
The Design of a Parallel Graphics Interface

Homan Igehy Gordon Stoll Pat Hanrahan

Computer Science Department

Stanford University

Abstract
It has become increasingly difficult to drive a modern high-
performance graphics accelerator at full speed with a serial imme-
diate-mode graphics interface. To resolve this problem, retained-
mode constructs have been integrated into graphics interfaces.
While retained-mode constructs provide a good solution in many
cases, at times they provide an undesirable interface model for the
application programmer, and in some cases they do not solve the
performance problem. In order to resolve some of these cases, we
present a parallel graphics interface that may be used in conjunc-
tion with the existing API as a new paradigm for high-
performance graphics applications.

The parallel API extends existing ideas found in OpenGL and
X11 that allow multiple graphics contexts to simultaneously draw
into the same image. Through the introduction of synchronization
primitives, the parallel API allows parallel traversal of an explic-
itly ordered scene. We give code examples which demonstrate
how the API can be used to expose parallelism while retaining
many of the desirable features of serial immediate-mode pro-
gramming. The viability of the API is demonstrated by the per-
formance of our implementation which achieves scalable per-
formance on a 24 processor system.

CR Categories and Subject Descriptors: C.0 [Computer
Systems Organization]: Hardware/Software Interfaces; D.1.3
[Programming Techniques]: Concurrent Programming; I.3.1
[Computer Graphics]: Hardware Architecture.

1 INTRODUCTION
Computer graphics hardware has been rapidly increasing in per-
formance. This has motivated immediate-mode graphics inter-
faces like OpenGL [20] to adopt constructs such as display lists
and packed vertex arrays in order to alleviate system bottlenecks.
However, these constructs may impose an undesired paradigm
shift for the application programmer, and they may not be useful
in resolving the particular performance bottleneck. Furthermore,
with the increasing use of multiprocessor systems for graphics
applications, a serial interface to the graphics system can be inele-

gant. A parallel graphics interface seeks to resolve these issues.
To provide a common framework, we first review three key issues
in graphics interfaces.

The first issue in designing a graphics interface is state. In a
stateless interface, the behavior of every command is independent
of every other command; thus, every command must include all
the information required to execute that command. Conversely,
in an interface with state, a command’s behavior can be affected
by previous commands. Some of the information required for the
execution of commands may reside within the state maintained by
the interface, and some commands modify that state. While
stateless interfaces simplify many issues (especially with regard to
parallelism), they are not well-suited to full-featured rendering
systems. The problem is that a large amount of data is needed for
each drawing command, and much of it is changed infrequently.
Respecifying this data with each primitive is tedious and ineffi-
cient, so most graphics interfaces contain state.

The second key issue is whether the graphics interface is im-
mediate-mode or retained-mode. In an immediate-mode API, the
application sends commands to the graphics system one at a time,
and the graphics system executes them more or less immediately.
In a retained-mode API, the application first specifies an entire
scene that is built on the graphics system and subsequently re-
quests the scene to be rendered with certain viewing parameters.
Though retained-mode interfaces can sometimes provide perform-
ance benefits, programmers prefer immediate-mode interfaces due
to their flexibility and ease of use. Many well-designed interfaces
use the best of both worlds: they are based on immediate-mode
semantics, and some retained-mode constructs are included to
allow performance benefits.

The third major issue that arises in graphics interface design is
ordering. Ordering semantics are the set of rules that constrain
the order in which API commands may be executed. In a strictly
ordered interface, primitives must be drawn in the order in which
they are specified. This behavior is essential for many algorithms
such as the placement of ground-plane shadows [3] and transpar-
ency through alpha-compositing [21]. Sometimes, however, a
programmer may not care whether or not primitives are drawn in
the order specified. For example, depth buffering alleviates the
need for drawing a scene of opaque 3D primitives in any particu-
lar order. In these cases, the programmer would gladly use less
constrained ordering semantics if it meant increased performance.

In the rest of the paper, we present the motivations and issues
involved in designing a parallel extension to a serial immedi-
ate-mode graphics interface with strict ordering and state. By
adding synchronization commands (such as barriers and sema-
phores) into multiple graphics command streams, application
threads can issue explicitly ordered primitives in parallel without
blocking. We also introduce the notion of a wait context com-
mand for synchronizing contexts at the level of application

{homan,gws,hanrahan}@graphics.stanford.edu

ACM Copyright Notice
Copyright ©1998 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires specific permission and/or a fee.

threads. Given the resulting API, we explore how an application
programmer would attain parallel issue of graphics commands.
These ideas are demonstrated by an implementation which
achieves scalable performance on a 24 processor system. We also
discuss the issues surrounding the various ways of implementing
the parallel API. Very little research has been done in the area of
parallel graphics interfaces. This paper provides a common
framework on which a new class of research and commercial sys-
tems can be built as well as a common framework on which a new
class of parallel algorithms can be designed.

2 MOTIVATION
Graphics interfaces have been around for many years, so why
investigate a parallel API now? While it is true that some appli-
cations are most naturally expressed through a parallel graphics
API, the main motivation is performance: it is becoming more and
more difficult to drive a graphics system at full speed using a
single CPU. First we look into the reasons behind this, and then
we examine possible solutions.

