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Abstract 

Recently proposed boosting-based optimization offers a generic framework for 
the discovery of compact and interpretable portfolios of complimentary trading 
strategies with stable (non-resonant) performance over wide range of market 
regimes and robust generalization abilities. Inherent complexity control allows 
the framework to work with very large pools of heterogeneous base strategies 
with well-established properties. However, in its current version, the framework 
outputs a collection of dynamic strategies with fixed parameters and constant 
weights defining capital allocations. This excludes any adaptive regime 
adjustment or switching on the portfolio level for additional profitability from 
regime-specific patterns. In this work we extend boosting-based optimization 
framework by including capability to discover portfolio strategies with 
continuous and adiabatically smooth adjustment to the current market micro-
regime. Such regime adaptivity is naturally provided by the input-dependent 
boosting. The proposed generalization preserves clarity and interpretability of 
the original framework since the dynamic base strategies of the multi-component 
portfolio and their optimal parameters remain fixed. However, the weights of the 
base strategies are adaptively varied in time according to the implicit rule 
discovered by boosting. Operational details of the new framework and 
encouraging results are illustrated using real market data. More rigorous 
theoretical foundation for the general concept of the boosting-based optimization 
is also outlined. 
Keywords:  adaptive boosting, ensemble learning, regime switching, trading 
strategies, portfolio optimization. 



 

1 Introduction 

One of the most pronounced challenges in financial markets modeling and 
forecasting is nonstationarity of the individual time series and co-dependency 
relations. Usually it is very difficult or practically impossible to find a single 
global model based on observable and well-defined variables with desired 
performance in all market regimes. However, with certain degree of 
simplification such complex nonstationary dynamics can be approximated as 
switching between different regimes of market dynamics where each such 
regime is relatively simple and easy to describe by its own parsimonious model. 
More generally, one can introduce additional non-observable (hidden) state 
variables to represent market regimes and dynamical transitions between them.   

Intuitively, timely switching or smooth transition between different regimes in 
such structured models could significantly improve modeling and forecasting of 
the nonstationary time series. More importantly, this may help to create dynamic 
trading strategies that consistently exploit regime-specific market patterns. 
However, although introduction of the hidden variables in the simplified 
econometric models [Fabozzi] could lead to better prediction accuracy and 
overall explanatory power [application papers], the usefulness of such models for 
the discovery of the realistic trading strategies is often very limited. Moreover, 
potential of model improvement through the introduction of the finer structure of 
the market regimes (states) is also very limited since adequate model estimation 
is possible only when historical training data contains enough transitions 
between different regimes which is often not the case in most financial 
applications.  

Certain simplifications, apriory assumptions and other drawbacks of the 
typical econometric models can be alleviated using dynamic machine learning 
approaches. For example, recurrent neural networks (NN) maintain an adaptive 
internal memory of past inputs that allows implicit regime adjustment or 
switching and do not require any specific assumptions about hidden state 
variables and mechanisms of regime transition [Hykin, Wan, Disser]. However, 
training procedures for such NNs are often significantly more complex and less 
stable compared to already standard feed-forward NNs such as multi-layer 
perceptron (MLP) that are not dynamic [Hykin, Disser]. Moreover, complex 
dynamic NNs lack interpretability and operational stability control that are very 
important requirements in financial applications.     

Both statistical and machine learning forecasting models are trained using 
objectives that are not directly relevant to the trading strategy which limits 
usefulness of such models even when formal forecasting performance measures 
are reasonable [GB]. Technical trading strategies, directly optimized to achieve 
desirable profit/loss (PL) distributions, usually have more practical value than 
pure forecasting models mentioned above. However, single trading strategy with 
reasonable complexity (to ensure out-of-sample performance) still cannot 
warranty stability across different market regimes.  



