own regions), and the
gating functions determine which components are dominant in which region. If
the experts are linear (regression or classification) models, then the whole model
can be fitted efficiently using the EM algorithm. An even more flexible model is
obtained by using a multilevel gating function to give the hierarchical mixture of
experts (HME) model [Bishop]. This model can be imagined as a mixture

distribution in which each component in the mixture is itself a mixture
distribution.

More complex machine learning models can be used as components in both
ME and HME frameworks. For example, NNs can be used as experts as well as
gating functions [Hykin]. However, increasing complexity of the models could
often lead to practical problems in training of such multi-component system and
to poor out-of-sample performance and instability. Thus, it is highly desirable to
have committee of the well-understood and low-complexity expert models that
consistently demonstrate acceptable combined performance.

Adaptive boosting is a powerful ensemble learning algorithm that combines
many desirable features [Shap, Ram, Hastee]. Many ensemble learning
algorithms including “random sample” techniques like bagging can reduce only
variance part of the model error, i.e. they make a combined model more stable.
Boosting, on the other hand, can reduce both bias and variance parts of the
model error. It means that one can start with simple model (“rule of thumb”)
with low accuracy and produce committee with much higher accuracy.
Therefore, boosting can be applied to the pool of the well-understood low-
complexity models to produce qualitatively different but interpretable combined
model with significantly higher accuracy and stability [vg]. Moreover, boosting
tries to maximize margin to ensure good out-of-sample performance, i.e. it is a
large-margin classifier [Shap, Ram, Hastee].

In our previous works [vg] we propose a boosting-based optimization
framework for the discovery of the stable portfolios of trading strategies from the
low-complexity base strategies. It was argued that boosting for classification can
be used as a basis for such stage-wise optimization framework. The final output
of the boosting-based optimization is a collection S of complimentary base
trading strategies BSi with optimal parameter vectors pi and combination weights
wi that specify capital allocation for each strategy [vg]:

{ })](,[)],...,(,[111 TTT pBSwpBSwS → (7)
We have shown empirically [vg] that boosting-based optimization can generate

portfolios (7) with stable performance over wide range of market regimes while
using just well-known technical base strategies. However, in its current version,
the framework outputs a collection of dynamic strategies (7) with fixed
parameters p and constant weights w. This excludes any adaptive regime
adjustment or switching on the portfolio level for additional profitability from
regime-specific patterns. Many modern automatic systems for systematic trading
offer an option for the dynamic capital reallocation among different strategies in
(7) using explicit user-specified rule. However, these systems do not provide any
generic and theoretically-sound frameworks capable to discover regime-adjusted
portfolio strategies with stable performance over wide range of market regimes.
Switching-rule specification based just on the semi-quantitative discretional
arguments could often lead to the unreliable trading system.

In this work we extend boosting-based optimization framework by including
capability to discover portfolio strategies (7) where weights w are continuously
adjusted by the implicit rule discovered by the input-dependent boosting. In the
next two sections we summarize our previous results on the boosting-based

optimization as well as provide more formal theoretical foundation for the
framework. After that we introduce extended framework based on the input-
dependent boosting [Jin] and present regime-adjusted trading strategy obtained
from the new framework using real-market data.

3 Boosting-based optimization: Discovery of the regime-
independent portfolio strategies

As described in our previous works [VG], boosting for optimization could be
based on different boosting frameworks. However, the generalized AdaBoost
algorithm for classification [Shapiro, Ram] could be a reasonable choice in many
applications due to its simplicity, comprehensive theoretical foundation, and
proven robust performance in a large number of realistic classification problems.
For our purposes it is sufficient to describe boosting algorithm only for two-class
classification problem, where classifier outputs either +1 or -1. Generalized
AdaBoost for two-class classification consists of the following steps [Ram]:

Nwn /11 = (8.1)

()∑ −=
=

N

n
ntn

t
nt xhyIw

1
))((ε (8.2)

()∑=
=

N

n
ntn

t
nt xhyw

1
)(γ (8.3)