2.1 Performance Limitations
Although graphics systems are on the same technology curve as
microprocessors, graphics systems have reached a level of per-
formance at which they can process graphics commands faster
than microprocessors can produce them: a single CPU running an
immediate-mode interface cannot keep up with modern graphics
hardware. This is primarily due to an increasing use of parallel-
ism within graphics hardware. Within a computer, there are three
sources of bottlenecks in a graphics application. First, perform-
ance may be limited by the speed of the graphics system. In this
case, the only solution is to use a faster graphics system. Second,
performance may be limited by the rate of data generation. In this
case, the programmer can use either a faster data generation algo-
rithm or else, if the algorithm is parallelizable, multiple proces-
sors. Third, performance may be limited by the interface between
the host system and the graphics system. Possible sources of this
limitation are:

1) Overhead for encoding API commands.
2) Data bandwidth from the API host.
3) Data bandwidth into the graphics system.
4) Overhead for decoding API commands.

2.2 Performance Solutions
There are several possible ways to extend a serial immediate-
mode API in order to address the interface bottlenecks. First, we
describe two techniques that are currently in widespread use,
packed primitive arrays and display lists. Then we describe a
proposed technique, compression. Finally, we describe our pro-
posal, a parallel graphics interface. It is important to note that
many of these techniques can complement each other in resolving
performance bottlenecks.

2.2.1 Packed Primitive Arrays
A packed primitive array is an array of primitives that reside in
system memory. By using a single API call to issue the entire
array of primitives instead of one API call per primitive, the cost
of encoding API commands is amortized. Furthermore, because
the arrays may be transferred by direct memory access (DMA),
bandwidth limitations from the API processor may be bypassed.

Nothing is done, however, about the bandwidth limitations into
the graphics system. Furthermore, although the decoding may be
somewhat simplified, all the primitives in the array still have to be
decoded on the graphics system. While packed primitive arrays
are useful in a wide variety of applications, they may introduce an
awkward programming model.

2.2.2 Display Lists
A display list is a compiled set of graphics commands that resides
on the graphics system. In a fashion similar to retained-mode
interfaces, the user first specifies the list of commands to be
stored in the display list and later invokes the commands within
the display list. Because they are essentially command macros,
display lists work well semantically with immediate-mode inter-
faces. In cases where the scene is small enough to fit in the
graphics system and the frame-to-frame scene changes are modest,
display lists trivially resolve the first three bottlenecks. If the
scene is too large and therefore must reside in system memory,
display lists are similar to packed primitive arrays and only the
first two bottlenecks are resolved. Display lists provide an excel-
lent solution for performance bottlenecks if the same objects are
drawn from frame to frame. But on applications that recompute
the graphics data on every frame (e.g., [11, 24]), display lists are
not useful. Furthermore, the use of display lists burdens the pro-
grammer with the task of managing handles to the display lists.

2.2.3 Compression
Whereas the idea of quantizing the data sent through the API has
been used for quite some time, the idea of compressing the data
has only recently been proposed. One system compresses the
geometric data sent through the API [6]; other systems compress
the texture data [2, 25]. All compression schemes increase the
decoding costs, and systems which compress the data interactively
increase the encoding costs. Systems which compress the data
off-line, on the other hand, are useful only when the graphics data
does not change.

2.2.4 Parallel Interface
The motivation behind a parallel graphics interface is scalability:
bottlenecks are overcome with increased parallelism. If the
graphics system is too slow, it can be scaled by adding more
graphics nodes. If the data generation is too slow, more proces-
sors can be used to generate the data in parallel. Similarly, if the
serial interface is too slow, then it should be parallelized. In a
system with a single graphics port, a parallel API can be used to
overcome the first two interface limitations. However, by build-
ing a scalable system with multiple graphics ports, all interface
limitations can be overcome.

There are many challenges to designing a good parallel
graphics interface; in formulating our design, we had several
goals in mind. First and foremost were the ability to issue graph-
ics primitives in parallel and the ability to explicitly constrain the
ordering of these primitives. Ideally, the API should allow paral-
lel issue of a set of primitives that need to be drawn in an exact
order. The parallel API should be a minimal set of extensions to
an immediate-mode interface such as OpenGL, and it should be
compatible with existing features such as display lists. The design
is constrained by the presence of state; this is required for a large
feature set. A well designed parallel interface should be intuitive
and useful in a wide variety of applications. And finally, the new
API should extend the current framework of graphics architec-
tures to provide a rich set of implementation choices.

