
Interactive Reflections on Curved Objects

Eyal Ofek Ari Rappoport

Institute of Computer Science, The Hebrew University

Abstract

Global view-dependent illumination phenomena, in particular re-
flections, greatly enhance the realism of computer-generated im-
agery. Current interactive rendering methods do not provide satis-
factory support for reflections on curved objects.

In this paper we present a novel method for interactive computation
of reflections on curved objects. We transform potentially reflected
scene objects according to reflectors, to generatevirtual objects.
These are rendered by the graphics system as ordinary objects, cre-
ating a reflection image that is blended with the primary image. Vir-
tual objects are created by tessellating scene objects and computing
a virtual vertex for each resulting scene vertex. Virtual vertices are
computed using a novel space subdivision, thereflection subdivi-
sion. For general polygonal mesh reflectors, we present an associ-
ated approximate acceleration scheme, theexplosion map. For spe-
cific types of objects (e.g., linear extrusions of planar curves) the
reflection subdivision can be reduced to a 2-D one that is utilized
more accurately and efficiently.

CR Categories:I.3.3 [Computer Graphics]: Picture/Image Gener-
ation; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism.

Keywords: ray tracing, interactive reflections, virtual objects
method, reflection subdivision, explosion map.

1 Introduction

Interactive photo-realistic rendering is a major goal of computer
graphics. Global view-dependent illumination phenomena greatly
enhance image quality. An extremely important type of view-
dependent phenomenon is reflection. Reflections on curved object
are not supported well by current interactive rendering techniques.
In this paper we address the problem of interactive rendering of
reflections on curved objects.

Background.Current interactive graphics systems utilize hardware
acceleration that directly supports hidden surfaces removal, sim-
ple local shading models and texture mapping. While the polygon
throughput of these systems is impressive, the range of shading ef-
fects they provide hasn’t changed much since their introduction. In
particular, they lack support for global illumination phenomena in

Institute of Computer Science, The Hebrew University, Jerusalem 91904,
Israel. http://www.cs.huji.ac.il/�arir,�eyalp arir,eyalp@cs.huji.ac.il

dynamic scenes.

Global illumination phenomena greatly enhance the quality of syn-
thetic imagery. They can be coarsely classified to view-independent
and view-dependent phenomena. Among the former, diffuse illumi-
nation in static scenes [Sillion89] and shadows [Segal92] can be in-
teractively rendered using current hardware. However, globalview-
dependentphenomena are crucial for providing life-like realism.
When only view-independent effects are provided, the visual na-
ture of the result can be dull and lifeless, even when the scene is
dynamic.

An extremely important view-dependent illumination phenomenon
is reflection. The dominant method for generating reflections is ray
tracing [Whitted80, Glassner89]. In spite of extensive work on ray
tracing acceleration schemes, [Jansen93] states that the only hope
for interactive ray tracing lies in massively parallel computers, and
even then satisfactory performance is not guaranteed.

Environment mapping [Blinn76, Greene86, Haeberli93,
Voorhies94] generates at interactive rates reflections that are
approximately correct when the reflected objects are relatively far
from the reflector. However, when this condition is violated the
results are of very poor accuracy.

It is well-known that reflections on planar surfaces can be generated
by (1) mirroring the viewer along the reflecting plane, (2) creating a
reflection image by rendering the scene from the new point of view,
and (3) merging the main image with the visible portion of the re-
flector in the reflection image. Surprisingly, although this method
can significantly accelerate ray tracing, it has been accurately doc-
umented only recently. The descriptions in [Foley90] (in which the
method is called ‘reflection mapping’) and [McReynolds96] are
correct only when the original viewer and all objects lie on the
same side of the reflecting plane. A correct description is given in
[Hall96]. [Diefenbach97] shows how to use variants of this method
for interactive simulation of various general reflectance functions
of planar objects. The concept of a reflected virtual world was also
used in [Rushmeier86, Wallace87, Sillion89] for supporting specu-
lar reflections from planar objects in a radiosity context.

Contribution. In this paper we present a method for interactive ren-
dering of reflections oncurvedobjects, based on merging a primary
image and a reflection image. The reflection image is generated by
creating and renderingvirtual objectscorresponding to reflections
of scene objects. Virtual objects are rendered like ordinary poly-
gons, thus taking advantage of the features supported by the graph-
ics system. They are created using a structure called thereflection
subdivisionand an associated approximate acceleration scheme, the
explosion map.

The method presents a novel approach to the computation of re-
flections in computer graphics, and is unique in providing approx-
imate reflections on curved objects at interactive rates. Moreover,
the rendered scenes can be completely dynamic; no pre-processing
is necessary. The method provides higher quality than environment
mapping, because it allows reflected objects to be nearby the reflec-
tor and it supports equally well reflectors having a large curvature.
For scenes in which reflected images of objects occupy more than a

ACM Copyright Notice
Copyright ©1998 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires specific permission and/or a fee.

few pixels and in which the depth complexity of the reflection im-
age is not large, the method is much more efficient than ray tracing,
because it efficiently exploits the spatial coherency of the reflec-
tion image. The price paid for the advantages of the method is that
its performance is less efficient than that of environment mapping
and the generated images are only polygonal approximations (as in
most interactive systems). In addition, its accuracy depends upon
the geometric nature of the reflector.

The paper is structured as follows. Section 2 gives an overview of
the method. Sections 3, 4 and 5 deal with convex reflectors, dis-
cussing respectively the reflection subdivision, the explosion map,
and special reflectors. Section 6 deals with non-convex reflectors.
Results and an in-depth discussion are given in Sections 7 and 8.

2 Method Overview

In this section we give an overview of the virtual objects method.
We present the general idea (2.1), image merging alternatives (2.2),
a brief discussion on planar reflectors (2.3), and a high-level outline
on non-planar reflectors (2.4).