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
+

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+

=
ρ
ρ

γ
γ

α 1
1ln

2
1

1
1

ln
2
1

t

t
t (8.4)

() Zxhyww tntnt
t
n

t
n /)(exp1 α−=+ (8.5)

∑∑=
==

T

t
tt

T

t
t xhxH

11
/)()(αα (8.6)

Here N is a number of training data points, xn is a model/classifier input set of the
n-th data point and yn is the corresponding class label (i.e., -1 or +1), I(z) = 0 for
z<0 and I(z)=1 otherwise, T is a number of boosting iterations, wn

t is a weight of
the n-th data point at t-th iteration, Zt is weight normalization constant at t-th
iteration, ht(xn)->[-1; +1] is the best base hypothesis/model at t-th iteration, ρ is a
margin control parameter, and H(x) is a final weighted linear combination of the
base hypotheses.

Boosting starts with equal and normalized weights for all training data (step
(8.1)). A base classifier ht(x) is trained using weighted error function εt (step

(8.2)). If a pool of several types of base classifiers is used, then each of them is
trained and the best one (according to error function) is chosen at the current
iteration. The training data weights for the next iteration are computed in steps
(8.3)-(8.5).

According to (8.5), at each boosting iteration, data points misclassified by the
current best model (i.e., yn ht(xn) < 0) are penalized by the weight increase for the
next iteration. In subsequent iterations, AdaBoost constructs progressively more
difficult learning problems that are focused on hard-to-classify patterns. This
process is controlled by the weighted error function (8.2).

Steps (8.2)-(8.5) are repeated at each iteration until stop criteria γt < ρ (i.e., εt

>= 1/2(1-ρ)) or γt = 1 (i.e., εt = 0) occurs. Step (8.6) represents the final
combined (boosted) model that is ready to use. The model classifies unknown
sample as class +1 when H(x) > 0 and as -1 otherwise.

Portfolio strategy discovery is a direct optimization rather than classification
problem. However, it was argued [VG] that for a large class of objective
functions, boosting for classification (8.1)-(8.6) can be efficiently used as a basis
for the framework that could be labeled as “boosting for optimization” or
“boosting-based optimization”.

One of the natural and robust objectives for the trading strategy optimization
is to require returns (r) generated by the strategy on a chosen time horizon (τ) to
be above certain conservative threshold (rc). By calculating strategy returns on a
series of intervals of length τ shifted with a step Δτ and encoding them as +1 (for
r >= rc) and -1 (for r < rc), one obtains symbolically encoded distribution of
strategy returns.

Contrary to the classification problems, here the purpose is not to correctly
classify (between +1 and -1), but rather to increase the number of +1 samples.
This can still be considered as classification problem with potentially uneven
sample number between two classes. The described objective can be
incorporated into the boosting operation (8.1)-(8.6) by considering output -1 as
misclassification. In such setting, boosting (8.1)-(8.6) provides a framework for
optimization, where maximization objection function is a “hit rate”, i.e., number
of +1 samples divided by the total number of samples. The objective function
can be generalized to include any complex condition with combination of
different objectives for profit maximization and risk minimization.

In the case of trading strategy optimization, the final usage of boosting
output is different from the classical case of boosting for classification. Instead
of using weighted linear combination (8.6) of the base models as a final model
for classification, one uses boosting weights to construct portfolio of strategies.
The initial capital is distributed among different base strategies in amounts
according to the weights (αt/Σαt) obtained from boosting which are already
normalized.

As discussed in [VG], boosting can be used to discover the optimal
combination of different dynamic trading strategies for a single financial
instrument as well as the simultaneous combination of trading strategies and

different instruments. In both cases, boosting steps (8.1)-(8.6) are applied to a
pool of base strategies {BSi(pi)}, where pi is a vector of adjustable parameters for
strategy BSi. However, in the first case all base strategies are applied to a time
series of a single financial instrument FI0, while set {BSi}x{FIj} of all possible
pairs of strategies BSi and instruments FIj should be used in the latter case.