3 RELATED WORK
In the field of parallel graphics interfaces, Crockett introduced the
Parallel Graphics Library (PGL) for use in visualizing 3D graph-
ics data produced by message-passing supercomputers [5]. Due
to the characteristics of its target architecture and target applica-
tions, PGL was designed as a retained-mode interface. In parallel,
each processor adds objects to a scene by passing pointers to
graphics data residing in system memory. A separate command is
used to render the objects into a framebuffer, and no ordering
constraints are imposed by the interface. PixelFlow [8, 18] is
another system designed to support multiple simultaneous inputs
from a parallel host machine, and PixelFlow OpenGL includes
extensions for this purpose. However, due to the underlying im-
age composition architecture, PixelFlow OpenGL also imposes
frame semantics and does not support ordering. Because of these
constraints, PGL and PixelFlow OpenGL do not meet the re-
quirements of many graphics applications.

The X11 window system provides a parallel 2D graphics in-
terface [9, 23]. A client with the proper permissions may open a
connection to an X server and ask for X resources to be allocated.
Among these resources are drawables (which are on- or off-screen
framebuffers) and X contexts (which hold graphics state). Since
resources are globally visible, any client may subsequently use the
resource within X commands. Since X drawing calls always in-
clude references to a drawable and an X context, client requests
are simply inserted into a global queue and processed one at a
time by the X server. Though it is not explicitly encouraged,
multiple clients may draw into the same drawable or even use the
same graphics context.

While a 3D graphics interface was beyond the scope of the
original design of X, OpenGL is a 3D interface that has been cou-
pled with X. For explicitness, OpenGL within X will serve as our
example API due to its popularity and elegant design [20].
OpenGL is an immediate-mode interface whose state is kept
within an X resource called the GLX context. In the interest of
efficiency, both display lists and packed primitive arrays are sup-
ported. Furthermore, both texture data and display lists may be
shared between contexts in order to allow the efficient sharing of
hardware resources amongst related contexts [12].

Strict ordering semantics are enforced in X and OpenGL: from
the point of view of the API, every command appears to be exe-
cuted once the API call returns. However, in the interest of effi-
ciency, both interfaces allow implementations to indefinitely
buffer commands. This introduces the need for two types of API
calls. Upon return from the flush call (XFlush, glFlush), the sys-
tem guarantees that all previous commands will execute in a finite
amount of time from the point of view of the drawable. Upon
return from a finish call (XSync, glFinish), the system guarantees
that all previous commands have been executed from the point of
view of the drawable.

Since OpenGL and X solve different problems, programs often
use both. Because of buffering, however, a program must syn-
chronize the operations of the two streams. Imagine a program
that wants to draw a 3D scene with OpenGL and then place text
on top of it with X. It is insufficient to simply make the drawing
calls in the right order because commands do not execute imme-
diately. Furthermore, a flush is insufficient because it only guar-
antees eventual execution. A finish, on the other hand, guarantees
the right order by forcing the application to wait for the OpenGL
commands to execute before issuing X commands. In a sense,
however, the finish is too much: the application need not wait for

the actual execution of the OpenGL commands; it only needs a
guarantee that all prior OpenGL commands execute before any
subsequent X commands. The call glXWaitGL provides this
guarantee, and glXWaitX provides the complement.

Hardware implementations of OpenGL typically provide sup-
port for a single context, and sharing of the hardware is done
through a context switch. Though context switches are typically
inexpensive enough to allow multiple windows, they are expen-
sive enough to discourage fine-grained sharing of the graphics
hardware between application threads. A few architectures actu-
ally provide hardware support for multiple simultaneous contexts
drawing into the same framebuffer [13, 26], but all commands
must go through a single graphics port. Furthermore, these ar-
chitectures do not have a mechanism for maintaining the parallel
issue of graphics commands when an exact ordering of primitives
is desired.

4 THE PARALLEL API EXTENSIONS
While OpenGL is not intended for multithreaded use in most
implementations, the interface provides mechanisms for having
multiple application threads work simultaneously on the same
image. In this section, we first demonstrate how such an interface
may be used to attain parallel issue of graphics commands. Then,
we show how additional extensions can be used to increase the
performance of parallel issue. The specification of the API exten-
sions is given in Figure 1, and the reader is encouraged to look
back to it as necessary.

The API extensions are most easily motivated through the use
of an example. Suppose that we want to draw a 3D scene com-
posed of opaque and transparent objects. Though depth buffering
alleviates the need to draw the opaque primitives in any particular
order, blending arithmetic requires that the transparent objects be
drawn in back-to-front order after all the opaque objects have
been drawn. By utilizing the strict ordering semantics of the se-
rial graphics API, a serial program simply issues the primitives in
the desired order. With a parallel API, order must be explicitly
constrained. We assume the existence of two arrays: one holds
opaque primitives, and the other holds transparent primitives in

glpNewBarrier(GLuint barrier, GLuint numCtxs)
barrier->numCtxs = numCtxs;
barrier->count = numCtxs;

glpBarrier(GLuint barrier)
barrier->count--;
if (barrier->count == 0)

barrier->count = barrier->numCtxs;
signal(all waiting contexts);

else
wait();

glpDeleteBarrier(GLuint barrier)

glpNewSema(GLuint sema, GLuint count)
sema->count = count;

glpPSema(GLuint sema)
if (sema->count == 0)

wait();
sema->count--;

glpVSema(GLuint sema)
sema->count++;
signal(one waiting context, if any);

glpDeleteSema(GLuint sema)

glpWaitContext(GLXContext ctx)
Upon return, all subsequent commands from the issuing
context are guaranteed to execute after all prior commands
from ctx have finished execution.