Many modern automatic systems for systematic trading offer an option for the 
dynamic capital reallocation among different strategies using explicit user-
specified rule that may be a function of the most recent PL time series generated 
by each strategy and other factors. The goal of such approach is to alleviate 
limitations of the single trading strategy that may be profitable only in certain 
market regimes while maintaining simplicity and interpretability of such 
portfolio of trading strategies. However, these systems do not provide any 
generic and theoretically-sound frameworks capable to discover such regime-
adjusted portfolio strategies with stable performance over wide range of market 
regimes. For example, usage of resonance strategies tuned to the specific market 
regimes and simplified empirical switching between different strategies could be 
very unstable since it requires a very accurate timing which is difficult to achieve 
in most modern markets.   

Recently proposed boosting-based optimization provides a generic framework 
for the discovery of portfolios of trading strategies with stable (non-resonant) 
performance over wide range of market regimes using intelligent combination of 
the complimentary, low-complexity base strategies with well-known properties 
[VG]. This framework offers practical solutions for many problems encountered 
in other approaches. However, in its current version, the framework outputs a 
collection of dynamic strategies with fixed parameters and constant weights 
defining capital allocations. This excludes any adaptive regime adjustment or 
switching on the portfolio level for additional profitability from regime-specific 
patterns. In this work we extend boosting-based optimization framework by 
including capability to discover portfolio strategies with continuous and 
adiabatically smooth adjustment to the current market micro-regime. In many 
practical settings, the proposed framework could resolve or alleviate limitations 
of other approaches used for discovery of the regime-adjusted portfolio 
strategies.  

 
 

2 Limitations of the existing regime-switching and regime-
adjusted models 

A flexible and generic approach to incorporate multiple interchanging regimes 
or states is to use models with hidden variables, i.e., auxiliary variables that are 
not directly observable [GeneralRef]. A well-known example of such a 
framework is hidden Markov models (HMM) that are successfully used alone or 
in combination with other statistical or machine learning algorithms in speech 
recognition systems [..], bioinformatics [..], and other applications. Examples of 
hidden variable models used in financial econometrics include regime-switching 
models, the GARCH family of models, and credit risk models, where hidden 
variables are used to represent different economic/market regimes, volatility, and 
credit worthiness, respectively [Fabozzi and references therein].  

One of the widely used types of models with hidden variables is a linear state-
space model that can be written in the following way [Fabbozi]: 
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Here xτ, yτ, and zτ are the vectors of deterministic inputs, observable outputs, and 
latent (nonobservable) state variables, respectively. Observation and transition 
equation white noise are given by ετ and ητ. Observation matrix, input matrix of 
the observation equation, transition matrix, and input matrix to the transition 
equation are given by A, B, C, and D.   

A typical maximum likelihood (ML) based estimation for (1) would require 
approximate calculation of the nonobservable states z, which enters 
corresponding likelihood expression together with observable variables. Kalman 
filter [KFReference] is usually used to provide optimal estimation of the state 
variables. Originally, Kalman filter was designed as an adaptive filter that 
provide optimal estimation and forecasting of the “true” states of the dynamical 
system from the multi-dimensional noisy observations in engineering 
applications. The filter is initialized with the initial conditions and computations 
are carried out recursively to the desired time, i.e. full historical information is 
used to make current estimation and forecasting. 

The intuitive notion of the “states of the market” (e.g. bull, bear, and side 
markets) is well known to market practitioners. From a modeling perspective, 
this implies that different models and strategies should be used in different 
market states. If we add rules that prescribe the switching from one model (or set 
of models) to another one when market state changes, we arrive at the regime-
switching model [Fabozi, Hamilton].  

A broad class of regime-switching models are the Markov-switching vector 
autoregressive models (MS-VAR) [Fabozi, FinMetrix]. Markov-switching model 
is a VAR model whose coefficients are driven by a Markov chain: 
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where the matrices Ai(s) are the coefficients of the process at lag i in state s and 
the noise terms ετ (s) are independent normal variables. The process is driven by 
a k-states Markov chain. A Markov chain is a discrete variable which can assume 
at each instant one of k possible values with transition probabilities: 

ijpjsisP === − )|( 1ττ                                                                                 (3) 
The realized state s determines the coefficients and the vector of the intercepts of 
the process at each moment, so that the innovation term of the process is 
distributed as a mixture of Gaussian distributions. The state variable that could 
be used to represent market regime is a hidden factor. Due to the state (regime) 
switching MS-VAR becomes a nonlinear model even though it is based on linear 
components.  

