A Shading Language on Graphics Hardware:
The PixelFlow Shading System

Marc Olano’ Anselmo Lastra’

University of North Carolina at Chapel Hill

Abstract

Over the years, there have been two main branches of computer
graphics image-synthesis research; one focused on interactivity,
the other on image quality. Procedural shading is a powerful tool,
commonly used for creating high-quality images and production

animation. A key aspect of most procedural shading is the use of
a shading language, which allows a high-level description of the
color and shading of each surface. However, shading languages
have been beyond the capabilities of the interactive graphics
hardware community. We have created a parallel graphics multi-

computer, PixelFlow, that can render images at 30 frames per
second using a shading language. This is the first system to be
able to support a shading language in real-time. In this paper, we
describe some of the techniques that make this possible.

CR Categories and Subject Descriptors D.3.2 [Language
Classifications] Specialized Application Languages; 1.3.1
[Computer Graphics] Hardware Architecture; 1.3.3 [Computer
Graphics] Picture/Image Generation; 1.3.6 [Computer Graphics]
Methodologies and Techniques; 1.3.7 [Computer Graphics]
Three-dimensional Graphics and Realism.

Additional Keywords: real-time image generation, procedural
shading, shading language.

1 INTRODUCTION

We have created a SIMD graphics multicomputer, PixelFlow,
which supportsprocedural shadingusing a shading language.
Even a small (single chassis) PixelFlow system is capable of
rendering scenes with procedural shading at 30 frames per sec
ond or more. Figure 1 shows several examples of shaders that
were written in our shading language and rendered on PixelFlow.
In procedural shading, a user (someone other than a system e

designer) creates a short procedure, callshaaler to determine

the final color for each point on a surface. The shader is respon-

" Now at Silicon Graphics, Inc., 2011 N. Shoreline Blvd., M/S #590,
Mountain View, CA 94043 (email: olano@engr.sgi.com)

Figure 1: Some PixelFlow surface shaders. a) brick. b)
mirror with animated ripple. ¢) wood planks. d) a vol-
ume-based wood. e) light shining through a paned win-
dow. f) view of a bowling scene.

* UNC Department of Computer Science, Sitterson Hall, CB #3175, Chapel Sible for color variations across the surface and the interaction of

Hill, NC 27599 (email: lastra@cs.unc.edu)

light with the surface. Shaders can use an assortment of input
appearance parametersusually including the surface normal,
texture coordinates, texture maps, light direction and colors.
Procedural shading is quite popular in the production industry
where it is commonly used for rendering in feature films and
commercials. The best known examples of this have been ren-
dered wusing Pixar's PhotoRealistic RenderMan software
[Upstill90]. A key aspect of RenderMan is its shading language.
The shading language provides a high-level description of each
procedural shader. Shaders written in the RenderMan shading

Proceedings of SIGGRAPH 98 (Orlando, Florida, July 19-24, 1998) 1

ACM Copyright Notice
Copyright ©1998 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires specific permission and/or a fee.

language can be used by any compliant renderer, no matter whation, which produces random numbers with a band-limited fre-
rendering method it uses. qguency spectrum. This style of noise plays a major role in many
There are several reasons to provide procedural shading inprocedural shaders.

stead of just image texturing on a real-time graphics system: The RenderMan shading language [Hanrahan90][Upstill90]

e |t is easy to add noise and random variability to make a further extends the work of Cook and Perlin. It suggests new
surface look more realistic. procedures for transformations, image operations, and volume

e |t can be easier to create a procedural shader for a compli-effects. The shading language is presented as a standard, making
cated surface than to try to eliminate the distortions causedshaders portable to any conforming implementation.

by wrapping a flat, scanned texture over the surface. In addition to the shading language, RenderMan also provides
e |tis easier to “tweak” a procedural shader than to rescan ora geometry description library (the RenderMan API) and a geo-

repaint an image texture. metric file format (called RIB). The reference implementation is
e |t is often easier to create detail on an object using a proce-Pixar’'s PhotoRealistic RenderMan based on RiieYESrender-

dural shader instead of modifying the object geometry. ing algorithm [Cook87], but other implementations now exist
e A procedurally shaded surface can change with time, dis- [Slusallek94][Gritz96].

tance, or viewing angle. The same application will run on all of these without change.

Usually procedural shading is associated with images that take @&enderMan effectively hides the details of the implementation.
while to generate — from a few minutes to a day or so. Recently,Not only does this allow multiple implementations using com-
graphics hardware reached the point where image texture mappletely different rendering algorithms, but it means the user
ping was not just possible, but common; now hardware is reach-writing the application and shaders doesn’t need to know any-
ing the point where shading languages for interactive graphicsthing about the rendering algorithm being used. Knowledge of
are possible. basic graphics concepts suffices.

We have produced a shading language and shading language Previous efforts to support useritten procedural shading on
compiler for our high-end graphics machine, PixelFlow. This a real-time graphics system are much more limited. The evolu-
language is callegpfman (pf for PixelFlow, man because it is tion of graphics hardware is only just reaching the point where
similar to Pixar's RenderMan shading language). One of the procedural shading is practical. The only implementation to date
great advantages of a shading language for procedural shadingyas Pixel-Planes 5, which supported a simple form of procedural
particularly on a complex graphics engine, is that it effectively shading [Rhoades92]. The language used by this system was
hides the implementation details from the shader-writer. The quite low level. It used an assembly-like interpreted language
specifics of the graphics architecture are hidden in the shadingwith simple operations like copy, add, and multiply and a few
language compiler, as are all of the tricks, optimizations, and more complex operations like a Perlin noise function. The hard-
special adaptations required by the machine. In this paper, weware limitations of Pixel-Planes 5 limited the complexity of the
describe shading on PixelFlow, the pfman language, and theshaders, and the low-level nature of the language limited its use.
optimizations that were necessary to make it run in real-time. Lastra et. al. [Lastra95] presents previous work on the Pix-

Section 2 is a review of the relevant prior work. Section 3 cov- elFlow shading implementation. It analyzes results from a Pix-
ers features of the pfman shading language, paying particularelFlow simulator for hand-coded shaders and draws a number of
attention to the ways that it differs from the RenderMan shading conclusions about the hardware requirements for procedural
language. Section 4 describes our extensions to the OpenGL AP$hading. At the time of that paper, the shading language compiler
[Neider93] to support procedural shading. Section 5 gives a briefwas in its infancy, and we had not addressed many of the issues
overview of the PixelFlow hardware. Section 6 covers our im- that make a real-time shading language possible. [Lastra95] is
plementation and the optimizations that are done by PixelFlow the foundation on which we built our shading language.
and the pfman compiler. Finally, Section 7 has some conclusions.