Figure 1: The Parallel Graphics Interface Extensions.

back-to-front order. We also assume the existence of the follow-
ing function:
DrawPrimitives(prims[first..last])

glBegin(GL_TRIANGLE_STRIP)
for p = first..last

glColor(prims[p].color)
glVertex(prims[p].coord)

glEnd()

4.1 Existing Constructs
As a first attempt at parallel issue, imagine two application
threads using the same context to draw into the same framebuffer.
In such a situation, a “set current color” command intended for a
primitive from one application thread could be used for a primi-
tive from the other application thread. In general, the sharing of
contexts between application threads provides unusable semantics
because of the extensive use of state. By using separate contexts,
dependencies between the state-modifying graphics commands of
the two streams are trivially resolved. Given two application
threads using separate contexts on the same framebuffer, the fol-
lowing code could be used to attain parallel issue of the opaque
primitives:
Thread1 Thread2
DrawPrimitives(opaq[1..256]) DrawPrimitives(opaq[257..512])

glFinish()
appBarrier(appBarrierVar) appBarrier(appBarrierVar)
DrawPrimitives(tran[1..256])
glFinish()
appBarrier(appBarrierVar) appBarrier(appBarrierVar)

DrawPrimitives(tran[257..512])

Both application threads first issue their share of opaque
primitives without regard for order. After synchronizing in lock-
step at the application barrier, Thread1 issues its half of the trans-
parent primitives. These transparent primitives are guaranteed to
be drawn in back-to-front order after Thread1’s share of opaque
primitives through the strict ordering semantics of the serial API.
They are also guaranteed to be drawn after Thread2’s share of
opaque primitives through the combination of the barrier and the
finish: the finish guarantees the drawing of all previously issued
commands from Thread2. By using this same synchronization
mechanism again, Thread2’s share of transparent primitives are
then drawn in back-to-front order after Thread1’s share of trans-
parent primitives.

4.2 The Wait Construct
One inefficiency in the above code is the use of the finish com-
mand; in a sense, it is too much. Synchronization between the
threads does not require the actual execution of the graphics
commands; it only requires a guarantee on the order of execution
between the two graphics streams. In a fashion similar to what is
used for synchronizing X and OpenGL, we introduce the wait
context call in order to make guarantees about the execution of
commands between contexts. We refer the reader to Figure 1 for
an exact specification. In synchronization situations, the wait call
is more efficient than the finish call because it does not require
any application thread to wait for the completion of graphics
commands. The following code demonstrates how the example
scene may be drawn using the wait command:
Thread1 Thread2
DrawPrimitives(opaq[1..256]) DrawPrimitives(opaq[257..512])
appBarrier(appBarrierVar) appBarrier(appBarrierVar)
glpWaitContext(Thread2Ctx)
DrawPrimitives(tran[1..256])
appBarrier(appBarrierVar) appBarrier(appBarrierVar)

glpWaitContext(Thread1Ctx)
DrawPrimitives(tran[257..512])

Intergraph uses a different mechanism to provide the same ef-
fect as the wait call [13]. Due to the underlying implementation
of the single graphics port, returning from a flush call guarantees
that all of a context’s primitives will be drawn before any subse-
quent primitives from any other context. While similar in spirit to
the wait call, this mechanism does not scale very well to systems
with multiple ports because of its underlying broadcast require-
ment. The wait construct uses point-to-point communication.

4.3 Synchronization Constructs
While the wait command provides an improvement over the finish
command, a large problem remains: the synchronization of the
graphics streams is done by the application threads. Conse-
quently, application threads are forced to wait. But why should
an application thread wait when it could be doing something more
useful? For example, in the code of Section 4.2, the first thread
must issue its entire half of the transparent primitives before the
second thread can begin issuing its half; thus, the second thread is
forced to wait. Every time an explicit ordering is needed between
primitives from different threads, the interface essentially de-
grades to a serial solution.

The answer to this problem is the key idea of our parallel API:
synchronization that is intended to synchronize graphics streams
should be done between graphics streams—not between applica-
tion threads. To this end, we introduce a graphics barrier com-
mand into the API. As with other API calls, the application
thread merely issues the barrier command, and the command is
later executed within the graphics system. Thus, the blocking
associated with the barrier is done on graphics contexts, not on
the application threads. The code below achieves our primary
objective—the parallel issue of explicitly ordered primitives: both
application threads may execute this code without ever blocking if
the graphics system provides sufficient buffering.
Thread1 Thread2
DrawPrimitives(opaq[1..256]) DrawPrimitives(opaq[257..512])
glpBarrier(glpBarrierVar) glpBarrier(glpBarrierVar)
DrawPrimitives(tran[1..256])
glpBarrier(glpBarrierVar) glpBarrier(glpBarrierVar)

DrawPrimitives(tran[257..512])

We see the utility of the barrier primitive in the above code
example, but what other synchronization primitives provide useful
semantics within the realm of a parallel graphics interface?
Whereas the barrier is an excellent mechanism for synchronizing
a set of streams in lock-step, it is not the best mechanism for do-
ing point-to-point synchronization. Borrowing from the field of
concurrent programming, we find that semaphores provide an
elegant solution for many problems [7]. Among them is a mecha-
nism for signal-and-wait semantics between multiple streams.
The specification of the barrier and semaphore commands can be
found in Figure 1. As with texture data and display lists, the data
associated with barriers and semaphores should be sharable be-
tween contexts.

