
1. INTRODUCTION

As realistic computation times limit mechanical
cloth simulations to limit the surface mesh to a few
thousands of triangles, it becomes quite difficult to
imagine how these techniques would allow to
reproduce the wrinkles of usual garments, as each
wrinkle bending would require several rows of
triangles to be reproduced in an acceptable way.

We are indeed vitally concerned with this issue.
Intensive research is carried out on cloth
simulation, where wrinkling is essential to the
visual realism of the garments generated. Our
recent work on interactive clothing systems
emphasizes the need for roughly discretized cloth
objects that retain this realism in fast animation
models. In the meantime, we are investigating skin
aging effects, and wrinkle simulation on human
faces requires customized techniques that can take
skin deformation into account.

On one hand, reducing the number of triangles of
our polygonal surfaces is a necessity whenever
complexity is critical, such as simulation
computation and rendering time, memory
requirements,... On the other hand, dealing with

rough meshes results in visual inaccuracies that we
would like to avoid: The surface mesh is unable to
represent shape details smaller than the size of the
triangles themselves.

As a follow-up to the cloth applications presented
in [VOL 95] and skin simulation developed in
[WUY 97], we propose an algorithm which
generates wrinkles as a layer built on a base
skeleton mesh that can be animated by whatever
fast technique. This algorithm dynamically
generates wrinkles by modulating the amplitude of
a predefined heightmap pattern, according to simple
geometrical laws that reproduce how the wrinkle
amplitude evolves locally upon surface
compression. This algorithm only relies on the
evolution of the mesh edge lengths from their
native length. The amplitude is computed on each
mesh edge, and then interpolated on all the surface.
The wrinkles can be dynamically rendered using
various techniques, such as bump-mapping
[BLI 78] of the heightfield texture modulated by the
local wrinkle amplitude. We propose an
implementation based on adaptive mesh
subdivision and interpolation.

Fast Geometrical Wrinkles
on Animated Surfaces.

Pascal VOLINO, Nadia MAGNENAT THALMANN

MIRALab, University of Geneva
CH-1211, Switzerland

Web: http://miralabwww.unige.ch
Email: [pascal|thalmann]@cui.unige.ch

Phone: -41 (22) 705 77 63 Fax: -41 (22) 705 77 80

ABSTRACT

Fast and interactive animation of polygon based surface models such as cloth and skin usually require to perform
the animation on a rough surface description containing as few polygons as possible.. Fine wrinkle patterns
usually disappear in the process, as their deformation scale becomes incompatible with the size of the mesh
elements. We propose a fast geometrical wrinkling algorithm which can be implemented on top of any rough
surface deformation model, and which modulates the amplitude of a predefined wrinkle heightmap in order to
simulate metric surface conservation.

A wrinkle pattern is initially applied on the animated surface mesh. The native edge length of the mesh is used to
compute dynamically the amplitude of the wrinkles as the mesh is deformed using a fast and robust geometric
model. Several wrinkle patterns can be combined to simulate complex deformations. The presented
implementation deforms an interpolated mesh with adaptive refinement to display the wrinkles.

Keywords: wrinkles, surface animation, cloth simulation, skin deformation, smoothing, interactive display.

2. WRINKLE AMPLITUDE

Wrinkles appear on a surface when, rather than
being compressed with metric elasticity
deformation, the surface bends to absorb the extra
area. This phenomenon usually occurs with thin
surfaces that have very loose curvature elasticity,
such as paper, rubber or skin. While a mechanical
simulation could compute wrinkle patterns at the
expense of heavy and slow computation, our model
makes the assumption that the wrinkle pattern is
constant. This assumption is quite true for many
garment and skin applications. A very simple
geometrical model simulates the local wrinkle
amplitude using simplified mathematical
expressions.

2.1. A Geometrical Amplitude-Elongation Model

The aim of the geometrical model is to find out the
wrinkle amplitude evolution during material
compression or elongation. In a polygonal mesh,
this elongation is typically measured by the
elongation of the mesh edges from their native
length, which usually corresponds to their rest
length in a mechanical model. While the exact 2D
metric deformation state may be obtained for a
mesh triangle using the Mohr circle or the “stain
rosette” formula as performed in [VOL 95] from
the length of its edges, we prefer using a much
simpler approach which computes the 1D metric
deformation directly from the individual edges.