2.1 General Idea

The virtual objects method is inspired by the following observation.
Consider an image containing reflections. Two kinds of entities are
visible: reflecting objects, orreflectors, andreflected imagesof re-
flected 3-D objects. When the reflector is a perfect planar one, the
geometry of the reflected images is identical to images of the re-
flected objects from some other viewpoint. In fact, we cannot dis-
tinguish between ‘real’ objects and reflected images of objects. In-
terior designers utilize this phenomenon when covering walls with
mirrors in order to make rooms seem larger. For non-planar reflec-
tors, the appearance of reflected objects is a deformed version of
their ordinary appearance. In general, there is no viewpoint from
which they appear identical to their reflected images. The nature of
the deformation depends upon the geometry of the reflector. Con-
vex reflectors deform reflected objects to seem smaller, and concave
reflectors produce reflected images that may seem larger than the
reflected object or degenerate into strange chaotic images.

This observation inspires the following algorithm for generation of
reflections (Figure 1): for every reflector and every object poten-
tially reflected in it, compute a3-D virtual object,that, when ren-
dered using ordinary 3-D rendering methods, will produce an image
having a visual appearance similar to the object’s reflected image. If
depth relationships between the virtual objects are still correct, the
rendered images of the virtual objects can be merged together us-
ing some hidden surfaces removal algorithm. The result can now be
alpha blended with a reflector image containing view-independent
lighting to produce the final image. The alpha blending coefficients
are determined by the relative reflectivity of the reflector.

SceneRender(SceneS, View E):
(1) RenderSwithout reflections into primary imageI .
(2) For every visible reflectorR2 S
(3) For every potentially reflected objectO 2 S
(4) O0

 VirtualObject (R,O, E).
(5) RenderO0 into a reflection imageI 0.
(6) If multiple levels of reflections are desired

Call the algorithm recursively.
(7) Alpha blendI 0 andI , according to

the reflectivity ofR.

Figure 1 The virtual objects method.

When virtual objects can be computed efficiently, the resulting
method is very attractive, since reflected images are generated at
the object, rather than the pixel, level. Most of this paper deals with
step 4, efficient generation of virtual objects. Naturally, only visible
reflectors are considered, and the scene can be stored in a data struc-
ture that supports culling of scene objects that cannot be reflected.

A comment about shading: for planar reflectors we can reflect the
light sources as well as the scene objects and simply use the re-
flected ones. For non-planar reflectors, it is more accurate to com-
pute shading values for vertices at the world coordinate system, and
then use these values for the virtual vertices. On current architec-
tures, this shading is most efficiently computed in software, and the
hardware is used for rasterization and texturing.

2.2 Image Merging

The primary and reflection images can be merged in two ways.
First, the reflection image can be used as a texture when render-
ing a reflector. Alternatively, the reflection image can be directly
rendered on the screen (using a stencil bit-plane defining the screen
image of the reflector.) The view-independent component of the re-
flector is now rendered, alpha blending it with the reflection image.

Texture mapping and stencil-guided image merging are standard
features in interactive graphics systems, even current low-end ones.
The choice of method depends on the actual graphics architecture
available, especially on its memory organization. For more details,
see [Ofek98, McReynolds96, Hall96].

2.3 Planar Reflectors

The method of [McReynolds96, Hall96, Diefenbach97] is a special
case of the virtual objects method, when the reflectors are planar
and when we consider the objects, rather than the viewpoint, as
being mirrored. Note that in this case the method is essentially an
image-space version of beam tracing [Heckbert84]. An attractive
property of planar reflectors is that the location of a virtual point is a
simple affine transformation,mirroring, of the real point. Moreover,
this transformation does not depend on the viewer location, only on
that of the reflector. In Figure 2(a), the location of the virtual image
Q0 of a scene pointQ remains constant for two viewpointsE1 and
E2. Hence, the same simple affine transformation can be used for
all reflected polygons. Full details on how to generate the mirroring
transformation are given in the above references.

E2
E1

N N

Q

C

E2
E1

N1
N2

Q

C Q’1

Q’2Q’

(a) (b)

J1 J2

Figure 2 For planar reflectors, the virtual location of a point does
not depend upon the viewpoint (a). This does not hold for curved
reflectors (b).

Note that as presented so far, the method produces correct results
only when the viewpoint and the reflected polygon are on the same
side of the reflector. Consider a polygon lying on the other side of
the reflector. After the mirroring transformation, it can erroneously
obscure the reflector from the viewer, because they lie on the same

side of it. This problem can be overcome by not mirroring a poly-
gon if all of its vertices lie behind the reflector. The test is done by
plugging the vertex coordinates into the reflector plane equation and
testing the sign of the result. However, this method does not solve
the case when the polygon lies only partially behind the reflector.
In many cases such polygons do not cause incorrect results because
the virtual front part falls outside of the reflector stencil anyway.
For planar reflectors, the problem can be solved very efficiently by
defining the reflector plane as a front clipping plane.

2.4 Non-Planar Reflectors

Generation of virtual objects for non-planar reflectors is more dif-
ficult than for planar reflectors, because the main property of the
planar case does not hold: the location of a virtual point is not
a simple affine transformation independent of the viewer position
(Figure 2(b)). In general, every reflected point is transformed dif-
ferently.

Our approach is outlined in Figure 3. The reflected object is tes-
sellated into polygons (step 1). The fineness of the tessellation de-
pends upon the desired accuracy of the resulting reflection image.
Tessellations are further discussed in Sections 7 and 8. In steps 2–5,
virtual polygons are generated by computing virtual vertices for the
tessellation vertices. The collection of all virtual polygons forms
the desired virtual object rendered in step 5 of Figure 1. The main
step is 4, computing a single virtual vertex; its description occupies
much of the rest of the paper.

VirtualObject (ReflectorR, ObjectO, View E):
(1) TessellateO into polygons.
(2) For each polygonP
(3) For each vertexQ of P
(4) Q0

 VirtualVertex (R,Q,E).
(5) Connect theQ0s to form a virtual polygonP0.
(6) Connect theP0s to form the virtual objectO0.

Figure 3 Computing a virtual objectO0 for a potentially reflected
objectO on a non-planar reflectorR.

Rendered polygons are consistent and possess no holes, because
virtual objects are formed by connecting virtual vertices. Visibility
relationships between virtual objects are preserved due to the usage
of a hidden surfaces removal mechanism (in practice, a z-buffer) for
them.