3 SHADING LANGUAGE

2 RELATED WORK A surface shader produces a color for each point on a surface,
Early forms of programmable shading were accomplished by taking into account the color variations of the surface itself and
rewriting the shading code for the renderer (see, for example,the lighting effects. As an example, we will show a shader for a
[Max81]). Whitted and Weimer specifically allowed this in their brick wall. The wall is rendered as a single polygon with texture
testbed system [Whitti81]. Their span buffersare an imple- coordinates to parameterize the position on the surface.
mentation of a technique now callddferred shadingwhich we The shader requires several additional parameters to describe
use on PixelFlow. In this technique, the parameters for shadingthe size, shape, and color of the brick. These are the width and
are scan converted for a later shading pass. This allowed them tbeight of the brick, the width of the mortar, and the colors of the
run multiple shaders on the same scene without having to re-mortar and brick (Figure 2). These parameters are used to wrap
render. Previous uses of deferred shading for interactive graphics
systems include [Deering88] and [Ellsworth91].

More recently, easier access to procedural shading capabilitie
has been provided to the graphics programmer. Cosliégle
trees [Cook84] were the base of most later shading works. He
turned simple expressions, describing the shading at a point o
the surface, into a parse tree form, which was interpreted. He
introduced the namappearance parameterfor the parameters
that affect the shading calculations. He also proposed an or
thogonal sbdivision of types of programmable functions into
displacement, surface shading, light, and atmosphere trees.

Perlin’'s image synthesizer extends the simple expressions in
Cook’s shade trees to a full language with control structures
[Perlin85]. He also introduced the powerful Perlin noise func-

> |<<—— mortar

-
| mortar

height |
Y !
L e - - J

fc——— width ——>]

Figure 2: Example bricks and the size and shape pa-
rameters for the brick shader.

Proceedings of SIGGRAPH 98 (Orlando, Florida, July 19-24, 1998) 2

/I figure out which row of bricks this is (row is 8-bit integer)
fixed<8,0> row = tt / height;
/I offset even rows by half a row
if (row % 2 == 0) ss += width/2;
/I wrap texture coordinates to get “brick coordinates”
SS = ss % width;
tt = tt % height;
/I pick a color for the brick surface
float surface_color[3] = brick_color;
if (ss < mortar || tt < mortar) Figure 4: Fixed-point vs. floating-point comparison.
surface_color = mortar_color; a) Mandelbrot set computed using floating-point.

Figure 3: Code from a simple brick shader b) Mandelbrot set computed using fixed-point

point format instead of a 32 bit floating-point format: the float-
ing-point format wastes one of the four bytes for an exponent that
is hardly used. In general, it is easiest to prototype a shader using
floating-point, then change to fixed-point as necessary for mem-
was generated with this shader, ory usage, precision, and speed. Our fixed-point types may be

signed or unsigned and have two parameters: the size in bits and
One advantage of procedural shading is the ease with Whlchan exponent, writtefixed<size exponent> . Fixed-point

shaders can be mo_dlf_led to produce the desired results. Flg_u_re lBehaves like floating-point where the exponent is a compile-time
shows a more realistic brick that resulted from small modifica- constant. Small exponents can be interpreted as the number of
tions to the simple brick shader. It includes a simple proce- fractional bits: a two byte integer fixed<16,0> while a two
durally-defined bump map to indent the mortar, high-frequency byte pure fraétion iixed<16.16> ' '

band-limited noise to simulate grains in the mortar and brick, Like recent versions of'the RenderMan shading language
patches of color variation within each brick to simulate swirls of [Pixar97], pfman supports arrays of its basic types. However,

Col?r: in the cla:jy, anfdt%/arlatlrJtns in color from b“;:i(htodb“tcﬁ f th where RenderMan uses separate types for points, vectors, nor-
€ rémainder of this section covers some ot the detalls of tn€ 5,5 - ang colors, pfman uses arrays viiinsformation attrib-

pfman shading language and some of the differences between i tes B
y making each point be an array of floating-point or fixed-
and the RﬁnQerMan s_hadlrflg I?nguag(_e These differences are point numbers, we can choose the appropriate representation
1. the introduction of a fixed-point data type, independently for every point. A transformation attribute indi-
2. the use of arrays for points and vectors, cates how the point or vector should be transformed. For exam-

the texture coordinates intorick coordinatesfor each brick.

These are (0,0) at the lower left corner of each brick, and are;
used to choose either the brick or mortar color. A portion of the
brick shader is shown in Figure 3. The brick image in Figure 2

3. the introduction of transformation attributes, ple, points use the regular transformation matrix, vectors use the
4. the explicit listing of all shader parameters, and same transformation but without translation, and normals use the
5. the ability to link with external functions. adjoint or inverse without translation. We also include a trans-

Of these changes, 1 and 2 allow us to use the faster and morformation attribute for texture coordinates, which are trans-
efficient fixed-point math on our SIMD processing elements. The formed by the OpenGL texture transformation matrix.

third covers a hole in the RenderMan standard that has since

been fixed. The fourth was not necessary, but simplified the im- P

plementation of our compiler. Finally, item 5 is a result of our 3.2 EXplICIt Shader Parameters _
language being compiled instead of interpreted (in contrast toRenderMan defines a set sfandard parametershat are im-

most off-line renderer implementations of RenderMan). plicitly available for use by every surface shader. The surface
shader does not need to declare these parameters and can use
3.1 Types them as if thgy_ were global var_iables. In pfman, these parameters
: must be explicitly declared. This allows us to construct a transfer
As with the RenderMan shading language, variables may bemap (discussed later in Section 6) that contains only those pa-
declared to be eithemiform orvarying . Avarying vari- rameters that are actually needed by the shader.
able is one that might vary from pixel to pixel — texture coordi- In retrospect, we should have done a static analysis of the

nates for example. Aniform variable is one that will never shader function to decide which built-in parameters are used.
vary from pixel to pixel. For the brick shader presented above, This would have made pfman that much more like RenderMan,
the width, height and color of the bricks and the thickness andand consequently that much easier for new users already familiar
color of the mortar are all uniform parameters. These control thewith RenderMan.
appearance of the brick, and allow us to use the same shader for
a variety of different styles of brick. oL

RenderMan has one representation for all numbers: floating-3'3 External Lmkmg
point. We also support floating-point (32-bit IEEE single preci- Compiling a pfman shader is a two-stage process. The pfman
sion format) because it is such a forgiving representation. Thiscompiler produces C++ source code. This C++ code is then com-
format has about IOrelative error for the entire range of num- piled by a C++ compiler to produce an object file for the shader.
bers from 16® to 10®% However, for some quantities used in The function definitions and calls in pfman correspond directly to
shading this range is overkill (for colors, an 8 to 16 bit fixed- C++ function definitions and calls. Thus, unlike most Render-
point representation can be sufficient [Hill97]). Worse, there are Man implementations, we supportlloag C++ functions from
cases where floating-point has too much range but not enougtthe shading language and vice versa. This facility is limited to
precision. For example, a Mandelbrot fractal shader has an insafunctions using types that the shading language supports.
tiable appetite for precision, but only over the range [-2,2] Compiling to C++ also provides other advantages. We ignore
(Figure 4). In this case, it makes much more sense to use a fixedeertain optimizations in the pfman compiler since the C++ com-

Proceedings of SIGGRAPH 98 (Orlando, Florida, July 19-24, 1998) 3

i

Figure 5: Instances of a brick surface shader.

piler does them. One could also use the generated C++ code as

OpenGL also has a handful of other, parameter-specific, calls.

glColor can be set to change any of several possible color
parameters, each of which can also be changed with
glMaterial . We created similar parameter name equivalents
for gINormal andglTexCoord . Other shaders may use these

names to access the normals set wiflkormal and texture

coordinates fronglTexcoord

4.3 Shader Instances

The RenderMan API allows some parameter values to be set
when a shader function is chosen. Our equivalent is to allow
certain bound parameter values. A shading function and its

starting point for a hand-optimized shader. Such a hand-Pound parameters together makesheder instancgor some-

optimized shader would no longer be portable, and performing

the optimization would require considerable understanding of the

times justshade) that describes a particular type of surface.
Because the character of a shader is as much a product of its

PixelFlow internals normally hidden by the shading language. Parameter settings as its code, we may create and use several

Not surprisingly, no one has done this yet.