ML-based estimation of the MS-VAR model is presently the mostly widely 
used approach [Fabozi]. Similar to space-state model (1) and other models with 
hidden variables, one writes a likelihood function that depends on both 
observables and hidden variables. In the case of linear state-space models (1), 



Kalman filter is naturally applicable and used to estimate values of hidden 
variables (states). However, in nonlinear MS-VAR models, Expectation-
Maximization (EM) algorithm is used instead. The algorithm is an optimization 
procedure for finding the maximum of log-likelihood functions in the presence 
of missing or hidden variables [EMReference]. The idea of EM algorithm is to 
iterate between the estimate of the best parameters given the missing (hidden) 
data and the estimate of the missing (hidden) data given the best estimate of 
parameters. 

The obvious limitation of econometric models with hidden state variables 
mentioned above is the usage of the simplified and pre-specified functional 
forms as in (1) and (2), (3). Compared to similar econometric models without 
hidden variables, the requirements for the data sample size will grow much faster 
with the model complexity increase. For example, even for simple regime-
switching model given by (2)-(3), the increase of the regime number beyond 2 or 
3 could make adequate estimation of the model unrealistic since the available 
training data would not have enough transitions between different regimes to 
ensure reasonable out-of-sample performance. Moreover, even when formal 
forecasting performance measures are reasonable for explanatory purposes or 
large-scale risk management applications, the direct usefulness of the 
econometric-type models to trading strategies may often be limited due to the 
difference in objectives [GB].  

Machine learning approaches offer significantly more flexibility in many 
different applications including modeling of the non-stationary or multi-regime 
time series. However, the well-known feed-forward NNs such as widely used 
MLP with standard back-propagation training algorithm may be used to perform 
nonlinear prediction only on stationary time series. It is done by using delayed 
vector of inputs as follows: 
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Here F is a general functional dependence that NN will try to approximate when 
p delayed input variables will be presented at the input and one output variable 
will be generated at the NN output. The adequate choice of the lag space could 
be a difficult problem-dependent task. However, after the lag space is chosen, it 
remains constant. This limits NN’s adaptivity and makes it a static model which 
can describe only stationary time series. 

To make NN dynamic it must be given an “internal” memory [Elman, Hykin]. 
To accomplish this and to retain simplicity of the feed-forward architecture, one 
can introduce time delays into the synaptic structure of the NN and to adjust their 
values during the learning phase. Such time delays are also neurobiologically 
motivated. One of such practical models where MLP with synapses represented 
by a finite-duration impulse response (FIR) filter was introduced by Wan 
[WanDiss]. The efficient training procedure called temporal back-propagation 
was also proposed for such FIR MLP [WanDiss, Hykin]. One of the examples 
when effectiveness of the FIR MLP was demonstrated is the winning of the time 
series prediction competition [TSCompetRef]. 

A more general dynamic model denoted as a recurrent NN is obtained when 
the connectivity of the feed-forward network is extended to include feedback 



connections from the outputs of the units back to their inputs [Hykin, 
ReccNNDiss]. The most general recurrent NN is obtained if the output from 
every unit in the NN is fed back to the inputs of all units. The advantage of the 
recurrent NNs compared to the feed-forward NNs is due to an internal memory 
of past inputs introduced by the feedback connections. This internal memory is 
adaptive, i.e., during training it may be adapted to encompass those previous 
inputs which are relevant to the current problem. Such adaptive memory may 
completely relieve the user from specifying a lag space, since a fully recurrent 
NN is able to work entirely from its own internal memory, created from only a 
single external input [ReccNNRef]: 
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However, despite their advantages recurrent NNs have not gained popularity 

similar to that of feed-forward NNs. Generally, it is more difficult to handle 
recurrent NNs in practice. In particular it has been found that training using 
widely accepted algorithms (e.g., gradient descent method and its extensions) is 
not sufficiently “powerful” to train recurrent NNs [ReccNNRef]. The problem 
could be in slow convergence or in complete failure to provide practically 
acceptable solution. 