Barriers and semaphores have been found to be good synchro-
nization primitives in the applications we have considered. If
found to be useful, other synchronization primitives can also be
added to the API. It is important to note that the requirements for
synchronization primitives within a graphics API are somewhat
constrained. Because the expression of arbitrary computation
through a graphics API is not feasible, a synchronization primi-
tive’s utility cannot rely on computation outside of its own set of
predefined operations. For example, condition variables are not a
suitable choice.

5 USING THE PARALLEL GRAPHICS API
In order to illustrate how the parallel graphics interface may be
used to provide scalable command issue, we present two exam-
ples. The first example is a generic interactive loop, and the sec-
ond example is the marching cubes algorithm.

5.1 Simple Interactive Loop
Figure 2a shows a simple interactive loop expressed in a strictly
ordered serial interface. The goal in this example is to parallelize
the compute and draw stage. This can yield improved perform-
ance in the host computation, the issue of the graphics commands,
and the execution of graphics commands.

For parallel issue, a master thread (Figure 2b) creates a num-
ber of slave threads (Figure 2c) to help with the compute and
draw stage. The master first issues a clear command and gets the
user input. The application barrier ensures that the worker
threads use the correct user input data for the rendering of each
frame. This synchronizes the application threads, but not the
graphics command streams. The slaves issue wait commands to
ensure that the clear command issued by the master is executed
first. The master is assured that the clear occurs first due to the
strict ordering semantics of a single stream. After each thread
issues its graphics commands, a graphics barrier is issued to re-
strict the swap operation to occur only after all the graphics
streams have finished drawing their share of the frame. Finally, a
finish operation is needed to ensure that the image is completed
and displayed before getting user input for the next frame. The
finish itself is a context-local operation which only guarantees
that all previous commands issued by the master are completed.
However, in conjunction with the graphics barrier, the finish
guarantees that the commands of the slaves are also completed.

5.2 Marching Cubes
As a more demanding example, we consider the marching cubes
algorithm [16]. Marching cubes is used to extract the polygonal
approximation of an isosurface of a function which is sampled on
a 3D grid. The grid is divided into a set of cells, and each cell is
composed of one or more voxels. In Figure 3a, we present a sim-
plification of marching cubes to 2D. The mechanics of surface
extraction and rendering are abstracted as ExtractAndRender.
ExtractAndRender operates on a single cell of the grid independ-
ently. If any portion of the desired isosurface lies within the cell,
polygons approximating it are calculated and issued to the graph-

ics system immediately. Due to the grid structure, it is fairly sim-
ple to perform the traversal in back-to-front order based on the
current viewpoint, thus eliminating the need for depth buffering
and allowing for alpha-based translucency. In our example, this
corresponds to traversing the grid in raster order.

Due to the independence of the processing of different cells,
marching cubes is easily parallelized. In Figure 3b, traversal is
parallelized by interleaving the cells across processing elements.
Unfortunately, this simple approach sacrifices back-to-front or-
dering. Figure 3d illustrates the dependence relationships be-
tween cells and their neighbors which must be obeyed in the or-
dered drawing of primitives. These dependencies can be ex-
pressed directly using semaphores injected into the graphics
command streams. Such an implementation is shown in Figure
3c. Before processing a cell, a thread issues two P operations to
constrain the rendering of a cell to occur after rendering of its two
rear neighbor cells. After processing the cell, it issues two V op-
erations to signal the rendering of its other neighbors. Note that
the dependencies and traversal order given here are non-ideal;
more efficient (and more complicated) approaches are possible.

6 IMPLEMENTATION
In order to test the viability of the parallel API extensions, we
have implemented a software graphics library which is capable of
handling multiple simultaneous graphics contexts. The name of
this implementation is Argus, and the performance achieved with
the parallel API using this system demonstrates the utility and
feasibility of the ideas presented in this paper.

Serial
loop:

glClear()
get user input
compute & draw
glXSwapBuffers()
glFinish()

Master
loop:

glClear()
get user input
appBarrier(appBarrierVar)

compute & draw
glpBarrier(glpBarrierVar)
glXSwapBuffers()
glFinish()

Slave
loop:

appBarrier(appBarrierVar)
glpWaitContext(masterCtx)
compute & draw
glpBarrier(glpBarrierVar)

(a)

(c)(b)

Figure 2: A Simple Interactive Loop. Application compu-
tation and rendering are parallelized across slave threads, and
a master thread coordinates per-frame operations.