4 API
The RenderMan standard [Upstill90] defines not only the shad-

ing language, but also a graphics application program interfaceg!lBoundMaterialEXT

(API). This is a library of graphics functions that the graphics

instances of each shading function. For example, given the brick
shading function of Figure 3, we can define instances for fat red
bricks and thin yellow bricks by using different bound values for
the width, height, and color of the bricks (Figure 5).

To set the bound parameter values for an instance, we use a
function. This is equivalent tgl-

Material , but operates only on bound parameters.

application can call to describe the scene to the renderer. We We create a new instance withgiNewShaderEXT , gl-

elected to base our APl on OpenGL [Neider93] instead of Ren-

derMan. OpenGL is a popular API for interactive graphics appli-

cations, supported on a number of graphics hardware platformséeted by calls tayINewList _
derEXT takes the shading function to use and retursbamler

It provides about the same capabilities as the RenderMan API
with a similar collection of functions, but with more focus on

EndShaderEXT pair. This is similar to the way OpenGL de-
fines other objects, for example display list definitions are brack-
and glEndList . gINewSha-

ID that can be used to identify the instance later. Between the

interactive graphics. By using OpenGL as our base we can easilygINewShaderEXT andglEndShaderEXT we useglSha-

port applications written for other hardware.
We extended OpenGL to support procedural shading

derParameterBindingEXT , Which takes a parameter ID
and one of GL_MATERIAL_EXT or GL_BOUND_MATER-

[Leech98]. We required that the procedural shading extensionsl/AL_EXT . This indicates whether the parameter should be set

have no impact on applications that do not use procedural shadby calls to gIMaterial
ing. We also endeavored to make them fit the framework andBoundMaterialEXT

philosophy of OpenGL. Our efforts to extend OpenGL should be
readily usable by future real-time shading language systems.

(for ordinary parameters) agl-
(for bound parameters).
To choose a shader instance, we géhaderEXT with a
shader ID. Primitives drawn after tlygShaderEXT call will

Following the OpenGL standard, all of our extensions have the Use the specified shader instance.

suffix EXT. We will follow that convention here to help clarify

what is already part of OpenGL and what we added. OpenGL4 4 Lights

functions also include suffix letter§ (i , s, etc.) indicating the
operand type. For brevity, we omit these in the text.

4.1 Loading Functions

Procedural surface shaders and lights are written as pfman functhe lights are set witglLight

tions. The new API callglLoadExtensionCodeEXT , loads

OpenGL normally supports up to eight light§L_LIGHTO
through GL_LIGHT7. New light IDs beyond these eight are
created withgINewLightEXT . Lights are turned on and off
through calls taglEnable and glDisable . Parameters for

, which takes the light ID, the
parameter name, and the new value. As with surface shaders, we

a shader. Currently, we do not support dynamic linking of surface have a built-in OpenGL light that implements the OpenGL

or light functions, so this call just declares which shaders will be
used. In the future, we do plan to dynamically load shaders.

4.2 Shading Parameters

On PixelFlow, the default shader implements the OpenGL
shading model. Applications that do not “use” procedural shad-
ing use this defaulpenGL shadewithout having to know any

of the shading extensions to OpenGL.

lighting model. The eight standard lights are pre-loaded to use
this function.

The OpenGL lighting model uses multiple colors for each
light, with a different color for each of the ambient, diffuse and
specular shading computations. In contrast, the RenderMan
lighting model has only one color for each light. We allow a mix
of these two styles. The only constraint is that surface shaders
that use three different light colors can only be used with lights
that provide three light colors. Surface shaders that follow the

We set the values for shading parameters using theRenderMan model will use only the diffuse light color from

glMaterial call, already used by OpenGL to set parameters

lights that follow the OpenGL model.

for the built-in shading model. Parameters set in this fashion go
into the OpenGL global state, where they may be used by an@_ PIXELFLOW

shader. Any shader can use the same parameters as the Open

shader simply by sharing the same parameter names, or it cafVe implemented the pfman shading language on PixelFlow, a

define its own new parameter names.

Proceedings of SIGGRAPH 98 (Orlando, Florida, July 19-24, 1998)

high-performance graphics machine. The following sections give

— ~ rendering o
e _ § node 5 RISC [SIMD
= rendering £ 2 processoff’] array 5
‘g) node c ' 2 2
> IS shading > e
GEJ sha((jjlng 2 node g texture/ 2
S node S ' 8 frame buffer] | =
(@]
frar?“e)dbéjffer 8 frame buffe memory
node
a b Figure 7: Simple block diagram of a PixelFlow node.
Figure 6: PixelFlow: a) machine organization.
b) simplified view of the system. 52 High-|eve| View
a brief overview of PixelFlow. For more details, refer to The hardware and basic system software handle the details of
[Molnar92] or [Eyles97] scheduling primitives for the rendering nodes, compositing pixel
samples from these nodes, assigning them to shading nodes, and
5.1 Low-level View moving the shaded pixel information to the frame buffer. Conse-

quently, it is possible to take the simplified view of PixelFlow as

A typical PixelFlow system consists of a host, a number of ren- 3 simple pipeline (Figure 6b). This view is based on the passage
dering nodes, a number of shading nodes, and a frame buffebf a single displayed pixel through the system. Each displayed
node (Figure 6a). The rendering nodes and shading nodes argixel arrives at the frame buffer, having been shaded by a single
identical, so the balance between rendering performance an hadmg node. We can ignore the fact that d|sp|ayed pixe|s in
shading performance can be decided for each application. Theother regions were shaded by different physical shading nodes.
frame buffer node is also the same, though it includes an addi-Before arriving at the shading node, the pixel was part of a
tional daughter cardto produce video output. The host is con- primitive on just one of the rendering nodes. We can ignore the
nected through a daughter card on one of the rendering nodes. fact that other pixels may display different primitives from dif-

The pipelined design of PixelFlow allows the rendering per- ferent rendering nodes.
formance to scale linearly with the number of rendering nodes Only the rendering nodes make use of the second RISC proc-
and the shading performance to scale linearly with the number ofessor. The primitives assigned to the node are split between the
shading nodes. processors. We can take the simplified view that there is only