Even when training challenges are resolved, the remaining common problems 
with NNs and similar black-box machine learning models are poor 
interpretability and occasional instable behavior which is hard to control and 
predict. Although these drawbacks are especially undesirable in financial 
applications, the high noise-to-signal ratio in financial time series enhances 
probability of unstable behavior of such models.  

One of the machine learning approaches to compensate for deficiency of the 
individual models is to combine several models to form a committee [Bishop, 
Hustee]. Committee can compensate limitations of the individual models due to 
both incomplete data and specifics of the algorithms (e.g., multiple local minima 
in the NN error surface).  A number of different ensemble learning techniques to 
build optimal committees have been proposed over the years in different research 
communities [e.g., VG and references therein]. The most relevant framework of 
this type in the context of the regime-switching or regime-adjusted models is 
mixture of expert (ME) model [Jacobs].   

The probabilistic form of ME model can be written as [Bishop] 
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Here mixing coefficients πt(x) are known as gating functions and the individual 
component densities pt(y|x) are called experts. This terminology is due to the fact 
that different components can model the distribution in different regions of input 
space (they are “experts” at making predictions in their own regions), and the 
gating functions determine which components are dominant in which region. If 
the experts are linear (regression or classification) models, then the whole model 
can be fitted efficiently using the EM algorithm. An even more flexible model is 
obtained by using a multilevel gating function to give the hierarchical mixture of 
experts (HME) model [Bishop]. This model can be imagined as a mixture 



distribution in which each component in the mixture is itself a mixture 
distribution.  

More complex machine learning models can be used as components in both 
ME and HME frameworks. For example, NNs can be used as experts as well as 
gating functions [Hykin]. However, increasing complexity of the models could 
often lead to practical problems in training of such multi-component system and 
to poor out-of-sample performance and instability. Thus, it is highly desirable to 
have committee of the well-understood and low-complexity expert models that 
consistently demonstrate acceptable combined performance.   

Adaptive boosting is a powerful ensemble learning algorithm that combines 
many desirable features [Shap, Ram, Hastee]. Many ensemble learning 
algorithms including “random sample” techniques like bagging can reduce only 
variance part of the model error, i.e. they make a combined model more stable. 
Boosting, on the other hand, can reduce both bias and variance parts of the 
model error. It means that one can start with simple model (“rule of thumb”) 
with low accuracy and produce committee with much higher accuracy. 
Therefore, boosting can be applied to the pool of the well-understood low-
complexity models to produce qualitatively different but interpretable combined 
model with significantly higher accuracy and stability [vg]. Moreover, boosting 
tries to maximize margin to ensure good out-of-sample performance, i.e. it is a 
large-margin classifier [Shap, Ram, Hastee]. 

In our previous works [vg] we propose a boosting-based optimization 
framework for the discovery of the stable portfolios of trading strategies from the 
low-complexity base strategies. It was argued that boosting for classification can 
be used as a basis for such stage-wise optimization framework. The final output 
of the boosting-based optimization is a collection S of complimentary base 
trading strategies BSi with optimal parameter vectors pi and combination weights 
wi that specify capital allocation for each strategy [vg]:   

{ })](,[)],...,(,[ 111 TTT pBSwpBSwS →                                                 (7)   
We have shown empirically [vg] that boosting-based optimization can generate 

portfolios (7) with stable performance over wide range of market regimes while 
using just well-known technical base strategies. However, in its current version, 
the framework outputs a collection of dynamic strategies (7) with fixed 
parameters p and constant weights w. This excludes any adaptive regime 
adjustment or switching on the portfolio level for additional profitability from 
regime-specific patterns. Many modern automatic systems for systematic trading 
offer an option for the dynamic capital reallocation among different strategies in 
(7) using explicit user-specified rule. However, these systems do not provide any 
generic and theoretically-sound frameworks capable to discover regime-adjusted 
portfolio strategies with stable performance over wide range of market regimes. 
Switching-rule specification based just on the semi-quantitative discretional 
arguments could often lead to the unreliable trading system.   