According to error function (8.2), if the objective is to maximize the number
of supercritical returns on the shifted intervals, the following optimization
problems are solved for all base strategies BSi(pi) and financial instruments FIj at
each boosting iteration:

()()⎥⎦
⎤

⎢⎣
⎡∑ −

=

N

n
jiinc

t
np FIpBSrrIw

i 1

)(),(min τ (9)

Here, rn
τ is a return produced by the strategy BSi(pi) applied to the instrument FIj

over n-th shifted interval of length τ and rc is a chosen threshold value. Often
linear function ~ (rc - rn) is better choice for z<0 compared to standard step-
function I. Based on the results of these minimization procedures for all (i,j)
pairs, the best pair “strategy-instrument” of the current iteration is added to the
portfolio. This procedure was also generalized to allow simultaneous discovery
of new synthetic instruments expressed as multiple spreads between base
instruments and dynamic trading strategies for such spreads [vg].

The AdaBoost algorithm given by (8.1)-(8.6) is one of the classical versions
and it was described as an example suitable for boosting-based optimization in
all our previous works. However, a slightly different version is both more natural
and more convenient for the extension to the input-dependent boosting [Jin]. For
simplicity, we will omit the margin parameter ρ in all the following
formulations. The other standard AdaBoost formulation given in [Jin], results in
a different weight update procedure. Instead of (8.5) one applies:

∑ =

−

−

−

−

= N

j

yxH

yxH
T
n

jjT

nnT

e
ew

1

)(

)(

1

1

 (10)

Expression for α is given by the following form equivalent to (8.4) with omitted
margin parameter:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

−
=

∑
∑

=

=

T

T
N

n nnT
T
n

N

n nnT
T
n

T
yxhIw

yxhIw
ε

εα 1ln
2
1

)),((

)),((
ln

2
1

1

1 (11)

As mentioned in our previous publications [vg], boosting also allows natural
and easy incorporation of other ensemble learning techniques on the inside and
outside levels for further improvement of the accuracy and stability. For
example, at each boosting iteration, instead of choosing a single best model, one
can choose mini-ensemble of models using other ensemble learning techniques.
In the simplest case, this could be an equal weight mini-ensemble of several
comparable best models. One can also use boosting in the HME-like framework
by building portfolio of portfolios.

 As summarized in this section, it is quite intuitive to use boosting for
classification as a basis for the boosting-based optimization framework.
However, to better understand basic features of the boosting-based optimization
and its possible generalizations and limitations, it is still useful to outline formal
theoretical foundation for the framework. A short version of such foundation is
presented in the next section.

4 Theoretical foundation for boosting-based optimization

Portfolio strategy discovery is a direct optimization rather than classification
problem. However, several formal arguments presented in this section should
clearly demonstrate that boosting for classification can be naturally generalized
for the framework of boosting-based optimization as was suggested in our
previous papers [vg].

One of the operational interpretations of the boosting algorithm shows that
boosting fits an additive logistic regression model by a stage-wise optimization
of expected exponential loss [Friedman]:
 () minyF xe−Ε → (12)
One of the motivations for such choice of the loss function is that exponential
loss is an upper bound on the classification error [Schapire]:
 ()[() 0] yF xP yF x e−< < Ε (13)
This kind of upper bound can be generalized for any event A:
 ()2 1 ()[] AI F xP A e− −≤ Ε , (14)
where IA=1 if A takes place and IA=0 otherwise.

For example, consider an event “return of a combined strategy S is lower than
a threshold rc”, i.e. r(S(x))<rc. Then inequality (14) can be written as

() ()()[()]2 1 ()
[()] r F x rc

I S x
cP r S x r e <− −

< ≤ Ε (15)
Looking at the right part of inequality (15) we can see that optimization task can
be reduced to classification task in a way proposed in [VG]. Thus, we get a
generalization of boosting framework for optimization tasks, where instead of
minimizing classification error we are trying to minimize a number of intervals
where [r(S(x))<rc]. Minimization of P[r(S(x))<rc] is equivalent to the
maximization of P[r(S(x))>=rc].