The most direct measure of the deformation of a
mesh is found by comparing the current length of
the edges to their initial, or rest length. An edge
contribution ti to thewrinkling amplitude is
computed for each edge i of the mesh, of initial
length Li, depending on the current length li of this
edge.

The edge contribution ti is a normalized function
defined by the current edge length variation.
Typically, the wrinkle amplitude varies from
maximal amplitude (normalized to 1) for maximal
compression (li = 0) to null for high elongation.
Negative values mean that stretching tend to make
the wrinkles disappear. We model it by building the
following simple mathematical expression relating
these properties in a simple and continuous way:

ti = 2 λ 1

1 + li/ Li()2 − 1

 +1

(1)

The ti curve depicted in Fig.1 illustrates how
wrinkling amplitude evolves with surface
elongation. Multiplied by the edge initial length Li,
it captures the effect of surface length conservation
along an edge as its current mesh length changes.
From a maximal amplitude of 1 corresponding to
maximal compression, it decreases to 0 and then to
negative values, which has the effect of eliminating
wrinkles when the surface is highly stretched, as
shown in Fig.1.

The λ parameter controls the degree of edge
elongation that is required for the surface to
produce wrinkles. With a value above 1, some
compression is required to produce wrinkles,
whereas below 1, the undeformed surface is already
wrinkled.

li > 1/Sqrt(2 λ −1) Li

li = Li

li << Li

1

Fig.1: The evolution of the wrinkles and edge
contribution with respect to the current edge length.

Obviously, wrinkles do not all react in the same
way to deformations, varying according to their
shape and their alignment with the directions of
elongation. A wrinkle shape coefficient mi is
introduced, which controls how the wrinkle pattern
reacts to the elongation of edge i. As shown in
Fig.3, the more the wrinkle shape orientation runs
orthogonal to the direction of an edge, the more it
will react to variation in that edge's length. The
shape coefficient mi is modeled by the following
simple mathematical expression:

mi = 1 −
1

1 +ν Ai
(2)

Ai is a measurement of the wrinkle evolution
amount along the considered edge. We could have
integrated the heightfield map gradient over the
mesh triangles adjacent to the edge to compute this
shape function. A simple 1-dimensional discrete
integration along the edge, however, has proved to
suffice for this evaluation. Given a discretization of

Fig.2: Wrinkling amplitude variation for 120%, 100%, 80%, 50%, 20% elongation from the original length.

the edge into n segments, Ai is n times the square
of the wrinkle texture map height differences at the
segment extremities, summed over all segments.
The ν parameter is introduced to control the
evolution of the shape coefficient with respect to
the wrinkle complexity.

Fig.3: Shape coefficients for triangle edge
with respect to a given texture map.

The shape coefficient depends only on the mesh
topology and on how the wrinkle texture is applied
to the mesh. It is used to render the wrinkle
behavior anisotropically, according to the wrinkle
orientation and the orientation of the surface
deformation, as in the example shown in Fig.4.
There is no need to recompute it if the texture
pattern is not modified on the mesh surface.

Fig.4: Wrinkle amplitude depends on wrinkling
orientation with reepect to deformation direction.

Finally, we multiply the normalized product ti mi
by the native edge length Li to obtain the final
deformation amplitude homogeneous to the mesh
element size.

2.2. Multilayer Wrinkle Patterns

One problem might result from having one single
wrinkle pattern to modulate: Only that particular
pattern will appear on the fabric, and it is usually
only suitable for one particular deformation
direction.

Complex wrinkle patterns are often a combination
of wrinkles in different directions, each of them
reacting differently to the current deformation state.
In order to reproduce such patterns accurately,
several wrinkle structures have to be computed
concurrently and combined to obtain the final
deformation. Our wrinkle texture has several
channels, each of them containing a wrinkle
structure.

Typically, we use the RGB channels of a 24-bit
color image to define three wrinkle structures. The
shape factor mi (2) has a different value for each
channel, and these values are computed separately.
Thus, for a surface point, the wrinkle amplitude has
a different value for each wrinkle channel. These
different wrinkle contributions all contribute to the
global surface deformation, as shown in Fig.5.

Using this multichannel approach, we are able to
design different wrinkle patterns, each of them
appearing or disappearing as the surface is stretched
in different directions.