In this work we extend boosting-based optimization framework by including 
capability to discover portfolio strategies (7) where weights w are continuously 
adjusted by the implicit rule discovered by the input-dependent boosting. In the 
next two sections we summarize our previous results on the boosting-based 



optimization as well as provide more formal theoretical foundation for the 
framework. After that we introduce extended framework based on the input-
dependent boosting [Jin] and present regime-adjusted trading strategy obtained 
from the new framework using real-market data. 

 

3 Boosting-based optimization: Discovery of the regime-
independent portfolio strategies 

As described in our previous works [VG], boosting for optimization could be 
based on different boosting frameworks. However, the generalized AdaBoost 
algorithm for classification [Shapiro, Ram] could be a reasonable choice in many 
applications due to its simplicity, comprehensive theoretical foundation, and 
proven robust performance in a large number of realistic classification problems.  
For our purposes it is sufficient to describe boosting algorithm only for two-class 
classification problem, where classifier outputs either +1 or -1. Generalized 
AdaBoost for two-class classification consists of the following steps [Ram]: 
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Here N is a number of training data points, xn is a model/classifier input set of the 
n-th data point and yn is the corresponding class label (i.e., -1 or +1), I(z) = 0 for 
z<0 and I(z)=1 otherwise, T is a number of boosting iterations, wn

t is a weight of 
the n-th data point at t-th iteration, Zt is weight normalization constant at t-th 
iteration, ht(xn)->[-1; +1] is the best base hypothesis/model at t-th iteration, ρ is a 
margin control parameter, and H(x) is a final weighted linear combination of the 
base hypotheses. 

Boosting starts with equal and normalized weights for all training data (step 
(8.1)). A base classifier ht(x) is trained using weighted error function εt (step 



(8.2)). If a pool of several types of base classifiers is used, then each of them is 
trained and the best one (according to error function) is chosen at the current 
iteration. The training data weights for the next iteration are computed in steps 
(8.3)-(8.5). 

According to (8.5), at each boosting iteration, data points misclassified by the 
current best model (i.e., yn ht(xn) < 0) are penalized by the weight increase for the 
next iteration. In subsequent iterations, AdaBoost constructs progressively more 
difficult learning problems that are focused on hard-to-classify patterns. This 
process is controlled by the weighted error function (8.2).   

Steps (8.2)-(8.5) are repeated at each iteration until stop criteria γt < ρ (i.e., εt 

>= 1/2(1-ρ)) or γt = 1 (i.e., εt = 0) occurs. Step (8.6) represents the final 
combined (boosted) model that is ready to use. The model classifies unknown 
sample as class +1 when H(x) > 0 and as -1 otherwise.  

Portfolio strategy discovery is a direct optimization rather than classification 
problem. However, it was argued [VG] that for a large class of objective 
functions, boosting for classification (8.1)-(8.6) can be efficiently used as a basis 
for the framework that could be labeled as “boosting for optimization” or 
“boosting-based optimization”. 

One of the natural and robust objectives for the trading strategy optimization 
is to require returns (r) generated by the strategy on a chosen time horizon (τ) to 
be above certain conservative threshold (rc). By calculating strategy returns on a 
series of intervals of length τ shifted with a step Δτ and encoding them as +1 (for 
r >= rc) and -1 (for r < rc), one obtains symbolically encoded distribution of 
strategy returns. 

Contrary to the classification problems, here the purpose is not to correctly 
classify (between +1 and -1), but rather to increase the number of +1 samples. 
This can still be considered as classification problem with potentially uneven 
sample number between two classes. The described objective can be 
incorporated into the boosting operation (8.1)-(8.6) by considering output -1 as 
misclassification. In such setting, boosting (8.1)-(8.6) provides a framework for 
optimization, where maximization objection function is a “hit rate”, i.e., number 
of +1 samples divided by the total number of samples. The objective function 
can be generalized to include any complex condition with combination of 
different objectives for profit maximization and risk minimization. 