Boosting is known to demonstrate stable generalization abilities measured by
its performance on out-of-sample data. Standard Vapnik-Chernovenkis (VC)
analysis of boosting bounds generalization loss by empirical risk (here P̂r[]i
denotes empirical probability measured on the training set) and a term dependent
on VC-dimension of weak learner and number of boosting rounds [Freund]:

ˆ[()] Pr[()] TdP H x y H x y O
m

⎛ ⎞
≠ ≤ ≠ + ⎜ ⎟⎜ ⎟

⎝ ⎠
� (16)

where d is the VC-dimension (capacity) of weak learner, m is the size of the
training set, and T is the number of weak classifiers in the committee. However,
this bound could often contradict with practical experience, which shows that
boosting can decrease its test error even when empirical risk is already zero.

The best explanation of boosting generalization capabilities so far is margin
theory [Schapire98]. Margin theory provides an upper generalization bound
independent of number of iterations made by boosting. This bound suggests that
boosting may not overfit even if ran for many rounds. For any θ :

2
ˆ[()] Pr[margin(,)] dP H x y x y O

m
θ

θ
⎛ ⎞

≠ ≤ ≤ + ⎜ ⎟⎜ ⎟
⎝ ⎠
� , (17)

where margin is

()

margin(,) t tt

tt

y h x
x y

α
α

= ∑
∑

. (18)

Margin is the measure of confidence of a boosted predictor in its decision. It is
positive if the decision is correct and negative otherwise. Theory states that for
better generalization one should increase the margins of training samples.

In the context of the trading strategy boosting margin can be reformulated as

()()(),

margin() t c n t t tt
n

tt

I r r BS p S
r

τ
τ

α

α

−
= ∑

∑
 (19)

In such interpretation we want to maximize the confidence of our boosted
strategy for over each of n shifted intervals of length τ. In order to strictly apply
theory for strategy boosting, some additional statements should be proven (e.g.,
finite capacity of base strategies – analogous to VC-dimension). Although the
rigorous proof is out of scope of this paper, the usage of the low-complexity base
strategies should not violate these assumptions in most practical settings.

Boosting is proven, under some conditions on a weak learner, to be a
regularized search for a maximum margin solution [Rudin]. That means that in
the limit, the boosted committee may have a maximum possible lower margin.
Recent studies of boosting suggest that one may expect overfitting in case of
increasing VC-dimension of weak learner through iterations [Reyzin], or in the
case of the overlapping class distributions [Vezhnevets]. Again, usage of the
low-complexity base strategies should be able to alleviate these problems in most
practical applications.

5 Optimization framework based on input-dependent
boosting: Discovery of the regime-adjusted portfolio
strategies

Majority of the known boosting algorithms including classical AdaBoost assume
that the combination weights are fixed constants and therefore do not take

particular input patterns into consideration. Application of such algorithms as a
basis for the boosting-based optimization allows discovering portfolio strategies
with fixed weights, i.e., fixed capital allocations among the individual strategies.
This excludes any dynamic regime-adjustment to exploit regime-specific
patterns for further increase of the portfolio strategy profitability.

However, several input-dependent boosting algorithms have been recently
proposed [Jin, id2, id3]. One of these algorithms (called WeightBoost) [Jin]
seems to be the most appealing practical choice due to its close relation to the
original AdaBoost and flexibility to vary the form and degree of the regime
adjustment. WeightBoost not only introduces input dependency but also provides
practical regularization mechanism that helps to avoid overfitting problems that
boosting may encounter in applications with high level of noise.

The original motivation of this input-dependent boosting algorithm [Jin] is to
alleviate two limitations of the classical AdaBoost and its extensions. One is
constant combination weights that prevent from using full potential of the base
models in the regimes of their expertise. The other problem is potential
overfitting in high-noise cases that requires introduction of the practical and
efficient regularization. Previously proposed regularization methods can be
summarized into two groups: changing the cost function and introducing soft
margin [reg]. However, most of the regularization algorithms are unsuccessful
either due to the high computational cost or lack of strong empirical results of
improvement.