Each rendering node is responsible for an effectively random one processor on the node, and let the lower level software han-
subset of the primitives in the scene. The rendering nodes handl@ue the schedu"ng between the physica| processors. Figure 7 is
one 128x64 pixetegionat a time. More precisely, the region is simple block diagram of a PixelFlow node with these simplifica-
128x64 image samples. When antialiasing, the image samplesions. Each node is connected to two communication networks.
are blended into a smaller block of pixels after shading. For The geometry network (800 MB/s in each direction), handles
brevity, we will continue to use the word “pixel”, with the un- information about the scene geometry, bound parameter values,
derstanding that sometimes they may be image samples insteagnd other data bound for the RISC processors. It is 32 bits wide,
of actual pixels. operating at 200 MHz. The comjitisn network (6.4 GB/s in

Since each rendering node has only a subset of the primitiveseach direction) handles transfers of pixel data from node to node.
a region rendered by one node will have holes and missing poly-it is 256 bits wide, also operating at 200 MHz. Since our simpli-
gons. The different versions of the region are merged using afied view of the PixelFlow system hides the image composition,

technique calledmage compositionPixelFlow includes a spe- it is reasonable to simply refer to the composition network as a
cial high-bandwidthcomposition networkthat allows image pixel network.

composition to proceed at the same time as pixel data communi-

cation. As all of the rendering nodes simultaneously transmit

their data for a region, the hardware on each node compares,6 IMPLEMENTATION

pixel-by-pixel, the data it is transmitting with the data from the Implementation of a shading language on PixelFlow requires
upstream nodes. It sends the closer of each pair of pixels downeptimizations. Some are necessary to achieve the targeted inter-
stream. By the time all of the pixels reach their destination, one active rates of 20-30 frames per second, whereas others are nec-
of the system’s shading nodes, the composition is complete. essary just to enable shaders to run on PixelFlow. The three

Once the shading node has received the data, it does the suscarce resources impact our PixelFlow implementation: time,
face shading for the entire region. In a PixelFlow system with communication bandwidth, and memory. In this section, we pres-
shading nodes, each shades ewéhryregion. Once each region ent optimizations to address each.
has been shaded, it is sent over the composition network (without
compositing) to the frame buffer node, where the regions areg 1 Execution Optimizations
collected and displayed.

Each node has two RISC processors (HP PA-8000's), a custonfour target frame rate of 30 frames per second translates to 33 ms
SIMD array of pixel processors, and a texture memory store. per frame. The system pipelining means that most of this time is
Each processing element of the SIMD array has 256 bytes ofactually available for shading. Each shading node can handle one
memory, an 8-bit ALU with support for integer Hiplication, 128x64 region at a time and a 1280x1024 screen (or 640x512
and an enable flag indicating the active processors. All enabledscreen with 4-sample antialiasing) contains 160 such regions. On
processors in the 128x64 array simultaneously compute, on thei system with four shading nodes, each is responsible for 40
own data, the result of any operation. This provides a speedup ofegions and can take an average of B2%hading each region.
up to 8192 times the rate of a single processing element. On a larger system with 16 shading nodes, each is responsible for

Proceedings of SIGGRAPH 98 (Orlando, Florida, July 19-24, 1998) 5

shader bytes free execution time Machine [ThinkingMachines89], though they called themno

brick 46 613.151s andpoly, and by MasPar for the MP-1 [MasPar90], though their

ripple reflection 59 1058.0fds terms weresingularandplural.

planks 105 532.30s

bowling pin 86 401.96¢is 6.1.3 Fixed-point

Egﬂgmgmgﬂ:ggg 715 Zgﬂﬁ We can achieve significant speed improvements by using fixed-
: i i f i i i f floating-

nanoManipulator 3 51 1638.6% point operations for varying computations instead of floating

point. Our pixel processors do not support floating-point in

Table 1: Memory and performance summary. hardware: every floating-point operation is built from basic inte-
er math operations. These operations consist of the equivalent
teger operation with bitwise shifts to align the operands and

result. Fixed-point numbers may also require shifting to align the

'decimal points, but the shifts are known at compile-time. The

timings of some fixed-point and floating-point operations are

shown in Table 2. These operations may be done by as many as
8K pixel processors at once, yet we would still like them to be as
fast as possible.

10 regions and can spend an average of 3.3 ms shading a regio
Table 1 shows per-region execution times fore some sample
shaders. The first four shaders appear in Figure 1. The othe
shaders were written by the UNC nanoManipulator project for
surface data visualization.

6.1.1 Deferred Shading

Deferred shading is the technique of performing shading compu-

tations on pixels only after the visible pixels have been deter-6.1.4 Math Functions

mined [Whittel81][Deering88][Ellsworth91]. It provides several \ye nrovide floating-point versions of the standard math library
advantages for the execution of surface shading functions. Firste - ion<” A efficient SIMD implementation of these functions

no tigne i? ."t‘)’?smg on Zhading Sclc')\;ln[?utations for p!xells that WiIH has slightly different constraints than a serial implementation.
not be visible. Second, our D array can simultaneously pjece \yise polynomial approximation is the typical method to
evaluate a single surface shader instance on every primitive thap, - ate transcendental math functions.

uses it in a 128x64 re_gion. Finally, it decouples the rendering This approach presents a problem on PixelFlow due to the
performance and shading performance of the system. To handle?'landling of conditionals on a SIMD array. On a SIMD array, the

more compllex shading, adddd more sha(;jing hﬁrd\(/jvare. To handlggngition determines which processing elements are enabled.
more complex geometry, add more rendering hardware. The true part of aif /else is executed with some processing

. . elements enabled, the set of enabled processors is flipped and the
6.1.2 Uniform and Varying false part is executed. Thus the SIMD array spends the time to
RenderMan haaniform andvarying types (Section 3.1), in part ~ €xecute both branches of tifie. _
for the efficiency of their software renderer.uliform expres- _ This means that using a table of 32 polynomials takes as much
sion uses only uniform operands and has a uniform result; atime as a single polynomial with 32 times as many terms cover-
varying expressiomay have both uniform and varying operands ing the entire domain. Even so, a polynomial with, say, 160
but has a varying result. As Pixar's prman renderer evaluates thé€rms is not practical. For each PixelFlow math function, we
shading on a surface, it computes uniform expressions only oncef€duce the function domain using identities, but do not reduce it
sharing the results with all of the surface samples, but loops overfurther. For example, the log of a floating-point numinet2", is
the surface samples to compute the varying expressions. e*log(2)+log(m) . We fit log(m) with a single polyno-
We can use a similar division of labor. The microprocessor on Mial. Each polynomial is chosen to use as few terms as possible
each PixelFlow node can compute the result of a single operatiorivhile remaining accurate to within the floating-point precision.
much faster than the SIMD array; but the microprocessor pro- Thus, we still do a piece-wise fit, but fit a single large piece with
duces one result, while the SIMD array can produce a different@ polynomial of relatively high degree. _
result on each of the 8K pixel processing elements. If the value is While we provide accurate versions of the math functions, of-
the same everywhere, it is faster for the microprocessor to com+en shaders do not really need the “true” function. With the rip-
pute and broadcast the result to the pixel processors. If the valule reflection shader in Figure 1b, it is not important that the
is different at different pixel processors, it is much faster to al- fipplesbe sine waves. They just need ltwk like sine waves.
low the SIMD array to compute all of the results in parallel. For that reason, we also provide faster, visually accurate but
Since uniform expressions do not vary across the pixels, it isnumerically poor, versions of the math functions. The fast ver-
much more efficient to compute them using the microprocessorSions use simpler polynomials, just matching value and first de-
and store them in microprocessor memory. In contrast, varyingrivative at each endpoint of the range fit by the more exact ap-
expressions are the domain of the pixel processors. They carProximations. This provides a function that appears visually cor-