In the case of trading strategy optimization, the final usage of boosting 
output is different from the classical case of boosting for classification. Instead 
of using weighted linear combination (8.6) of the base models as a final model 
for classification, one uses boosting weights to construct portfolio of strategies. 
The initial capital is distributed among different base strategies in amounts 
according to the weights (αt/Σαt) obtained from boosting which are already 
normalized.   

As discussed in [VG], boosting can be used to discover the optimal 
combination of different dynamic trading strategies for a single financial 
instrument as well as the simultaneous combination of trading strategies and 



different instruments. In both cases, boosting steps (8.1)-(8.6) are applied to a 
pool of base strategies {BSi(pi)}, where pi is a vector of adjustable parameters for 
strategy BSi. However, in the first case all base strategies are applied to a time 
series of a single financial instrument FI0, while set {BSi}x{FIj} of all possible 
pairs of strategies BSi and instruments FIj should be used in the latter case. 

According to error function (8.2), if the objective is to maximize the number 
of supercritical returns on the shifted intervals, the following optimization 
problems are solved for all base strategies BSi(pi) and financial instruments FIj at 
each boosting iteration: 
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Here, rn
τ is a return produced by the strategy BSi(pi)  applied to the instrument FIj 

over n-th shifted interval of length τ and rc is a chosen threshold value. Often 
linear function ~ (rc - rn) is better choice for z<0 compared to standard step-
function I. Based on the results of these minimization procedures for all (i,j) 
pairs, the best pair “strategy-instrument” of the current iteration is added to the 
portfolio. This procedure was also generalized to allow simultaneous discovery 
of new synthetic instruments expressed as multiple spreads between base 
instruments and dynamic trading strategies for such spreads [vg].  

The AdaBoost algorithm given by (8.1)-(8.6) is one of the classical versions 
and it was described as an example suitable for boosting-based optimization in 
all our previous works. However, a slightly different version is both more natural 
and more convenient for the extension to the input-dependent boosting [Jin]. For 
simplicity, we will omit the margin parameter ρ in all the following 
formulations.  The other standard AdaBoost formulation given in [Jin], results in 
a different weight update procedure. Instead of (8.5) one applies: 
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Expression for α is given by the following form equivalent to (8.4) with omitted 
margin parameter: 
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As mentioned in our previous publications [vg], boosting also allows natural 
and easy incorporation of other ensemble learning techniques on the inside and 
outside levels for further improvement of the accuracy and stability. For 
example, at each boosting iteration, instead of choosing a single best model, one 
can choose mini-ensemble of models using other ensemble learning techniques. 
In the simplest case, this could be an equal weight mini-ensemble of several 
comparable best models. One can also use boosting in the HME-like framework 
by building portfolio of portfolios.  



 As summarized in this section, it is quite intuitive to use boosting for 
classification as a basis for the boosting-based optimization framework. 
However, to better understand basic features of the boosting-based optimization 
and its possible generalizations and limitations, it is still useful to outline formal 
theoretical foundation for the framework. A short version of such foundation is 
presented in the next section. 
 

4 Theoretical foundation for boosting-based optimization 

Portfolio strategy discovery is a direct optimization rather than classification 
problem. However, several formal arguments presented in this section should 
clearly demonstrate that boosting for classification can be naturally generalized 
for the framework of boosting-based optimization as was suggested in our 
previous papers [vg]. 

One of the operational interpretations of the boosting algorithm shows that 
boosting fits an additive logistic regression model by a stage-wise optimization 
of expected exponential loss [Friedman]:  
    ( ) minyF xe−Ε →                             (12) 
One of the motivations for such choice of the loss function is that exponential 
loss is an upper bound on the classification error [Schapire]: 
   ( )[ ( ) 0] yF xP yF x e−< < Ε                       (13) 
This kind of upper bound can be generalized for any event A:  
   ( )2 1 ( )[ ] AI F xP A e− −≤ Ε ,                        (14) 
where IA=1 if A takes place and IA=0 otherwise. 