3 The Reflection Subdivision

In this section we start detailing our approach towards computing
virtual vertices for curved reflectors. We assume here that the re-
flector is convex. Concave and other non-convex reflectors are dis-
cussed in Section 6. Our approach is based on approximating the
reflector by a polygonal mesh. In many cases this is the format in
which objects are given anyway; when they are given in a higher-
level representation (e.g., a NURBS surface) they are tessellated.
For simplicity, we assume that mesh polygons are triangles, but this
is not necessary.

Intuition. Given a reflectorR and an arbitrary scene pointQ, we
want to generate the corresponding virtual pointQ0 (consult Fig-
ure 2(b)). If we knew the point of reflectionJ and normalN on the
boundary surface ofR, we could easily computeQ0 by mirroringQ
along the tangent plane toRatJ. In some cases, when we know the
geometric nature of the reflector (e.g., a sphere),J can be computed

by a direct formula. However, for a general convex polygonal mesh
there is no direct formula.

We use an approximation. Every reflector triangle defines two space
cells: areflected celland ahidden cell.Suppose that we can find
the cellC, defined by triangleT, in which the scene pointQ lies. A
naive method would mirrorQ across the plane containingT. How-
ever, this would clearly show the linear approximation of the reflec-
tor (imagine a reflecting sharply cut diamond!). Instead, we use the
relative location ofQ insideC to define a triplet of barycentric coef-
ficients. These coefficients are used to interpolate the three tangent
planes at the vertices ofT, yielding a new tangent plane that is now
used for mirroringQ.

In this section we study the space subdivision defined by the re-
flector and also explain why we need to compute virtual points for
points that are not reflected. The full details of the computation are
given in Sections 4 and 5.

The subdivision. Each vertexVi of the tessellated reflector pos-
sesses a normalNi . Reflector vertices are eitherfront-facing or
back-facing,according to whether their normals point towards or
away from the viewer (a normal orthogonal to the line of sight is
considered front-facing). Due to the convexity of the reflector, ev-
ery front-facing vertex is visible by the viewer (when there are no
other obscuring objects). Note that back-facing vertices might still
be visible (this is a tessellation artifact). When all vertices of a mesh
triangle are front-facing (back-facing), we refer to the triangle as
being front-facing (back-facing). Otherwise we say that the triangle
is aprofile triangle.

For each front-facing vertexVi we define two rays: (1) areflection
ray Ri , mirroring the ray fromVi to the viewer across the normalNi ,
and (2) ahidden ray Hi , originating atVi and extending to infinity
in the opposite direction to that of the viewer. Figure 4 shows a 2-D
version of the situation. In (a), reflection rays are shown in red and
hidden rays in blue.

E

Ci

Vi+1

Ni

Ni+1

(a)

Vi

Di Z2

Z1

Z
Hi

Hi+1

Ri

Ri+1

E

Ci

Vi

Vi+1

Q1

Q1’

Q2’

Q2

(b)

Dk

Vk

Ri+1

Ri

Figure 4 (a) The reflection subdivision in 2-D.Ci andDi are the
reflected and hidden cells defined by reflector verticesVi , Vi+1. The
rayZ bisects the unreflected region on the right into two partsZ1, Z2.
(b) Computation of virtual vertices: the pointQ1 in the reflected cell
Ci is transformed toQ0

1 inside the hidden cellDi ; the pointQ2 in
the hidden cellDk is transformed toQ0

2 outside the reflector in the
reflected cellCk.

Two reflection raysRi ,Rj corresponding to adjacent front-facing
mesh verticesVi, Vj define a ruled bi-linear parametric surface
s(Vi + tRi) + (1� s)(Vj + tRj). Note that in general this surface is
not planar, because the two rays are usually not co-planar. The two
hidden raysHi , Hj span an infinite truncated triangle containing the
edgeVi , Vj.

Now consider the three verticesVi ,Vj , Vk of a front-facing mesh
triangleVijk . The triangle induces two space regions: (1) Areflected
cell Cijk bounded by the three ruled surfaces corresponding to the
triangle edges and byVijk itself (figure 10). (2) Ahidden cell Dijk ,

which is the infinite part of the truncated pyramid bounded byVijk

and the triangles spanned by the hidden rays. We refer to the union
of the reflected (hidden) cells as the reflected (hidden) region.

An important property of the reflected and hidden cells is that they
do not intersect each other, since the reflector is convex. Therefore,
we can define thereflection subdivisionas the subdivision of space
induced by these cells. Note, however, that these cells do notcover
space; we call the part of space not covered by reflection or hidden
cells theunreflected region. In Figure 4(a), the part of the unre-
flected region lying on the right side of the reflector is the union
of Z1, Z2 (the reason for subdividing this region and the meaning
of the rayZ are explained below). Points in the unreflected region
can (in principle) be seen by the viewer, but cannot be reflected by
the reflector. A point is potentially reflected by the reflector if and
only if it lies in the reflected region. We say ‘potentially’ because
its reflection may be obscured by the reflection of another point.

The unreflected and hidden regions.We compute virtual images
for vertices of potentially reflected scene polygons (Figure 3, step
4). These virtual vertices are connected in order to generate virtual
polygons, which are then rendered to create the reflection image
(Figure 1, step 5). Scene polygons that lie completely in the hidden
or unreflected regions can be discarded. However,mixed polygons,
lying partially in these regions and partially in the reflected region,
pose a problem. For such polygons, we would like to render the re-
flection of the part that lies in the reflected region. However, if we
compute only one or two virtual vertices, we would not be able to
connect these in order to generate virtual polygons. In some sense,
the vertices lying in hidden or unreflected regions are representa-
tives of a polygon area that we want to see reflected.

A naive way to deal with mixed polygons is to intersect them (ex-
actly or approximately) with the region boundaries, thus forcing
them to have a uniform classification. However, this is inefficient
because the regions depend on the viewpoint. Another way is to
subdivide them into smaller polygons, effectively doing an adap-
tive tessellation of scene objects. Subdivision is stopped when the
‘lost’ areas are deemed to be small enough.