potentially have different values at every pixel, so must exist in function exact fast
pixel memory. They are fast and efficient because their storage sin 81.36us 45.64.15
and operations are replicated across the SIMD array. This same coS 81.36ys 48.77us
distinction between sharedr(iform) and SIMD array\arying tan 93.25us 52.651s
memory was made by Thinking Machines for the Connection asin, acos 78.52us 47.50us
Operation || 16-bit fixed | 32-bit fixed | 32-bit float atan 66.41s 35.34us
+ 0.07us 0.13ps 3.08us atan2 66.17us 35.15us
* 0.50ps 2.00ps 2.04ps exp 53.37us 37.86us
/ 1.60ps 6.40us 7.07us exp2 51.09us 35.58us
sqrt 1.22ps 3.33us 6.99us log 57.76us 21.57us
noise 5.71ps — 21.64us log2 57.68us 21.49us

Table 2: Fixed-point and floating-point execution times
for 128x64 SIMD array.

Table 3: Execution times for floating-point math
functions on 128x64 SIMD array.

Proceedings of SIGGRAPH 98 (Orlando, Florida, July 19-24, 1998) 6

/I setup, compute base surface color shaders can use. The results of the lighting computation, the
illuminance() { color and direction of the light hitting each pixel, are stored in a
. o f liah special communications area to be shared by all surface shaders.
} /l'add in the contribution of one light The light functions themselves operate in the SIMD memory left
over by the retained result of the greediest of the surface shader

i wrap-up pre-illum stages. Above thikigh water mark the light can
Figure 8: Outline of a typical surface shader. freely allocate whatever memory it needs. ThHem , and
.) post-illum streams of all shaders can use all available mem-
rect but executes in about half the time. ory without interfering with either the other surfaces or the
6.1.5 Combined Execution lights.

Many shading functions have similar organizations. Combin-
ing the execution of the common sections of code in multiple 6.1.5.2 Surface Position
shaders can lead to large gains in performance. In the next few
sections, we will discuss some of these methods. The easiest ange
most automatic of this class of optimizations is combined execu-
tion of lights for all surface shaders. For some of the more tradi-
tional surface shaders, involving image texture lookups and
Phong shading, we can do further overlapped computation.

For image composition, every pixel must contain the Z-buffer

pth of the closest surface visible at that pixel. This Z value,

along with the position of the pixel on the screen, is sufficient to

compute where the surface sample is in 3D. Since the surface

position can be reconstructed from these pieces of information,

we do not store the surface position in pixel memory during ren-

) dering or waste composition bandwidth sending it from the ren-

6.1.5.1 Lights dering nodes to the shading nodes. Instead, we compute it on the

One of the jobs of a surface shader is to incorporate the effect$hading nodes in a phase we qaie-shade , which occurs

of each light in the scene. As in the RenderMan shading lan-Pefore any shading begins. Thus, we share the execution time

guage, th|s is accomplished through ihaminance con- necessary to I’e_construct the Surface p_OSI'[IO_n. We a|SO s.aVe mem'

struct, which behaves like a loop over the active lights (Figure Ory and bandwidth early in the graphics pipeline, helping with

8). This means that each surface shader effectively includes ghe other two forms of optimization, to be mentioned later.

loop over every light. Fomshaders and lights, this results in

m*n light executions. This can be quite expensive since the 6.1.5.3 Support for Traditional Shaders

lights themselves are procedural, and could be arbitrarily com-

plex. Since the lights are the same for each ohils@aders, we

compute each light just once and share its results among all o

e I oW L xeclons. e 0 1= Y ons are ol enabied by Seting flags i the shacer.
X o) .) Surface shaders that use only the typical Phong shading model

We accomplish this interleaving by having each surface shader

> . -~ can use a shardlum stream. This allows shaders to set up
enerate three instruction streams for the SIMD array. The first
gtream which we capre-illum contains only the se%/up code different parameters to the Phong shader, but the code for the

ntil theilluminance in Figure 8). The second stream con- Phong shading model runs only once.
(u_ e ; . 9 : - Surface shaders that use a certain class of texture lookups can
tains the body of th#luminance construct. We call this the

: . . . share the lookup computations. These shaders know what texture
illum stream. Finally, thgost-illum stream contains eve-

rything after theilluminance . The lights themselves create they want to look up in there-illum phase, but don't require

their own stream of SIMD commands. The interleaving pattern of the results until theost-illum phase. The PixelFlow hard-
€r own stréam o > COl ' 9p ware does not provide any significant improvement in actual
these streams is shown in Figure 9.

The SIMD memor of the surfaces and liohts must beIookup time for shared lookups, but this optimization allows the
chos:n in suchea (\)N);yufr?a?teeach has room to ope?ate but non‘%lMD processors to perform other operations while the lookup is
conflict. The surface shaders will not interfere with each other . Pro9ress: To share the lookup processing, they place their

: : . texture ID and texture coordinatesn special shared “magic”
since any one pixel can only use one surface shader. Differen

surface shaders already use different pixel memory maps. Lights arameters. The results of the lookup are placed in another
however, must operate in an environment that does not disturb’Sh"jlrecl magic parameter by the start opbet-illum stage.
any surface shader, but provides results in a form that all surface .
y P 6.1.6 Cached Instruction Streams

Some optimizations have been added to assist in cases that are
gommon for forms of the OpenGL shading model. Unlike the
earlier execution optimizations, these special-purpose optimiza-

— time (not to scale® On Pixe_IFIow, the microprocgssor code computes _the u_niform
shader stage setdp add light 1 add Iigjwt 2 wrap-up €Xpressions and all of’ the unylform control floifv (s with uni-
=um form condltlons,w_hlle S, for s, t_etc.), generating a stream of_
pre . SIMD processor instructions. This SIMD instruction stream is
Surface 1 illum | | buffered for later execution. The set of SIMD instructions for a
post-illum o shader only changes when some uniform parameter of the shader
pre-illum B changes, so we cache the instruction stream and re-use it. Any
Surface 2 illum . . parameter change sets a flag that indicates that the stream must
post-illum ._ be regenerated. For most non-animated shaders, this means that
pre-illum . the uniform code executes only once, when the application starts.
Surface 3 illum u u . o
post-illum B 6.2 Bandwidth Optimizations
Light 1 F Communication bandwidth is another scarce resource on Pix-
Light 2 . elFlow. As mentioned in Section 5, there are two communication
Figure 9: Interleaving of surface shaders and lights. paths between nodes in the PixelFlow system, the geometry net