For example, consider an event “return of a combined strategy S is lower than 
a threshold rc”, i.e. r(S(x))<rc. Then inequality (14) can be written as 
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Looking at the right part of inequality (15) we can see that optimization task can 
be reduced to classification task in a way proposed in [VG]. Thus, we get a 
generalization of boosting framework for optimization tasks, where instead of 
minimizing classification error we are trying to minimize a number of intervals 
where [r(S(x))<rc]. Minimization of P[r(S(x))<rc] is equivalent to the 
maximization of P[r(S(x))>=rc].  

Boosting is known to demonstrate stable generalization abilities measured by 
its performance on out-of-sample data. Standard Vapnik-Chernovenkis (VC) 
analysis of boosting bounds generalization loss by empirical risk (here P̂r[ ]i  
denotes empirical probability measured on the training set) and a term dependent 
on VC-dimension of weak learner and number of boosting rounds [Freund]: 
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where d is the VC-dimension (capacity) of weak learner, m is the size of the 
training set, and T is the number of weak classifiers in the committee. However, 
this bound could often contradict with practical experience, which shows that 
boosting can decrease its test error even when empirical risk is already zero.  

The best explanation of boosting generalization capabilities so far is margin 
theory [Schapire98]. Margin theory provides an upper generalization bound 
independent of number of iterations made by boosting. This bound suggests that 
boosting may not overfit even if ran for many rounds. For any θ :   
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where margin is  
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Margin is the measure of confidence of a boosted predictor in its decision. It is 
positive if the decision is correct and negative otherwise. Theory states that for 
better generalization one should increase the margins of training samples.  

In the context of the trading strategy boosting margin can be reformulated as 
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In such interpretation we want to maximize the confidence of our boosted 
strategy for over each of n shifted intervals of length τ. In order to strictly apply 
theory for strategy boosting, some additional statements should be proven (e.g., 
finite capacity of base strategies – analogous to VC-dimension). Although the 
rigorous proof is out of scope of this paper, the usage of the low-complexity base 
strategies should not violate these assumptions in most practical settings.    

Boosting is proven, under some conditions on a weak learner, to be a 
regularized search for a maximum margin solution [Rudin]. That means that in 
the limit, the boosted committee may have a maximum possible lower margin. 
Recent studies of boosting suggest that one may expect overfitting in case of 
increasing VC-dimension of weak learner through iterations [Reyzin], or in the 
case of the overlapping class distributions [Vezhnevets]. Again, usage of the 
low-complexity base strategies should be able to alleviate these problems in most 
practical applications.  

 

5 Optimization framework based on input-dependent 
boosting: Discovery of the regime-adjusted portfolio 
strategies 

Majority of the known boosting algorithms including classical AdaBoost assume 
that the combination weights are fixed constants and therefore do not take 



particular input patterns into consideration. Application of such algorithms as a 
basis for the boosting-based optimization allows discovering portfolio strategies 
with fixed weights, i.e., fixed capital allocations among the individual strategies. 
This excludes any dynamic regime-adjustment to exploit regime-specific 
patterns for further increase of the portfolio strategy profitability.  

However, several input-dependent boosting algorithms have been recently 
proposed [Jin, id2, id3]. One of these algorithms (called WeightBoost) [Jin] 
seems to be the most appealing practical choice due to its close relation to the 
original AdaBoost and flexibility to vary the form and degree of the regime 
adjustment. WeightBoost not only introduces input dependency but also provides 
practical regularization mechanism that helps to avoid overfitting problems that 
boosting may encounter in applications with high level of noise. 

The original motivation of this input-dependent boosting algorithm [Jin] is to 
alleviate two limitations of the classical AdaBoost and its extensions. One is 
constant combination weights that prevent from using full potential of the base 
models in the regimes of their expertise. The other problem is potential 
overfitting in high-noise cases that requires introduction of the practical and 
efficient regularization. Previously proposed regularization methods can be 
summarized into two groups: changing the cost function and introducing soft 
margin [reg]. However, most of the regularization algorithms are unsuccessful 
either due to the high computational cost or lack of strong empirical results of 
improvement.   