A more efficient and elegant method is to define a virtual vertex for
everypolygon vertex, even for hidden and unreflected ones (e.g.,
vertexQ2 in Figure 4(b)). Thesedoubly virtualvertices are not real
reflections; their sole purpose is to ‘close’ virtual polygons so that
the graphics system could render them. In general, they lie outside
the image of the reflector. Note that this actually is the approach
taken in the planar reflector case. Hidden cells are easy to take care
of, because there is a one-to-one correspondence between hidden
and reflected cells. Moreover, it is possible to define a transforma-
tion that maps a reflected cell to exactly cover the corresponding
hidden cell, and maps a hidden cell to exactly cover its correspond-
ing reflected cell (see Section 4.2).

The unreflected region is more problematic. We would like to define
a transformation for this region such that (1) the part of the region
adjacent to a reflected cell will be transformed to be adjacent to its
corresponding hidden cell (and vice versa), and (2) there is some
continuity of the transformation between the unreflected and the
reflected regions. To achieve such a transformation, we define for
every contour edge of the reflector an auxiliarybisecting surface
Z, which extends the edge into the unreflected region. Figure 4(a)
shows a 2-D example. In 2-D we have a contour vertex and not a
contour edge (it is simply the extreme vertexVi+1), and the bisecting
surface is simply a rayZ. Z is orthogonal to the normalNi+1 at
Vi+1 and extendsVi+1 into the unreflected region, thus bisecting the
region into two partsZ1,Z2. The desired transformation is simply
a linear mirroring transformation that mirrorsZ1 into Z2 and vice
versa. In 3-D, the bisecting surface is non-linear, and we do not

define it explicitly; it is defined implicitly by the transformation we
use for computing virtual vertices (Section 4.2).

As in the planar case, doubly virtual vertices might cause their vir-
tual polygon to obscure the reflector. The solution in the planar case,
a front clipping plane, can be generalized to non-planar reflectors
by utilizing a second z-buffer containing the reflector’s geometry.
Every pixel generated during rendering of the virtual polygons will
be tested twice: once against the ordinary z-buffer, in order to pro-
duce correct depth relationships between all virtual polygons, and
once against the reflector z-buffer, to ensure that pixels in front of
the reflectors are discarded.

A second z-buffer is not easy to define efficiently on today’s graph-
ics architectures. Alternatives that are currently more practical are:
(1) do not do anything, anticipating that the obscuring pixels will
fall outside the screen mask of the reflector, (2) approximate the re-
flector using six clipping planes, an option available on standard ar-
chitectures, and (3) tessellate the scene so that mixed polygons are
very small. Surprisingly, the first approach works well in the vast
majority of cases, due to the way objects are usually positioned rel-
ative to each other and the way they are viewed. The second option
reduces the problem but does not guarantee the resulting quality.
The third option also reduces the problem, but requires more com-
putations since there are more virtual vertices to compute. Tessella-
tions are discussed in Sections 7 and 8.

4 The Explosion Map Acceleration Method

In some cases it is very efficient to compute the reflection subdivi-
sion and search it to find the cell in which a point lies (Section 5).
In the general 3-D case, a faster indexing scheme is preferable.

In this section we describe an approximation method, theexplosion
map, which is a data structure for accelerating the computation of
virtual vertices. It is prepared for each reflector separately, and re-
computed whenever the viewpoint or the reflector are moved. The
map is an image whose pixel values hold IDs of reflector triangles,
and which represents a spherical 2-D cross section of the subdi-
vision. To compute a virtual image of a scene point, we compute
explosion map coordinates for it, thus yielding the ID of a specific
triangle. The virtual image is computed using that triangle.

The explosion map is somewhat similar to a circular environment
map [Haeberli93] in that it is an image in which a circle corresponds
to the reflection directions (Figure 5(b)). However, it is unlike an en-
vironment map in that the latter contains renderings of other scene
objects, while the explosion map contains only the reflector (Fig-
ure 5(a)). We next detail the computation (4.1) and utilization (4.2)
of the map.

4.1 Computing an Explosion Map

An explosion map is a function of the tessellated reflector, the view-
point, a 3-D sphere, and a desired resolution. The sphere should be
centered at a point that is an intuitive ‘center’ of the reflector (as
in environment mapping), and its radius should be large enough so
that it bounds the reflector (actually, a sphere is not essential; we
need any convex geometric object that approximates the reflector’s
shape). The map resolution should be large enough so that there are
substantially more map pixels than reflector triangles. In practice,
a resolution of 2002 is sufficient when the reflector has been tes-
sellated into several hundred triangles. The depth resolution of the
map should have enough bits to hold unique IDs for all reflector
vertices plus one more bit (needed to distinguish between ordinary
triangles and extension polygons, defined below).

The basic operation in computing the map,MapCoords, involves

A

B

C

D

O

F

E

(a) (b)

@@@@
@@@@
@@@@
@@@@F

!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!

Figure 5 Explosion map: (a) reflection rays and intersection points
on a bounding sphere; (b) the resulting map.C andD are extension
vertices ofA andB.

deriving the map coordinatesT = (tx, ty) corresponding to a nor-
malized direction vectorN = (x,y, z) going from the center of the
sphere to an arbitrary direction. If the resolution of the map isr2,
N is mapped toT = (sx

(2(z+1))1=2 + s=2, sy
(2(z+1))1=2 + s=2), wheres is a

number a little smaller thanr. This mapping is similar to that used
for generating a circular environment map from a map rendered on
the faces of a box [Haeberli93]. The pixels to which directions are
mapped all fall inside a circle of radiuss=2. The circle represents
all possible reflection directions.

The map itself is computed as follows (Figure 6). For every front-
facing reflector vertex, we compute map coordinates by intersecting
its reflection ray with the sphere and callingMapCoords with the
direction from the sphere’s center to the intersection point (step 3).
Back-facing vertices are denoted as such (step 4) to facilitate fast
identification of profile triangles in step 6. For each front-facing
reflector triangle (recall that a triangle is called front-facing if all
its vertices are front-facing, and is called profile if only some of
its vertices are front-facing), the corresponding triangle defined by
the map coordinates is filled on the map, using its unique ID as
color (step 5). Polygon fill can be done by the graphics hardware.
For profile triangles, the normals of their back-facing vertices are
projected in the direction of the viewer such that they are orthogonal
to the line from the viewer through the vertex (step 7). The triangles
thus become front-facing, and are now filled on the map as done for
triangles that were front-facing originally (step 8).