MarchSerialOrdered (M, N, grid)
for (i=0; i<M; i++)

for (j=0; j<N; j++)
ExtractAndRender(grid[i, j])

MarchParallel (M, N, grid)
for (i=0; i<M; i++)

for (j=(myProc+i)%numProcs; j<N; j+=numProcs)
ExtractAndRender(grid[i,j])

MarchParallelOrdered (M, N, grid, sema)
for (i=0; i<M; i++)

for (j=(myProc+i)%numProcs; j<N; j+=numProcs)
if (i>0) glpPSema(sema[i-1,j])
if (j>0) glpPSema(sema[i,j-1])
ExtractAndRender(grid[i,j])
if (i<M-1) glpVSema(sema[i,j])
if (j<N-1) glpVSema(sema[i,j])

(d)

(a)

(c)

(b)

Figure 3: Parallel Marching Cubes. As the rendering of a
cell completes, glpVSema operations are performed by the
graphics context to release dependent neighboring cells
closer to the eye. The rendering commands of the white cells
are blocked on glpPSema operations which are waiting for
the rendering of adjacent or more distant cells.

Completed Ready Blocked glpVSema
(outstanding)

eye

glpPSema

i,j

i

j

The Argus Pipeline
The diagram on the right shows the flow of data through the
Argus pipeline. The pipeline contains several threads, shown
as gray boxes, which communicate through a variety of queues.
In this example, two application threads are drawing into the
same framebuffer through two different contexts. The graphics
data from the two contexts is shown in red and blue.

One key design issue that comes up in implementing the
parallel API is the handling of the graphics state since most
commands affect rendering through state changes. API com-
mands are issued by the ‘App’ threads shown at the top of the
diagram. Commands that modify state which is not necessary
for the rendering of the current GL primitive (e.g., the bottom
entries of the matrix stack) are tracked in the context state (e.g.,
CS). Commands that modify state which is necessary for ren-
dering the current GL primitive (e.g., the top entry of the matrix
stack) are tracked in the current geometry state (e.g., GS2), but
old versions of the geometry state (e.g., GS1) are kept until they
are no longer needed by the rest of the pipeline. Commands
which specify the current primitive (i.e., commands which are
allowed within glBegin and glEnd, such as glNormal and
glVertex) are grouped into fixed-size primitive blocks (denoted
by Pi). A primitive block and its related geometry state contain
all the information necessary for the rendering of the primi-
tives, and multiple primitive blocks can share the same geome-
try state. For example, primitive blocks P2 and P3 both use the
same geometry state GS2. Every time a primitive block fills up
or the geometry state changes, a pair of pointers (which are
represented in the diagram by parentheses) is added to the local
command queue (LCQ) by the ‘App’ thread; synchronization
commands (Sema) are inserted into this queue directly.

Another key implementation design issue that comes up in
any parallel API implementation is the merging of graphics
streams and the resolution of synchronization commands. In
Argus, each context has a ‘Sync’ thread which is responsible
for moving data from its LCQ onto a global command queue
(GCQ). ‘Sync’ threads execute the synchronization commands
found in the LCQ (as illustrated by the dotted green line).
When ‘Sync’ threads are not blocked due to synchronization,
they copy the pointers from their LCQ onto the GCQ. This
creates a sequence in the GCQ which is strictly ordered with
respect to any one context and consistent with the constraints
imposed by the synchronization commands. For example, the
sequence found in the GCQ of the diagram keeps the order {P1,
P2, P3} and {P1, P2, P3}. The sequence is also consistent with
the semaphore pair (which requires an ordering that puts {P1,
P2} in front of {P2, P3}).

Beyond the GCQ, the Argus pipeline is very similar to a
graphics pipeline which implements a serial API. The ‘Geom’
threads drain the GCQ and fill the triangle queue by converting
the geometry state (GSi) and the 3D data from primitive blocks
(Pi) into rasterization state (RSi) and 2D triangle blocks (Ti).
Each ‘Rast’ thread is responsible for drawing into one tile of
the framebuffer, and the ‘Geom’ threads insert pointers into the
appropriate rasterization buffers based on the tiles which are
overlapped by the triangles in the triangle block. These reorder
buffers are used as a mechanism for maintaining the ordering
found in the GCQ across the rasterizers.

Sync

App

Geom

Rast

…

P3

P2

P1

…

…

GS2

GS1

…

CS

Rast

Geom

…

(P3) (GS2)

(P2) (GS2)

P Sema

(P1) (GS1)

…

App

…

P3

P2

P1

…

…

GS2

GS1

…

CS

…

(P3) (GS2)

V Sema

(P2) (GS1)

(P1) (GS1)

…

Sync

…

(P3) (GS2)

(P3) (GS2)

(P2) (GS2)

(P2) (GS1)

…

(P1) (GS1)

(P1) (GS1)

Geom Geom

…

T3 RS2

T3 RS2

T2 RS2

T2 RS1

…

T1 RS1

T1 RS1

…

(T3 RS2)

(T2 RS1)

…

(T1 RS1)

…

(T3 RS2)

(T2 RS2)

…

…

(T3 RS2)