The following inductive form of the boosted classifier is used in AdaBoost 
derivation and its input-dependent extension given in [Jin]  

)()()( 1 xhxHxH TTT α+= −                                                                  (20) 
The potential overfitting problem of AdaBoost can be implied from the weight 
updating function (10). If there are some noisy data patterns that are difficult to 
classify correctly by the base classifier(s), the value of –HT-1(xi)yi for those data 
points will accumulate linearly (since H(x) is a linear combination of base 
classifiers) and the corresponding weights will grow exponentially. Therefore, 
the particular sampling procedure within the AdaBoost algorithm will 
overemphasize the noisy training data points and may lead to poor 
generalization. 

 Since the potential overfitting is caused by the accumulation of errors within 
the function HT-1(x), one way to avoid this is to modify the expression form for 
HT-1(x). Instead of constant combination coefficients αt, we can make them input 
dependent, i.e. 
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Compared to (20), the above expression replaces the weighting constant αt with 
αtexp(-|β Ht-1(x)|). More interestingly, it can be shown that when αt is bounded 
by some fixed constant, the value of HT(x) in (21) will increase at most 
logarithmically with respect to the number of iterations T and the weight of each 
data pattern will grow at most polynomial with the number of iterations. 



Therefore, the problem of overemphasizing noisy data patterns will be alleviated 
substantially compared to the classical AdaBoost.   

As pointed out before the other important problem with AdaBoost is fixed 
combination coefficients. According to AdaBoost, each base classifier (model) 
ht(x) is trained intentionally on the data patterns that either misclassified or 
weakly classified by previous classifiers (models) Ht-1(x). Therefore, every base 
classifier ht(x) should be appropriate only for a subset of input patterns. 
However, in the prediction phase, the opinion of the base classifier ht(x) will 
always be weighted by the same number αt no matter what test examples are.  

On the contrary, in the new form of HT(x) given by (21), introduction of the 
instance-dependent factor exp(-|βHt-1(x)|) offers a tradeoff between the opinion 
of the base classifier ht(x) and that of the previously built meta-classifier Ht-1(x). 
Since the value of Ht-1(x) indicates its confidence on classifying the instance x, 
the factor exp(-|βHt-1(x)|) forces to consider the opinion of ht(x) seriously only 
when combination of the previous classifiers Ht-1(x) is not confident about its 
decision. This implies that introduction of the input-dependent factor makes the 
base classifier ht(x) to be consistent between the training phase and the prediction 
phase, i.e., ht(x) is used for prediction of the particular type of input patterns that 
it has been trained on.    

It is clear from (21) that the extent of the input-dependency can be 
conveniently controlled by factor β. When β goes to zero, we recover original 
AdaBoost algorithm. Varying β one can go from small weight modulations (mild 
regime adjustment) in almost stationary meta-model (small β) to the more 
regime-switching type of meta-model (large β). The optimal choice of β is 
determined by properties that user expects from the meta-model and stability of 
its out-of-sample performance. 

Finally, one needs to obtain a learning procedure that is able to minimize the 
exponential cost function with the new combination form given by (21). As 
shown by Jin et al [..], following standard procedures for AdaBoost derivation, 
one obtains the new expression for the data weight modification at each boosting 
iteration:  
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All other relevant expressions given by (8.1)-(8.5) remain the same. Using 
similar arguments one can obtain learning procedure for an arbitrary bounded 
regularizer f(x) instead of  exp(-|β Ht-1(x)|) used above [Jin]. 

How to adapt to boosting-based optimization. Unlike classifier, we do not 
know the base strategies performance to compute regime-adjusted weights 
according to (..). However, we need the weights to run the strategy portfolio. 
One of the natural ways to arrange this …. . 

Operational challenges for daily or other low-frequency trading strategies. 
Nevertheless still achievable. The most simple operations with intraday 
strategies without overnight positions, i.e., … . In the following section we will 
give a real market example of such strategy.  



 
 

6 Application example 

7 Conclusions 
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