So far, the interior of a map circle of radiuss=2 has been partially
filled, but not completely. This is due to the existence of the unre-
flected region and the fact that the filled map triangles are linear.
As we explained in Section 3, we want the directions into the un-
reflected region to be filled on the map as well so that we could
use it to compute doubly virtual vertices. To ensure that all direc-
tions are filled on the map, inExtendMap the map is extended to
cover the circle as follows. For each profile triangleVijk having two
back-facing vertices (sayVi ,Vj), we define anextension polygon Eij
in map coordinates and fill it with the ID ofVijk . The vertices of
Eij areTi, Tj, and extensions of each of these vertices in the direc-
tion away from the circle’s center (in Figure 5(b), the extensions of
verticesA,B areC,D). The extensions should be long enough so
that the circle is completely covered. In practice, it is enough that
the length of the segment from the center to each extended vertex
is 0. 6s. Extension polygons effectively comprise an implicit repre-
sentation of the bisecting surfacesZ explained in Section 3. Other
methods for representing the unreflected region on the map are dis-
cussed in [Ofek98].

ExplosionMap (ReflectorR, View E, CenterC, Distanced,
Resolutionr):

(1) LetSbe a sphere centered atC having radiusd.
(2) LetM be an image of sizer � r.
(3) For each reflector vertexVi

If Vi is front-facing
Let Ri be the reflection ray ofVi.
Let Ii be the intersection ofRi with S.
Let Ji be the normalized direction fromC to Ii .
Ti MapCoords (Ji , r).

Else
(4) DenoteVi as back-facing.
(5) For each reflector triangleVijk

If Vijk is front-facing
Fill the triangleTi, Tj, Tk onM,
using the ID ofVijk as the color.

(6) Else ifVijk is a profile triangle
(7) Fix its back-facing normals.
(8) Compute and fillTi ,Tj ,Tk as before.
(9) ExtendMap (R, M).

Figure 6 Computing an explosion map.

4.2 Computing Virtual Vertices

The explosion map circle represents a mapping of all possible re-
flection directions. We use it to directly generate the final virtual
vertexQ0 corresponding to a potentially reflected scene vertexQ.
For each reflector we compute two explosion maps: anear mapand
a far map. The near map is computed using a sphere that bounds
the object but does not intersect any other object, and the far map is
computed using a sphere that bounds all the scene. It is important to
understand that although the topologies of the two maps are quite
similar (because cells do not intersect each other), their geometries
are different; reflection rays, which determine the geometry of map
vertices, evolve non-linearly.

In addition to the explosion maps, we store ahidden mapand an
auxiliary z-buffer of the reflector. The hidden map is simply an item
buffer of the visible mesh triangles. In other words, it is a discrete
map in which a visible mesh triangle is mapped to a 2-D triangle
filled by the ID of the mesh triangle. The map resolution can be
smaller than that of the frame buffer (say, 2002).

The basic operation needed isMapToVirtualVertex , whose argu-
ments are a mapM, a 3-D pointQ and a corresponding map point
I . Assume that the ID inM(I) is that of an ordinary mesh triangle
V (not an extension polygon) having 2-D verticesA,B,C (these are
the Ti ’s computed in step 3 of Figure 6). The output is the virtual
point Q0. The operation is implemented in three steps: (1) compute
barycentric coordinatess, t of I relative toV by solving the two lin-
ear equations in two variables (1� (s+ t))A+sB+ tC = I ; (2) uses, t
as weights in a weighted average of the 3-D vertices and normals
of V that yields a plane of reflectionU; and (3) mirrorQ acrossU
to produceQ0. Note that negative barycentric coordinates are per-
fectly acceptable. The computation can be performed in integers
or floating point, to reduce aliasing artifacts resulting from the dis-
crete nature of the map. Extension polygons are handled similarly,
using four bilinear coordinates instead of three. This treatment of
extension polygons effectively implements the non-linear mirror-
ing transformation of the unreflected region motivated in Section 3.

Computation of virtual vertices for a scene vertexQ is shown in
Figure 7. We first determine ifQ is hidden (steps 1, 2), by testing
it in screen coordinates against the reflector’s z-buffer. If it is,Q’s
virtual image is computed by the hidden map (step 3). Note that an
obvious optimization here is to do this only for hidden vertices that
belong to mixed polygons, since we don’t need virtual images for
polygons that are hidden completely.

VirtualVertex (ReflectorR, PointQ, View E):
(1) Let I be the screen coordinates ofQ (usingE).
(2) If Q is hidden by a mesh triangleV
(3) ReturnMapToVirtualVertex (HiddenMap, Q, I).
(4) Let c be the direction from the center ofR to Q.
(5) T MapCoords (c, r).
(6) Q0

n MapToVirtualVertex (NearMap, Q, T).
Q0

f MapToVirtualVertex (FarMap, Q,T).
(7) Let dn, df be the relative distances ofQ from

the near and far spheres.

Return
Q0

n=dn+Q0

f =df

1=dn+1=df
.

Figure 7 Computing virtual vertices using the explosion and hidden
maps.

WhenQ is not hidden we use the explosion maps. The normalized
direction from the center of the reflector toQ is used to obtain map
coordinates, in the same way used for creating the maps (steps 4,
5). Note that the map coordinatesT are the same for both maps, but
the triangle IDs found atT are different. In general, none of these
triangles corresponds to the correct reflection cell in whichQ is lo-
cated, because we approximated the correct ray of reflection ofQ
by a ray from the center of the reflector (when higher accuracy is
desired, we can use an improved approximation or locally search
the correct cell [Ofek98].) Each of these triangles defines an auxil-
iary virtual vertex (step 6), and a weighted average of those is taken
to obtain the final virtual vertex (step 7). There may be other ways
to choose the weights than the obvious one shown. Figure 13 shows
near and far explosion maps, in which polygon IDs are encoded by
colors for visualization purposes.