Fig.5: Multichannel wrinkle generation: (a)
The initial mesh with edge deformations

and (b) the interpolated and textured mesh.
(c) Three wrinkle patterns as texture RGB channels,

(d) wrinkle computation for each channel and blending.

2.3. Rendering Wrinkles

Having obtained the wrinkling amplitude for all
edges of the mesh, the issue is to display the
wrinkles from their original heightfield definition
using a local scaling based on interpolated values of
the amplitude. Several approaches are available,
either based on shading techniques (bump
mapping), either on surface deformation techniques
(displacement mapping).

Introduced in [BLI 78], bump mapping techniques
are based on rendering each surface point using a
local surface normal “deformed” to reflect the
surface orientation to simulate. From a texture
heightmap, the gradient is extracted and translated
into a tangent contribution to the surface normal
vector. This contribution is scaled by the amplitude
the heightfield has to represent. In our case, the
scaling factor is naturally the computed wrinkle
amplitude factor Li ti mi interpolated on the surface
mesh triangle.

Among the various solutions suitable for rendering
bump mappings, ray-tracing is the simplest, as the
shading is directly computed from the surface
normal at each rendered point of the surface.
Hardware solutions have also been proposed
[PEE 97]. Using a fast triangle-based renderer, an
efficient solution is to compute the bump shading as
a linear combination of textures, each of them being
the precomputed heightmap gradient texture for
different light angles. The combination coefficients
are computed from the relative position of the light
on the surface as shown in Fig.6, and of course
modulated by the wrinkle amplitude.

ß1
ß2

ß3

ß0

Bump1

Bump3

Bump2

Bump = (Bump1 cos ß1 + Bump2 cos ß2 + Bump3 cos ß3) cos ß0

Heightmap

Light Source

Fig.6: Computing the bump shading contribution
of a light source from a set of three precomputed

bump samples of a texture heightmap.

3. REFINING WRINKLED MESHES

We have implemented our wrinkling process
through the displacement mapping approach, using
an dynamically adaptive rediscretization scheme of
the initial mesh, based on its curvature, wrinkle
pattern and amplitude.

As the mesh is to be rendered, the process is
performed as follows:

A. The wrinkle amplitude is computed for each
mesh vertex.

B. The discretization of each mesh triangle is
determined, using its curvature, its wrinkle
pattern and amplitude.

C. The discretized mesh triangles are rendered,
using curvature interpolation and displacement
along the Phong normals with the interpolated
amplitudes from the triangle vertices.

3.1. Wrinkle Amplitude Computation

The described wrinkle amplitude computation
determines the wrinkle amplitude along surface
mesh edges. This is not very convenient for most
interpolation. Having them computed for each
vertex would be better for this purpose, and would
furthermore fair the wrinkle amplitude by removing
the artifacts related to particular edge directions.
We compute the vertex amplitude sa on the vertex
Pa by an average of its adjacent edge I amplitudes
(1) (2):

sa = Li mi ti
I⊃ Pa
∑ 1

I ⊃ Pa
∑

(3)

3.2. Adaptive Mesh Rediscretization

Each mesh triangle is dynamically rediscretized in
the rendering process to produce the wrinkles. The
discretization rate is computed from the initial
wrinkle pattern, usually during preprocessing while
computing the edge wrinkle shape coefficient mi
(2), in order to have at least four discretized
elements across each significant individual wrinkle.

Additional parameters such as current wrinkle
amplitude and surface curvature (measured from
the vertex surface normals) can dynamically be
taken into account.

3.3. Curvature Interpolation using Vertex
Normals

To improve the visual smoothness of the surface,
we take advantage of the rediscretization to smooth
the surface curvature by interpolating the
intermediate rediscretized vertices and turn the
mesh triangles into smooth curved patches. As
shown in Fig.7, vertex positions and surface
normals are used as control points similarly to the
problematic solved in [BAJ 92]. In contrast to
approximation schemes, this approach is local to
individual triangles, each of which can be smoothed
independently. However, as the smoothing has to
be performed dynamically on the fly at each
rendering, only simple and fast algorithms are
suitable. Recursive subdivision schemes are also
inappropriate as they require a fixed rediscretization
scheme incompatible with the variable
discretizations of our wrinkling algorithm. By
dropping some continuity requirements that do not
usually affect the perceived smoothness of the
surface, it is possible to simplify the process
considerably, reducing computation and limiting it
to simple vector operations on triangle positions
and normals. This scheme is extensively detailed in
[VOL 98].