(T2 RS2)

…

(T1 RS1)

…

(T3 RS2)

(T3 RS2)

(T2 RS1)

…

(T1 RS1)

RastRast

All-to-All Crossbar

Data
CS Context State
GS Geometry State
RS Rasterization State
P Primitive Block
T Triangle Block
(X) Pointer to X

Thread
App Application
Sync Synchronization
Geom Geometry
Rast Tile Rasterization

Data Sizes
Context State 4 KB
Geometry State 1 KB
Rasterization State 0.125 KB
Primitive Block 16 KB
Triangle Block 64 KB

Queue Lengths
Geometry State Queue 256 entries
Primitive Block Queue 256 entries
Local Command Queue 256 entries
Global Command Queue 256 entries
Triangle Queue 512 entries
Rasterization Queue 256 entries

6.1 Argus
Argus is a shared memory multiprocessor graphics library which
was designed to serve as a test-bed for various studies in graphics
architecture. Argus implements a subset of OpenGL as well as
the parallel API extensions. At the heart of Argus is a lightweight
multiprocessor threads package. We implement a graphics archi-
tecture by allocating a thread for each processing node in the ar-
chitectural design. A custom scheduler is used to schedule these
threads onto system processors appropriately. Furthermore, if a
system processor running application code is blocked for some
reason due to the graphics (e.g., a buffer fills up or a glFinish is
pending), the threads package will run graphics threads on the
otherwise idle application processor.

There are three basic types of threads in the serial API version
of Argus. An application thread runs application code and man-
ages the graphics context. A geometry thread transforms and
shades the primitives encoded in the graphics instruction stream.
A rasterization thread is responsible for drawing these trans-
formed primitives into the framebuffer. The version of Argus that
implements the serial API is a sort-middle tiled parallel graphics
system [17]. Graphics commands from a single application thread
fill a global command queue which is drained by many geometry
threads. The number of geometry threads is scalable since the
data in this global command queue can be read in parallel. Of
course, the geometry threads must synchronize at a single point of
contention in order to distribute the work in the queue amongst
themselves, but because the contention is amortized over a large
number of primitives, this cost is insignificant in our implementa-
tion. After the appropriate computation, the geometry threads
distribute the transformed primitives among the appropriate tile
rasterizers. Though the details are beyond the scope of this paper,
reorder buffers in front of each rasterizer are used to maintain the
ordering found in the global command queue across the rasteriz-
ers. Since each tile rasterizer is responsible for a contiguous por-
tion of the screen, no one rasterizer needs to see all of the primi-
tives; thus, the rasterization architecture is scalable. Argus sup-
ports a variety of schemes for load balancing tile rasterization.
For the results presented here, we used distributed task queues
with stealing.

The version of Argus that implements the parallel API extends
the serial API architecture to allow multiple simultaneous graph-
ics streams. Each application thread is augmented by a local
command queue and a synchronization thread. Instead of enter-
ing graphics commands onto the global command queue, each
application thread fills its local command queue. The synchroni-
zation thread is then responsible for transferring commands from
this local command queue onto the global command queue. Since
the global command queue may be written in parallel, the archi-
tecture is scalable. The box on the adjacent page describes the
pipeline in greater detail and explains how state management and
synchronization commands are implemented within Argus.

6.2 Performance
Because poor performance often hides architectural bottlenecks,
Argus was designed with performance as one of its main criteria.
Although Argus can run on many architectures, particular care
was taken to optimize the library for the Silicon Graphics Origin
system [15]. The Origin is composed of 195 MHz R10000 proc-
essors interconnected in a scalable NUMA architecture. De-
pending on the rendering parameters, the single processor version
of Argus is able to render up to 200K triangles per second; this

rendering rate scales up to 24 processors. In its original incarna-
tion, Argus was designed for a serial interface and many serial
applications were not able to keep up with the scalable perform-
ance of the graphics system. Remedying this situation led us to
the development of the parallel API.

To study the performance of our parallel API implementation,
we ran two applications: Nurbs and March. Nurbs is an immedi-
ate-mode patch tessellator parallelized by distributing the individ-
ual patches of a scene across processors in a round-robin manner.
By tessellating patches on every frame, the application may vary
the resolution of the patches interactively, and because depth
buffering is enabled, no ordering constraints are imposed in the
drawing of the patches—synchronization commands are utilized
only on frame boundaries. Our second application, March, is a
parallel implementation of the marching cubes algorithm [16]. By
extracting the isosurface on every frame, the application may
choose the desired isosurfaces interactively. Rendering is per-
formed in back-to-front order to allow transparency effects by
issuing graphics semaphores which enforce the dependencies
described in Section 5.2. One noteworthy difference between our
implementation and the one outlined in Section 5.2 is that cells
are distributed from a centralized task queue rather than in round-
robin order because the amount of work in each cell can be highly
unbalanced. The input characteristics and parameter settings used
with each of these applications are shown below:
Nurbs March
armadillo dataset skull dataset
102 patches 256K voxels (64x64x64)
196 control points per patch cell size at 16x16x16
117504 stripped triangles 53346 independent triangles
1200x1000 pixels 1200x1000 pixels