Proceedings of SIGGRAPH 98 (Orlando, Florida, July 19-24, 1998) 7

and_ gomposition net. We are p_rimarily concerrjed v_vith the com-g 3 Memory Optimizations
position net bandwidth. While its total bandwidth is 6.4 GB/s, L .)]
four bytes of every transfer are reserved for the pixel depth, giv- The most limited resource when writing shaders on PixelFlow is
ing an effective bandwidth of 5.6 GB/s. pixel memory. The texture memory size (64 megabytes) affects
Since PixelFlow uses deferred shading, the complete set ofthe size of image textures a shader can use in its computations,
varying shading parameters and the shader ID must be transbut does not affect the shader complexity. The microprocessor
ferred across the composition network. The final color must alsomemory (128 megabytes), is designed to be sufficient to hold
be transferred from the shader node to the frame buffer. How-large geometric databases. For shading purposes it is effectively
ever, the design of the composition network allows these two unlimited. However, the pixel memory, at only 256 bytes, is
transfers to be overlapped, so we really only pay for the band-duite limited. From those 256 bytes, we further subtract the
width to send data for each visible pixel from the rendering Shader input parameters and an area used for communication
nodes to shading nodes. At 30 frames per second on a 1280x102@etween the light shaders and surface shaders. What is left is
screen, the maximum communication budget is 142 bytes perbarely enough to support a full-fledged shading language. The
pixel. To deal with this limited communication budget, we must memory limitations of Pixel-Planes 5 were one of the reasons
perform some optimizations to reduce the number of parameterghat, while it supported a form of procedural shading, it could not

that need to be sent from renderer node to shader node. handle a true Shading |anguage. In this section we h|ghl|ght some
of the pfman features and optimizations made by the pfman com-
6.2.1 Shader-Specific Maps piler to make this limited memory work for real shaders.

Even though each 128x64 pixel region is sent as a single transg 3 1 yniform vs. Varying
fer, every pixel could potentially be part of a different surface.]]]]]
Rather than use a transfer that is the union of all the parameters We previously mentioned uniform and varying parameters in
needed by all of those surface shaders, we allow each to have it§1€ context of execution optimizations. Bigger gains come from
own tailored transfer map. The first two bytes in every map con- the storage savings: uniform values are stored in the large main
tain theshader 1D which indicates what transfer map was used memory instead of the much more limited pixel memory.
and which surface shader to run.

6.3.2 Fixed-point

6.2.2 Bound Parameters PixelFlow can only allocate and operate on multiples of single

The bound parameters of any shader instance cannot change frofytes, yet we specify the size of our fixed-point numbers in bits.
pixel to pixel (Section 4.3), so they are sent over the geometryThis is because we can do a much better job of limiting the sizes
network directly to the shading nodes. Since the shader node$f intermediate results in expressions with a more accurate idea
deal with visible pixels without any indication of when during ©f the true range of the values involved. For example, if we add
the frame they were rendered, we must restrict bound parameterVo two-byte integers, we need three bytes for the result. How-
to only change between frames. Bound uniform parameters areeVer, if we know the integers really only use 14 bits, the result is
used directly by the shading function running on the microproc- only 15 bits, which still fits into two bytes. _ _
essor. Any bound varying parameters must be loaded into pixel A two-pass analysis determines the sizes of intermediate
memory. Based on the shader ID stored in each pixel, we identifyfixed-point results. Adottom-uppass determines the sizes neces-
which pixels use each shader instance and load their boundfary to keep all available precision. It starts with the sizes it
varying parameters into pixel memory before the shader exe-knows (e.g. from a variable reference) and combines them ac-
cutes. cording to simple rules. Aop-downpass limits the fixed-point
Any parameter that is bound in every instance of a shadersizes of the intermediate results to only what is necessary.
should probably be uniform, since this gives other memory and
execution time gains. However, it is occasionally helpful to have 6.3.3 Memory Allocation
bound values for varying shading parameters. For example, oUfrhe primary feature that allows shaders to have any hope of
brick sh_ader may |ncluc_jedart|ness parameter. _Some b”.Ck working on PixelFlow is the memory allocation done by the
walls will be equally dirty everywhere. Others will be dirtiest .ompier. Since every surface shader is running different code,
near the ground and clean near the top. The instance used in onge yse a different memory map for each. We spend considerable
_NaII may haveqmlness as a boun_d_parameter, while the compile-time effort creating these memory maps.
instance used in a second wall allodistiness ~ to be set Whereas even the simplest of shaders may define more than
usingglMaterial with a different value at each vertex. 256 bytes of varying variables, most shaders do not use that
_ However, the set of parameters that should logically be bound oy yariables at once. We effectively treat pixel memory as one
in some instances and not in others is small. Allowing bound gian¢ register pool, and perform register allocation on it during
values for varying parameters would be only a minor bandwidth copijation. This is one of the most compelling reasons to use a
savings, were it not for another implication of deferred shadlng. ompiler when writing surface shaders to run on graphics hard-
Since bound parameters can only change once per frame, we find,5re |t is possible to manually analyze which variables can co-
parameters that would otherwise be uniform are being declaredgyist in the same place in memory, but it is not easy. One of the
as varying solely to. .‘"‘HOW tr_ler_n_ to be changed_ .W'th authors did just such an analysis for the Pixel-Planes 5 shading
glMaterial ~from primitive to primitive (instead of requiring ;oqe |t took about a month. With automatic allocation, it sud-

hundreds of instances). This means that s_omeohmgvg_Pix- denly becomes possible to prototype and change shaders in min-
elFlow shader may make a parameter varying for flexibility even | ;1ac’instead of months.

though it will never actually vary across any primitives. Allowing The pfman memory allocator performs variable lifetime analy-

instances to have bound values for all parameters helps countegis py converting the code to a static single assignment (SSA)

the resulting explosion of pseudo-varying parameters. form [Muchnick97][Briggs92] (Figure 10). First, we go through
the shader, creating a new temporary variable for the result of
every assignment. This is where the method gets its name: we do

Proceedings of SIGGRAPH 98 (Orlando, Florida, July 19-24, 1998) 8

i=1; i1=1; i1=1; shader total varying varying
i=i+1; i2=il+1; i2 3=il+1; (uniform + only with
if (i >) if (i2 > j1) if (i2_3>j1) varying) allocation
i=5; i3=5; i2_3=5; simple brick 171 97 16
i=i j2 = $(i2,i3); j2=1i2_3; fancy brick 239 175 101
a b C ripple reflection 341 193 137
Figure 10: Example of lifetime analysis using SSA. a) wood planks 216) 152 97
original code fragment. b) code fragment in SSA form. Table 4: Shader memory usage in bytes.
Note the new variables used for every assignment and project over again today, we would just add fixed-point to the
the use of the-function for the ambiguous assignment. current version of the RenderMan shading language.
¢) final code fragment with-functions merged. We have only addressed surface shading and procedural lights.