Fig.7: The initial triangle, and the interpolation
surface orthogonal to the vertex normals.

Given the triangle defined by the vertices Pa,Pb,Pc
and their respective normals Na,Nb,Nc, our goal is
to compute an interpolated point Q expressed by
the triangle barycentric coordinates ra,rb,rc. We
note P the corresponding point of the triangle
surface and N the corresponding Phong normal,
computed by linear combination of the vertices
using the barycentric coordinates, as shown in
Fig.8.

Pa

Pb

Pc
Nc

Na

Nb

Fig.8: Interpolating Vertices and Normals.

As shown in Fig.9, a contribution surface is
computed for each vertex, which describe a
continuous curved surface orthogonal to the Phong

normals of the triangle and passing through the
corresponding vertex. For the vertex Pa, we
compute the intermediate value Ka and then the
surface contribution point Qa corresponding to the
triangle point P and the Phong normal N as follows:

Ka = P + Pa − P() •N() N

Qa = Ka + Pa − Ka()• Na

2 +µ N • Na() − 1() N

(4)

Na

N

PaP

Qa

Ka

Fig.9: Computing the contribution Qa of the vertex Pa
corresponding to the interpolated point P.

As shown in Fig.10, We finally blend the three
surfaces into the final interpolation surface using
normalized quadratic contributions of the
corresponding barycentric coordinates (with
f(x) = x2):

Q =
f (ra) Qa + f (rb) Qb + f (rc) Qc

f (ra) + f(rb)+ f (rc)
(5)

P

Qa

Qb

PaPb

Q
NaNb

Fig. 10: Interpolation between vertex contributions.

While not ensuring strict C1 continuity because of
the simple blending function, this approach
however allows a very fast interpolation using any
arbitrary set of intermediate vertices for subdividing

a mesh triangle. The interpolation quality is very
satisfying, particularly in the cases where the
curvature is well distributed between the mesh
triangles. This is usually the case for most modeled
objects when using shading vertex normals for
performing the interpolation.

3.4. Rendering Wrinkles

On the interpolated surface, wrinkles are then
generated by displacing the interpolated vertices
along the direction defined by the Phong normals
on the mesh triangles.

As shown in Fig.12, for any point P of the triangle
surface defined by its barycentric coordinates
ra,rb,rc, the vertex amplitudes sa,sb,sc computed
in formula (3) are smoothly interpolated to a value s
using the normalized quadratic blending shape
function f(x) = x2 shown in Fig.13 defined on the
barycentric coordinates:

s = f(ra) sa + f(rb) sb + f(rc) sc
f(ra) + f(rb) + f(rc)

(6)

This interpolation allows good amplitude continuity
on the wrinkle amplitude between the mesh
triangles.

Pa

Pb

Pc

P sc

sc

sa

sa

sb

sb

s

s

Fig.12: Wrinkle amplitude interpolation between the
vertices of a triangle, and the shape function.

Fig.11: A tetrahedron interpolated to a sphere, and smoothing a rough horse.

Fig.13: The blending shape function.

4. RESULTS

In a polygonal mesh model of the human face,
facial expressions are simulated through mesh
deformations. The pattern of facial wrinkle is
defined on the face texture for creating volumic and
shading features. Animation of the face elongates or
compresses some regions of the mesh,
automatically varying the wrinkles through our
algorithm.

Integrating the interpolation algorithm into our
cloth simulation and animation software has
enabled us to generate cloth with considerably
enhanced realism. The rough garment models we
favor for fast cloth generation can now be displayed
with a higher degree of realism. Again,
interpolation improves the quality of the rendering.

Skin aging can be simulated by simply increasing
the mesh rest length at certain locations, while for

Fig.14: Facial wrinkling and garment simulation. The original mesh, the interpolated mesh with wrinkle texture displayed,
the interpolated and wrinkled face without and with texture.

Fig.15: The wrinkles change amplitude anisotropically when the skin surface or cloth is dilated.
This is a way to simulate aging. and animating a dress, dynamically wrinkled according to the mesh deformation.

cloth animation, material compression dynamically
modulates wrinkling amplitude.