5 Improved Efficiency for Linear Extrusions

For some common reflectors, it is possible to compute virtual ver-
tices more efficiently than the explosion map, by directly utilizing
the reflection subdivision to find the cell in which a scene point
lies. Among these reflector are linear extrusions of planar curves
(e.g., cylinders) and cones. For spheres, there is an efficient method
that does not use the reflection subdivision at all. In general, if an
implicit equation defining the reflector is available, the reflection
point can be computed as in [Hanrahan92] (although this method is
slow). Below we detail the case of an extruded reflector. The direct
computation for cones and spheres is simple and given in [Ofek98].

Consider a 2-D reflection subdivision, as shown for example in Fig-
ure 4. We can optimize the step of identifying the cell in which a
point lies by organizing the reflection cells in a hierarchy. DefineCi,j

to be the region bounded by reflection raysRi, Rj and the line seg-
ment (Vi, Vj). Note thatCi,j contains every cellCk,r , i � k < r � j.
Classifying a point with respect to a cellCi,j amounts to a few ‘line
side’ tests, implemented by plugging the point into the line’s equa-
tion and testing the sign of the result. If we find that the point is
not contained inCi,j , we know that it is outside all contained cells
Ck,r . A binary search can thus be performed on the hierarchy. Note
that there are no actual computations involved in generating the hi-
erarchy, since it is implicitly represented by the numbering of the
reflector vertices. A similar hierarchy can be defined for the hidden
cells as well. Membership in the two (at most) unreflected cells can
be tested easily. Consequently, the cell in which a point is located
can be found using a small number (O(logn) wheren is the reflector
tessellation resolution) of ‘line side’ tests.

Suppose that the reflector is a linear extrusion of a convex 2-D pla-
nar curve. We can reduce the computation of a virtual vertex to 2-D
by (1) projecting the viewer and all scene points onto the plane,

(2) performing the 2-D computation, obtaining a line of reflection
LQ for each scene vertex, (3) extrudingLQ to 3-D to form a plane
of reflectionT, and (4) computing a final virtual vertex by mirror-
ing the original vertex acrossT. The screen in Figure 17 is a linear
extrusion of a convex planar curve.

6 Non-Convex Reflectors

Concave reflectors.The computations we perform for concave re-
flectors are identical to those for convex ones, but it is interesting to
note that concave reflectors produce significantly more complicated
visual results. In Figure 8 we see a viewerE in front of a concave
reflector and three reflection rays. The reflection of an object lo-
cated in region A (left) looks like an enlarged, deformed version of
the object. The reflection of an object located in region B (middle)
looks like an enlarged, deformed, upside-down version of the ob-
ject. The reflection of objects located in region C (right) is utterly
chaotic. This chaotic nature is inherent in the physics of reflections
and is not an artifact of computations or approximations.

BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB

E

Q1

Q2

Q’1 Q’2
Q’1

E Q1
Q2

Q’2
Q’1

E

Q1Q2

Q’1
Q’2

C

A

B

Figure 8 Behavior of reflections on concave reflectors.

Reflections of objects lying in regions A and B can be computed
exactly as for convex reflectors, because in these regions the reflec-
tion subdivision is well-defined (since the reflection cells are dis-
joint). Reflections of objects lying in region C or intersecting that
region are unpredictable and chaotic anyway, so almost any policy
for computing virtual vertices will be satisfactory. In particular, we
can simply use the value computed by the explosion map, thereby
treating concave reflectors exactly as convex ones.

Figure 11 shows a concave reflector. On the right, we see the re-
flector, the reflection rays, a reflected planar object, and the com-
puted virtual object, all these from a point of view different from the
viewer’s. On the left we see the final image from the viewer’s point
of view. The two explosion maps and the hidden map are shown at
the bottom right. Note that reflected objects must be very close to
this reflector to cross from region B to regions A or C.

Reflectors of mixed convexity.Reflectors that are neither con-
vex nor concave should be decomposed into convex and concave
parts. For many objects this can be done fully automatically [Span-
guolo92]. Some polygonal surfaces contain saddles, resulting in a
decomposition that is too fine. In such cases it is advised that users
decompose the object manually. Note that the actual requirement
is not of pure convexity of concavity, but rather that the reflec-
tion cells would not self-intersect in areas where reflected objects
lie. Devising automatic algorithms that take this into consideration
when decomposing the object is an interesting topic for future work.
When manual decomposition is used, reflectors cannot dynamically
change their shape in an arbitrary way, but the scene can still be dy-
namic. Figure 9 shows a reflector with a convex part (red) and a
concave part (green). Note the seamless transition of the reflection
image between the convex and concave parts.

7 Results

We have implemented our algorithms using OpenGL on SGIs run-
ning Irix and on PCs running Windows ’95 and NT. Figure 12
shows a cylinder reflector modeled as a linear extrusion of a circle.
Figure 13 demonstrates the effect of varying reflector tessellation
resolution. The bottom part shows the near and far explosion maps.
We see that using 128 triangles the reflection image already has an
approximately correct geometric form, and that using 2048 rather
than 512 triangles barely makes a difference. Figure 14 shows the
effect of varying the tessellation of the reflected object (using 512
reflector triangles). A tessellation of 7x7 is sufficient. A lower res-
olution would suffice for objects farther away from the reflector,

Figure 16 shows a scene with four reflecting spheres, a table, and
a window, rendered by our method (top) and by Rayshade, a well-
known raytracer (bottom). A checkerboard texture was used in or-
der to emphasize the reflections. The geometric shapes of the re-
flections in the two images are visually very similar. The texture in
the bottom image is sharper because we use the graphics hardware
for texture mapping.

On an SGI O2, the top image requiredless than a second, and the
bottom one required50 seconds. For Rayshade, we turned off shad-
ows rays, highlights, and anti-aliasing, and we used a single sam-
ple per pixel and a manually tuned uniform grid as an acceleration
scheme. Image resolution is 5122.

Figure 15 shows the same scene, from a slightly different view-
point and using real textures. The shadows are pre-computed tex-
tures. Figure 17 shows a reflecting TV modeled as an extrusion of
a convex planar curve. Figure 18 shows recursive reflections on a
planar mirror. Figure 19 shows a mask composed of several con-
vex and concave pieces. Note the correct reflections of the red and
green spheres on both ‘cheeks’ of the mask and on the nose. Fig-
ure 20 shows several reflecting polyhedra and a reflecting sphere.
All of these scenes (except Figure 19) are displayed in real-time on
an SGI Infinite Reality. We haven’t tried the scene of Figure 19 on
such a machine; on an SGI O2, Figure 19 requires about a second
with our method, and 1.5 minutes using Rayshade.