RenderMan also allows other types of procedures, all of which
could be implemented on PixelFlow, but have not been. We also
do not have derivative functions, an important part of the Ren-
derMan shading language. Details on how these features could
%e implemented on PixelFlow can be found in [Olano98]

We created a shading language compiler, which hides the de-
tails of our hardware architecture. The compiler also allows us to
invisibly do the optimizations necessary to run on our hardware.
We found the most useful optimizations to be those that happen
gutomatically. This is consistent with the shading language phi-
losophy of hiding system details from the shader writer.

Using a compiler and shading language to mask details of the
ardware architecture has been largely successful, but the hard-
Ware limitations do peek through as shaders become short on
?nemory. Several of our users have been forced to manually con-

a static analysis, resulting in one and only one assignment for
every variable. In some places, a variable reference will be am-
biguous, potentially referring to one of several of these new tem-
poraries. During the analysis, we perform these references usin
a ¢-function The ¢-function is a pseudo-function-call indicating
that, depending on the control flow, one of several variables
could be referenced. For example, the value of the last line
of Figure 10b, could have come from eithi2r or i3 . In these
cases, we merge the separate temporaries back together into
single variable. What results is a program with many more vari-
ables, but each having as short a lifetime as possible.

Following the SSA lifetime analysis, we make a linear pass h
through the code, mapping these new variables to free memory a;
soon as they become live, and unmapping them when they are n

longer Illv%_Vanat;]Ie_s (l:an onlfy becomillve at aTt5|gfnr::1ents ?ndvert portions of their large shaders to fixed-point to allow them to
can only die at their last reference. As a result of these two run. Even after such conversion, one of the shaders in Table 1

passes, variables with _the Same name in _the user's code MaKas only a single byte free. If a shader exceeds the memory re-
shift fm”.‘ memory location to memory Iocat_lon. We only allow ources after it is converted to fixed-point, it cannot run on Pix-
these shifts when the SSA name for the variable changes. One g IFlow. If this becomes a problem, we can add the capability to
the most noticeable effects of the this analysis is that a variableSloill pi-xel memory into texture mémory at a cost in execution
that is used independently in two sections of code does not takespeed. '

SD_?_CEIbeZWien eXﬁCUtiO? of the sec;iohns. I . Any graphics engine capable of real-time procedural shading
able 4 shows the performance of the memory allocation on an, require significant pixel-level parallelism, though this par-

assortment of_shaders. Table 1 shows _the amount of memory le llelism may be achieved through MIMD processors instead of
after the shading parameters, shader, light, and all overhead haV%IMD as we used. For the near future, this level of parallelism

been factored out. will imply a limited per-pixel memory pool. Consequently, we
expect our memory optimization techniques to be directly useful
7 CONCLUSIONS for at least the next several real-time procedural-shading ma-

We have demonstrated an interactive graphics platform that sup-Chine.s.' Our bandwidth optimization techniques are somewhat
ports procedural shading through a shading language. With ourspeCIfIC to the P'Xe.IFIOW archltec_:ture, though shou!d apply to .
system, we can write shaders in a high-level shading Ianguagec’ther deferred shading systems since they need to either transmit

compile them, and generate images at 30 frames per second é:}r store t_he per-pixel appearance parameters betwee_“ rende_ring
more. To accc’)mplish this, we modified a real-time API to sup- and shading. Deferred shading and our experience with function

port procedural shading and an existing shading language toapproximation will be of interest for future SIMD machines. The

include features beneficial for a real-time implementation. other exe“_’“o” optlmlzatlpns, _deallng .W'th tasks _that can be
Our API is based on OpenGL, with extensions to support the done once instead of multiple times, will be of lasting applica-
added flexibility of procedural shading. We believe the decision bility to anyone attempting a procedural sr_ladlng machine. o
to extend OpenGL instead of using the existing RenderMan AP|__ T nere is future work to be done extending some of our optimi-
was a good one. Many existing interactive graphics applicationsZatlon technlques._ In part_lcular, we have barel_y scratched the
are already written in OpenGL, and can be ported to PixelFlow surface of automatic combined execution of portions of different

with relative ease. Whereas the RenderMan API has better sup?nhat?erus' V;/en(]jo ot?llyrtsh\?vgqggtvaﬁﬁ Iﬁir?;cstrf]r%srﬁ %ﬂ'?ﬁgﬁgﬁrﬁgﬁo'
port of curved surface primitives important for its user commu- Matcally. Some othe !

nity, OpenGL has better support for polygons, triangle strips anolWhereas other possible optimizations are not do_ne at all. For
display lists, important for interactive graphics hardware. example, we currently run every shader instance independently.

Our shading language is based on the RenderMan shadin t would be relatively easy to identify and merge instances of the

language. Of the differences we introduced, only the fixed-point ame shader function that did not differ in any uniform parame-

data type was really necessary. We expect that future hardwarelers- For a SIMD machine like ours, this would give linear speed

assisted shading language implementations may also want simig';ﬁ:g‘r’egfenr: ;’nvg?etme?ggzgrv%ullrzisga;?gsusﬁetﬁgqeiﬁi?gbistoc;f
ixed-poi ions. ither doneZZ." '~ - . o
lar fixed-point extensions. The other changes were either do e[Dlet292] and [Guenter95] to combine code within a shader and

for implementation convenience or to fill holes in the Render- t hader inst with differing uniform parameter val-
Man shading language definition that have since been addressefjtween shader instances ering uniform para

by more recent versions of RenderMan. If we were starting the Ues.

Proceedings of SIGGRAPH 98 (Orlando, Florida, July 19-24, 1998) 9

Creating a system that renders in real-time using a shadingGuenter95] Brian Guenter, Todd B. Knoblock and Erik Ruf, “Specializing
language has been richly rewarding. We hope the experiences we Shaders”, Proceedings of SIGGRAPH 95 (Los Angeles, California,

have outlined here will benefit others who attempt real-time August 6-11, 1995). IrComputer GraphicsProceedings, Annual
procedural shading. Conference Series, ACM SIGGRAPH, 1995. pp. 343-348.