Moreover, the generation of wrinkles is carried out
“on the fly” on the deforming polygonal mesh at
display time, without the need for explicit storage
of the interpolated and wrinkled structure. The
wrinkles are modulated dynamically as display
“postprocessing”. Hence no fundamental adaptation
of our existing cloth simulation software was
required. The only issues we had to deal with were
related to collision detection, where reaction
distance was increased to prevent interpenetrations
caused by wrinkle deformations and, in the
mechanical model, a significant decrease of the
compression rigidity parameter, to take into account
the equivalent surface rigidity after wrinkling,
allowing the wrinkles to appear.

Our techniques have greatly diminished the
consequences of the realism-speed compromise in
our clothing system. It is now possible to use very
rough triangular meshes for generating realistic and
attractive garments. For instance, the cloth shown
in fig.14 was used to compute the sequence in
fig.15, which lasts 10 seconds. For the whole
sequence, the mechanical computation itself took
only around 15 minutes on a 200Mhz R5000 SGI
O2 using a cloth surface mesh containing about 500
triangles, with full collision and self-collision
detection. On the other hand, the displayed surface
virtually contains about 10 000 triangles to render
the wrinkle details.

4.3. In a nutshell...

Rough meshes are ideal for efficient object
modeling and fast simulation tasks, such as those
encountered in VR applications. Through our
smoothing and wrinkling techniques, they are no
longer incompatible with high quality rendering and
visual realism.

Our operations are carried out as postprocessing at
rendering time, using very simple and general
algorithms. These techniques can thus be adapted in
a very general manner to an extended range of
computer graphics and animation applications. We
have illustrated this with examples of facial wrinkle
simulation and cloth animation.

As a component of our constant striving towards
VR systems where a good animation frame-rate
should not be synonymous with rendering of poor
visual quality, we intend to integrate our algorithms
into many aspects of an animation framework
capable of generating realistic and well-populated
virtual worlds with a minimum of computational
effort. Virtual worlds to which computer
programmers, designers and VR users could all
contribute peacefully.

Acknowledgments

We are grateful to all the people who
have contributed to this work, for the
technical content as well as for the
illustration design and the text
reviewing.

BIBLIOGRAPHY
[BAJ 92] : C.L. Bajaj, I. Ihm, “Smoothing Polyhedra

using Implicit Algebraic Splines” ,
Computer Graphics (SIGGRAPH
proceedings 1992), 26 (2), pp 79-88, 1996.

[BLI 78] : J.F. Blinn, “Simulation of Wrinkled
Surfaces”, Computer Graphics
(SIGGRAPH proceedings 1978), USA, 12,
pp 286-292, 1978.

[LOD 93] : S. Lodha, “Filling N-sided Holes”,
Modeling in Computer Graphics, IFIP
Series on Computer Graphics, Springer-
Verlag, pp 319-345, 1993.

[PEE 97] : M. Peercy, J. Airey, B. Cabral, “Efficient
Bump-Mapping Hardware” , Computer
Graphics (SIGGRAPH proceedings 1997),
Los Angeles, USA, pp 303-306, 1997.

[PHO 75] : B.T. Phong, “Illumination for Computer
Generated Pictures”, Communications of
the ACM, 6, pp 311-317, 1975

[SAB 86] : M. Sabin, “Recursive Subdivision” , The
Mathematics of Surfaces, Clarendon Press,
Oxford, England, pp 269-282, 1986

[VOL 98] : P. Volino, N. Magnenat-Thalmann, “The
SPHERIGON: A Simple Polygon Patch for
Smoothing Quickly your Polygonal
Meshes”, Camputer Animation Proc. 98,
pp 269-282, 1998.

[WUY 97] : Y. Wu, P. Kalra, N. Magnenat-
Thalmann, “Physically-based Wrinkle
Simulation & Skin Rendering”, Computer
Animation Proc. 97, Geneva, Switzerland,
pp 69-79, 1997.

[ZOR 96] : D. Zorin, P. Schröder, W. Sweldens,
“Interpolating Subdivision for Meshes with
Arbitrary Topology”, Computer Graphics
(SIGGRAPH proceedings 1995), New
Orleans, USA, pp 189-192, 1996.