8 Discussion

The virtual objects method is the first method capable of accurately
approximating reflections on curved objects at interactive rates. In
this paper we presented the basic method for a single level of reflec-
tion and its implementation for general polygonal meshes and for
linear extrusions. Clearly, the method possesses both advantages
and disadvantages. We discuss these below, both in isolation and in
the context of other methods.

Quality. In general, the quality produced by the method is satisfac-
tory, especially for interactive use. The explosion map gives good
results even for planar or nearly planar reflectors. Like any approx-
imation method, ours might produce visible artifacts. The most no-
ticeable ones occur when objects are not tessellated finely enough,
in which case their reflections look too much like their real-world
images and are not deformed according to the geometry of the re-
flector. In addition, reflections might be slightly translated inaccu-
rately because we do not compute the exact explosion map cells to
which vertices are mapped.

Other visible artifacts can be seen near the boundaries of the reflec-
tor, when the transformation used to create doubly virtual vertices
is not a good approximation to the correct reflection. In this case the
seam between convex and concave regions might be visible. Even
in this case, reflections are self-consistent and do not exhibit holes.

When the reflector shape on the explosion map is far from con-
vex, our heuristic for representing the unreflected region (extension
polygons) might yield visible artifacts. Obviously, doubly virtual
vertices might still hide the reflector when not using a second z-
buffer. However, as we noted earlier, this usually does not happen
because their screen images tend to fall outside the screen image of
the reflector.

An attractive property of the method that has not been mentioned so
far is that it supports interactive rendering ofrefractions,by using
refraction rays instead of reflection rays. There are some additional
differences, detailed in [Ofek98].

Tessellation strategies.As shown in Section 7, some tessellation
of reflected objects is usually essential for providing sufficient ac-
curacy. The finer the tessellation, the more accurate the reflections.
At the same time, increasing the tessellation has an adverse impact
on performance. These considerations are identical to those em-
ployed in interactive rendering of curved objects in general. There
are two standard approaches: (1) usage of uniform tessellations,
pre-computed such that quality is satisfactory, and (2) usage of hi-
erarchical tessellations (levels of detail, etc).

Both approaches can be taken in our case as well. When the dis-
tances from a reflector to reflected objects and viewer remain ap-
proximately constant, we can pre-compute a uniform tessellation.
The tessellation resolution of the reflected object should be chosen
such that its virtual polygons cover several dozen pixels. Otherwise,
hierarchical tessellations can be used. These can exhibit the same
artifacts as when they are used for ordinary objects, e.g. discontinu-
ities during animation. Note that the reflector tessellation resolution
can be lower than that used when rendering its view-independent
image. Using hierarchical tessellations is a topic for future work.

Performance.In the worst-case, all scene points can indeed be re-
flected on every convex part and every concave part of every re-
flector. Denote byr the number of visible reflectors and byn(n0)
the number of vertices in the original (tessellated) scene. The time
complexity of the method isO(r � n0), which is thus worst-case
optimal for a given degree of tessellation. For a single reflector, the
step of computing the explosion and hidden maps is linear in the
size of the reflector and is roughly equivalent to rendering the re-
flector three times at low resolution. The step of computing a virtual
vertex for a scene vertex requires a relatively smallconstantnum-
ber of operations. Moreover, the operations performed are highly
regular, and are probably not too difficult to parallelize or imple-
ment in hardware. The cost of rendering virtual polygons is similar
to rendering the whole scene. If deforming reflectors are desired,
they should be subdivided into convex and concave parts on each
frame, which costs time linear in their size. Naturally, as the depth
complexity of the reflection image increases, the time complexity
of our method diverges from the optimal.

The scenes shown in this paper run interactively (1-30 frames per
second) on an SGI O2 workstation. This performance was achieved
without any optimization; in particular, no method for culling ob-
jects that cannot be reflected has been used. On today’s systems,
without further optimizations the number of reflected objects can-
not be much larger than shown while still guaranteeing interactive
performance.

Comparison to other methods.We can compare our method to
environment mapping or ray tracing, which are currently the only
techniques capable of computing reflections on curved objects.
Both visual accuracy and efficiency should be considered.

Environment mapping is relatively accurate only when reflected ob-

jects are relatively far from the reflector and when the curvature of
the reflector is not large. When the scene is static, time complexity
is linear in the size of the reflector, because the map can be pre-
computed. This is in general much faster than our method. When
the scene is dynamic, the map must be recomputed on each frame
for each reflector. This also holds when only the viewer changes,
unless the special hardware of [Voorhies94] is used. Complexity is
r�n, which is closer to our method but still more efficient. To what
degree depends on the amount of tessellation. However, environ-
ment mapping simply does not provide realistic accuracy. Seeing
reflections of objects that are nearby as if they are very far creates
an uneasy feeling and definitely cannot be qualified as realistic.

Ray tracing obviously produces higher quality images than our
method and supports a wider range of illumination phenomena. Re-
garding efficiency, the relevant characteristics of our method are:
(1) it operates at the object level rather than the pixel level (we
have an object and we want to know where it is reflected, rather
than having the point of reflection and seeking an object), (2) it
transforms the problem into one that standard graphics systems can
handle, (3) it transforms the computation into a local one involv-
ing a single reflector-reflected pair, instead of the global ray trac-
ing computation (‘find the nearest object’); global visibility rela-
tionships are automatically handled by the z-buffer, and (4) it uses
both the CPU and the graphics system, dividing (but not necessar-
ily balancing) the load between them. When these properties are
significant, our method is more efficient than ray tracing. Ray trac-
ing can be expected to perform better when (1) reflected objects
do not cover many pixels, (2) there are many curved reflectors, or
(3) the depth complexity of the reflected images is large. It may or
may not be faster when there is no graphics hardware. Note that our
method scales much better than ray tracing to larger image resolu-
tions, while ray tracing scales better with scene depth complexity.