The following inductive form of the boosted classifier is used in AdaBoost
derivation and its input-dependent extension given in [Jin]

)()()(1 xhxHxH TTT α+= − (20)
The potential overfitting problem of AdaBoost can be implied from the weight
updating function (10). If there are some noisy data patterns that are difficult to
classify correctly by the base classifier(s), the value of –HT-1(xi)yi for those data
points will accumulate linearly (since H(x) is a linear combination of base
classifiers) and the corresponding weights will grow exponentially. Therefore,
the particular sampling procedure within the AdaBoost algorithm will
overemphasize the noisy training data points and may lead to poor
generalization.

 Since the potential overfitting is caused by the accumulation of errors within
the function HT-1(x), one way to avoid this is to modify the expression form for
HT-1(x). Instead of constant combination coefficients αt, we can make them input
dependent, i.e.

∑
=

− −=
T

t
t

xH
tT xhexH t

1

)()()(1βα (21)

Compared to (20), the above expression replaces the weighting constant αt with
αtexp(-|β Ht-1(x)|). More interestingly, it can be shown that when αt is bounded
by some fixed constant, the value of HT(x) in (21) will increase at most
logarithmically with respect to the number of iterations T and the weight of each
data pattern will grow at most polynomial with the number of iterations.

Therefore, the problem of overemphasizing noisy data patterns will be alleviated
substantially compared to the classical AdaBoost.

As pointed out before the other important problem with AdaBoost is fixed
combination coefficients. According to AdaBoost, each base classifier (model)
ht(x) is trained intentionally on the data patterns that either misclassified or
weakly classified by previous classifiers (models) Ht-1(x). Therefore, every base
classifier ht(x) should be appropriate only for a subset of input patterns.
However, in the prediction phase, the opinion of the base classifier ht(x) will
always be weighted by the same number αt no matter what test examples are.

On the contrary, in the new form of HT(x) given by (21), introduction of the
instance-dependent factor exp(-|βHt-1(x)|) offers a tradeoff between the opinion
of the base classifier ht(x) and that of the previously built meta-classifier Ht-1(x).
Since the value of Ht-1(x) indicates its confidence on classifying the instance x,
the factor exp(-|βHt-1(x)|) forces to consider the opinion of ht(x) seriously only
when combination of the previous classifiers Ht-1(x) is not confident about its
decision. This implies that introduction of the input-dependent factor makes the
base classifier ht(x) to be consistent between the training phase and the prediction
phase, i.e., ht(x) is used for prediction of the particular type of input patterns that
it has been trained on.

It is clear from (21) that the extent of the input-dependency can be
conveniently controlled by factor β. When β goes to zero, we recover original
AdaBoost algorithm. Varying β one can go from small weight modulations (mild
regime adjustment) in almost stationary meta-model (small β) to the more
regime-switching type of meta-model (large β). The optimal choice of β is
determined by properties that user expects from the meta-model and stability of
its out-of-sample performance.

Finally, one needs to obtain a learning procedure that is able to minimize the
exponential cost function with the new combination form given by (21). As
shown by Jin et al [..], following standard procedures for AdaBoost derivation,
one obtains the new expression for the data weight modification at each boosting
iteration:

∑ =

−−

−−

−−

−−

=
N

j

xHyxH

xHyxH
T
n

jTjjT

nTnnT

e

ew
1

)()(

)()(

11

11

β

β

 (22)

All other relevant expressions given by (8.1)-(8.5) remain the same. Using
similar arguments one can obtain learning procedure for an arbitrary bounded
regularizer f(x) instead of exp(-|β Ht-1(x)|) used above [Jin].

How to adapt to boosting-based optimization. Unlike classifier, we do not
know the base strategies performance to compute regime-adjusted weights
according to (..). However, we need the weights to run the strategy portfolio.
One of the natural ways to arrange this …. .

Operational challenges for daily or other low-frequency trading strategies.
Nevertheless still achievable. The most simple operations with intraday
strategies without overnight positions, i.e., … . In the following section we will
give a real market example of such strategy.

6 Application example

7 Conclusions

References

[1] Fabbozzi
[2]