[Hanrahan90] Pat Hanrahan and Jim Lawson, “A Language for Shading and

Lighting Calculations”, Proceedings of SIGGRAPH 90 (Dallas, Texas,
8_ ACKNOW!‘EDGMENTS]]] August 6-10, 1990). IComputer Graphicsv24n4. ACM SIG-
PixelFlow was a joint project of the University of North Carolina GRAPH, AugustL990. pp. 289-298.

and Hewlett-Packard and was supported in part by DARPA orde
numbers A410 and E278, and NSF grant numbers MIP-930620
and MIP-9_61264_3. - . Difference Formula” ACM Transactions on Graphicgl6n2. ACM,

The entire project team deserves recognition and thanks; this april 1997. pp. 109-154.
work exists by virtue of their labors. We would like to single out
Voicu Popescu for his work on pfman memory allocation as well [Lastra95] Anselmo Lastra, Steven Molnar, Marc Olano and Yulan Wang,
as the other project members who worked on the pfman com- Real-ime Programmable Shading”, Proceedings ofl8@5 Sympo-
piler, Peter McMurry and Rob Wheeler. Thanks to Steve Molnar sium on Interactive 3D Graphics (Monterey, California, April 9-12,
and Yulan Wang for their early work on programmable shading 1995). ACM SIGGRAPH, 1995. pp. 59-66.
on PixelFlow. Thanks to Jon Leech for his work on the OpenGL [Leech98] Jon Leech, “OpenGL Extensions and Restrictions for PixelFlow”,
extensions. We would also like to express special thanks to the Technical Report TR98-019, Department of Computer Science, Uni-
other people who worked on the PixelFlow shading system and Versity of North Carolina at Chapel Hill.

Holloway, Roman Kuenkuda. paul Layne, Carl Musller, Greg M2721%0] MasPar Computer Corporaton, MasPar Paralll Applicaion
Pruett, Brad Ritter, and Lee Westover. guage (MPL)) ' '

Finally, we would like to gratefully acknowledge the help and [Max81_] Nelson L. Max, “Vec_torlzed Proce:‘dural Mod_els for Natural Ter-
patience of those who have used pfman, and provided several of rain: Waves and Islands in the Sunset”, Proceedl_ngs of SIGGRAPH 81
the shaders used in this paper. They are Arthur Gregory, Chris (S?g"é‘;’A-PrzxaAsl’JgJuus?lég?%ﬁfﬁrgg:ter Graphicsvisng. ACM
Wynn, and members of the UNC nanoManipulator project, under ' ' '
the direction of Russ Taylor (Alexandra Bokinsky, Chun-Fa [Molnar92] Steven Molnar, John Eyles and John Poulton, “PixelFlow: High-

Chang, Aron Helser, Sang-Uok Kum, and Renee Maheshwari). speed Rendering Using Image Composition”, Proceedings of SIG-
GRAPH 92 (Chicago, lllinois, July 26-31, 1992). Gomputer
Graphics v26n2. ACM SIGGRAPH, July 199@p.231-240.

r
8[HiII97] B. Hill, Th. Roger and F. W. Vorhagen, “Comparative Analysis of
the Quantization of Color Spaces on the Basis of the CIELAB Color-

References

[Muchnick97] Steven MuchnickCompiler Design and Implementation

[Briggs92] Preston BriggsRegister Allocation via Gaph Coloring PhD Morgan Kaufmann, San Francisco, CA, 1997.

Dissertation, Department of Computer Science, Rice University, [Neider93] Jackie Neider, Tom Davis and Mason W@penGL Program-

Houston, Texas, 1992. ming Guide: the official guide to learning OpenGL releaseAtidi-
[Cook84] Robert L. Cook, “Shade Trees”, Beedings of SIGGRAPH 84 son-Wesley, 1993.

(Minneapolis, Minnesota, July 23-27, 1984) Gomputer Graphics [Olano98] Marc OlancA Programmable Pipeline for Graphics Hardware

v18n3. ACM SIGGRAPH, July 1986p.223-231. PhD Dissertation, Department of Computer Science, University of
[Cook87] Robert L. Cook, “The Reyes Image Rendering Architecture”, North Carolina at Chapel Hill, 1998.

Proceedings of SIGGRAPH 87 (Anaheim, California, Jag-31, [Perling5] Ken Perlin, “An Image Synthesizer”, Proceedings of SIGGRAPH

1987). InComputer Graphigsv21n4. ACM SIGGRAPH, July 1987. 85 (San Francisco, California, July 22-26, 1985). damputer

pp. 95-102. Graphics v19n3. ACM SIGGRAPH, July 198pp.287—296.

[Deering88] Michael Deering, Stephanie Winner, Bic Schediwy, Chris Duffy - 1pjya97] pixar Animation Studio®hotoRealistic RenderMan 3.7 Shading
and Neil Hunt, “The Triangle Processor and Normal Vector Shader: A Language Extension®ixar animation studios, March 1997.

VLSI System for High Performance Graphics”, Proceedings of SIG-
GRAPH 88 (Atlanta, Georgia, August 1-5, 1988). Gomputer [Rhoades92] John Rhoades, Greg Turk, Andrew Bell, Andrei State, Ulrich

Graphics v22n4, ACM SIGGRAPH, August 1988. pp. 21-30. Neumann and Amitabh Varshney, “Real-time procedural textures”,
. . “ . - ’ Proceedings of thd992 Symposium on Interactive 3D Graphics
[Dietz92] Henry G. Dietz, “Common Subexpression Induction”, Proceedings (Cambridge, Massachusetts, March 29-April 1, 1992)Computer

of the 1992 International Conference on Parallel Processing (Saint Graphicsspecial issue. ACM SIGGRAPMarch 1992pb.95-100
Charles, lllinois, August 1992). pp. 174-182. P P ' ™ pp. ‘

. “ . . [Slusallek94] PHipp Slusallek, Thomas Pflaum and Hans-Peter Seidel,
[Ellsworth91] David Ellsworth, “Parallel Architectures and Algorithms for “Implementing RenderMan—Practice, Problems and Enhancements”,

Real-time Synthesis of High-quality Images using Deferred Shading”. : e ;

Workshop on Algorithms and Parallel VLSI Architectures (Pont-a- S{gz%ediggi (;fp E:Alrggzaspzhlcs 94. omputer Graphics Forum

Mousson, France, June 12, 1990). ' e '

[ThinkingMachines89] Thinking Machines CorporatidBpnnection Ma-
chine Model CM-2 Technical Summafyhinking Machines Corpo-
ration, Version 5.1, May 1989.

[Eyles97] John Eyles, Steven Molnar, John Poulton, Trey Greer, Anselmo
Lastra, Nick England and Lee Westover, “PixelFlow: The Realiza-
tion”, Proceedings of th&997 SIGGRAPH/Eurographics Workshop
on Graphics Hardware (Los Angeles, California, August 3—4, 1992). [Upstill90] Steve Upstill, The RenderMan Companipriddison-Wesley,

ACM SIGGRAPH, August 1997. pp. 57-68. 1990.

[Gritz96] Larry Gritz and James K. Hahn, “BMRT: A Global lllumination [whitted81] T. Whitted and D. M. Weimer, “A software test-bed for the
Implementation of the RenderMan Standarddurnal of Graphics development of 3-D raster graphics systems”, Proceedings of SIG-
Tools v1n3, 1996. pp. 29-47. GRAPH 81 (Dallas, Texas, July 1981). Bomputer Graphigs

v15n3. ACM SIGGRAPH, August 1981. gp7/1-277.

Proceedings of SIGGRAPH 98 (Orlando, Florida, July 19-24, 1998) 10