It is very difficult to predict the point from which ray tracing is
more efficient. On the relatively simple scenes shown in this paper,
the method is at least an order of magnitude more efficient than
Rayshade, a well-known available ray tracer, even when it uses a
manually tuned acceleration scheme.

Future work. Both efficiency and quality issues should be further
investigated. Efficiency issues include: acceleration using global
scene organization techniques, hierarchical tessellations, possible
hardware implementation, acceleration using time coherence, and
usage of the method to accelerate other illumination methods. Qual-
ity issues include refining the initial approximation given by the ex-
plosion map, improved methods for filling the unreflected region
on the map, using the method for rendering refractions, automatic
decomposition of reflectors of mixed convexity, quantifying the de-
gree of error introduced by our approximations, and additional lev-
els of recursive reflections.

Conclusion.We feel that correct reflections from small objects are
not very important. Such reflections, reflections on complex mixed
convexity objects, and reflections of distant objects can be convinc-
ingly emulated using environment mapping. High quality reflec-
tions are therefore needed for relatively large objects with relatively
uniform convexity (or concavity). A typical scene does not contain
too many curved objects like these. As a result, although the time
complexity of the method is theoretically quadratic in the number
of reflectors, in practice its complexity is linear in the size of the
scene (it can be sub-linear if scene databases are used for culling
objects). Applicability will increase with increases in processing
power and graphics hardware. Even today, there are many applica-
tions in which the number of objects in the scene is less important
than the rendering quality. In these cases, our method is at least

an order of magnitude faster than ray tracing and provides higher
visual quality than environment mapping.

Our experience is that interacting with scenes containing reflections
is immensely more enjoyable than with scenes without reflections.
Reflections bring dull and lifeless scenes to life.

Acknowledgements.We thank Dani Lischinski for commenting on
a draft of this paper and for fruitful discussions. We also thank
Amichai Nitsan for his involvement in part of the implementation.
Lastly, we warmly thank Leo Krieger for his continuous support.

References

[Blinn76] Blinn, J., Newell, M., Texture and reflection in computer gener-
ated images.Comm. ACM,19:542–546, 1976.

[Diefenbach97] Diefenbach, P.J., Badler, N.I., Multi-pass pipeline render-
ing: realism for dynamic environments. Proceedings,1997 Sympo-
sium on Interactive 3D Graphics, ACM Press, 1997.

[Foley90] Foley, J.D., Van Dam A., Feiner, S.K., Hughes, J.F., Computer
Graphics: Principles and Practice, 2nd ed., Addison-Wesley, 1990.

[Glassner89] Glassner, A. (ed), An Introduction to Ray Tracing. Academic
Press, 1989.

[Greene86] Greene, N., Environment mapping and other applications of
world projections.IEEE CG&A, 6(11), Nov. 1986.

[Haeberli93] Haeberli, P., Segal, M., Texture mapping as a fundamental
drawing primitive. Proceedings,Fourth Eurographics Workshop on
Rendering,Cohen, Puech, Sillion (eds), 1993, pp. 259–266.

[Hall96] Hall, T., Tutorial on planar mirrors in OpenGL, posted to
comp.graphics.api.opengl, Aug. 1996.

[Hanrahan92] Hanrahan, P., Mitchell, D., Illumination from curved reflec-
tors. Proceedings, Siggraph ’92, ACM Press, pp. 283–291.

[Heckbert84] Heckbert, P.S., Hanrahan, P., Beam tracing polygonal ob-
jects.Computer Graphics,18:119–127, 1984 (Siggraph ’84).

[Jansen93] Jansen, F.W., Realism in real-time? Proceedings,Fourth Euro-
graphics Workshop on Rendering,Cohen, Puech, Sillion (eds), 1993.

[McReynolds96] McReynolds, T., Blythe, D., Programming with
OpenGL: Advanced Rendering, course #23, Siggraph ’96.

[Ofek98] Ofek, E., Modeling and Rendering 3-D Objects. Ph.D. thesis,
Institute of Computer Science, The Hebrew University, 1998.

[Rushmeier86] Rushmeier, H.E., Extending the radiosity method to trans-
mitting and specularly reflecting surfaces. Masters’s thesis, Cornell
University, 1986.

[Segal92] Segal, M., Korobkin, C., van Widenfelt, R., Foran, J., Haeberli,
P., Fast shadows and lighting effects using texture mapping.Computer
Graphics, 26:249–252, 1992 (Siggraph ’92).

[Sillion89] Sillion, F., Puech, C., A general two-pass method integrating
specular and diffuse reflection.Computer Graphics, 23(3):335–344
(Siggraph ’89).

[Spanguolo92] Spanguolo, M., Polyhedral surface decomposition based
on curvature analysis. In:Modern Geometric Computing for Visual-
ization,T.L. Kunii and Y. Shinagawa (Eds.), Springer-Verlag, 1992.

[Voorhies94] Voorhies, D., Foran, J., Reflection vector shading hardware.
Proceedings, Siggraph ’94, ACM Press, pp. 163–166.

[Wallace87] Wallace, J.R., Cohen, M.F., Greenberg, D.P, A two-pass solu-
tion to the rendering equation: a synthesis of ray tracing and radiosity
methods.Computer Graphics,21:311–320, 1987 (Siggraph ’87).

[Whitted80] Whitted, T., An improved illumination model for shaded dis-
play.Comm. of the ACM,23(6):343–349, 1980.

@@@
@@@

BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB

BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB

Q

E BBBBBB
BBBBBB
BBBBBB
BBBBBB
BBBBBB
BBBBBB
BBBBBB
BBBBBB
BBBBBB

Fig. 10: A 3−D reflected cell.

Fig. 11: Virtual object and reflection rays.

Fig. 13: Varying the tessellation resolution of the reflector.

32 128 512 2048

Fig. 14: Varying the tessellation resolution of the reflected object.

7x7 13x133x3none

Fig. 9: Mixed convexity reflector, with
seamless reflections.

Fig. 12: Linear extrusion.

Fig. 15: Four reflecting
 spheres.

Fig. 19: Reflector containing several convex and
concave pieces.

Fig. 17: TV.

Fig. 18: Recursive reflections.

Fig. 20: Polyhedra and sphere.

Fig. 16: Top: our method.
Bottom: Rayshade.