Figure 4a and Figure 4b show the processor speedup curves
for Nurbs and March, respectively. The various lines in the graph
represent different numbers of application threads. The serial
application bottleneck can be seen in each case by the flattening
of the "1 Context" curve: as more processors are utilized, no more
performance is gained. Whereas the uniprocessor version of
Nurbs attains 1.65 Hz, and the serial API version is limited to 8.8
Hz, the parallel API version is able to achieve 32.2 Hz by using
four contexts. Similarly, the uniprocessor version of March gets
0.90 Hz, and the serial API version of March is limited to 6.3 Hz,
but the parallel API version is able to attain 17.8 Hz by utilizing
three contexts. These speedups show high processor utilization
and highlight the implementation’s ability to handle extra con-
texts gracefully.

One extension to Argus that we have been considering is the
use of commodity hardware for tile rasterization. Although this
introduces many difficulties, it also increases rasterization rate
significantly. In order to simulate the effects of faster rasteriza-
tion on the viability of the parallel API, we stress the system by
running Argus in a simulation mode which imitates infinite pixel
fill rate. In this mode, the slope calculations for triangle setup do
occur, as does the movement of the triangle data between the
geometry processors and the tile rasterizers. Only the rasteriza-
tion itself is skipped. The resulting system increases the through-
put of Argus and stresses the parallel API: Figure 4c and Figure
4d show how a greater number of contexts are required to keep up
with the faster rendering rate. The parallel API allows Argus to
achieve peak frame rates of 50.5 Hz in Nurbs and 40.9 Hz in
March. This corresponds to 5.9 million stripped triangles per
second in Nurbs and 2.2 million independent triangles per second
in March. These rates are approximately double the rate at which
a single application thread can issue primitives into Argus even

when no application computation is involved, thus demonstrating
the importance of multiple input ports. Again, the graphs illus-
trate Argus’s capability of handling extra contexts without per-
formance penalties.

One important aspect of any implementation of the parallel
API is the amount of buffering required to make the API work.
Without enough buffering, the parallel API serializes: in Argus, if
a local command queue fills up before its synchronization com-
mands are resolved, the application thread is forced to wait. In-
tuitively, we expect the amount of buffering required to be sensi-
tive to the amount of synchronization between different threads.
This is quantified in the speedup curves of Figure 4e for 24 proc-
essors. The number of entries in the local command queue (which
can each point to a 16 KB block of primitive commands or hold a
single synchronization command) was varied from 1 to 256. The
runs were performed on the March application with the sema-
phores both enabled (the solid “Ordered” lines) and disabled (the
dotted “Unordered” lines). As one would expect, the ordered
version requires significantly larger buffers.

Another key aspect of any parallel API implementation is its
ability to minimize the cost of synchronization. If the granularity
of the application is too fine, synchronization costs can dominate,
and the application is forced to use a coarser subdivision of work.
If the work is subdivided too coarsely, load imbalance can occur
within the application. The effects of granularity on Argus were
tested by varying the dimensions of the cells on both the ordered
and unordered versions of March. The number of processors was
held at 24 and timings were taken with varying numbers of con-
texts, as illustrated in Figure 4f. A granularity which is too fine
deteriorates performance in both the application (as demonstrated

by the unordered runs) as well as in the graphics system (as dem-
onstrated by the extra performance hit taken by the ordered runs).
For the March application, there is a wide range of granularities
(well over an order of magnitude in the number of voxels) that
work well since Argus was designed to keep the cost of synchro-
nization low. When March is run without isosurface extraction
and rendering (i.e., nothing but the synchronization primitives are
issued), several hundred thousand semaphore operations are re-
solved per second.

7 DISCUSSION
Argus is one implementation of the parallel API which performs
well. Obviously, the architecture embodied by Argus is not the
only possible choice, and it is instructive to examine the design
considerations of alternative implementations due to the special
architectural requirements imposed by the extensions.

7.1 Consistency and Synchronization
Until now, we have not said much about how the operations of
the parallel API can be interleaved. Supporting multiple contexts
that share a framebuffer means that the system must provide a
consistency model. We borrow the notion of sequential consis-
tency from the field of computer architecture [14]. Imagine a
system consisting of multiple processes simultaneously perform-
ing atomic operations. A sequentially consistent system computes
a result that is realizable by some serial interleaving of these
atomic operations. By making a single API command be the level
of apparent atomicity, we define the notion of command-
sequential consistency, the strongest form of consistency possible

0 4 8 12 16 20 24

Processors

0

4

8

12

16

20

24

Sp
ee

du
p

(a)
Nurbs

0 4 8 12 16 20 24

Processors

0

4

8

12

16

20

24

Sp
ee

du
p

(b)
March

0 4 8 12 16 20 24

Processors

0

4

8

12

16

20

24

Sp
ee

du
p

(c)
Nurbs / no rast

0 4 8 12 16 20 24

Processors

0

4

8

12

16

20

24

Sp
ee

du
p

(d)
March / no rast

1 2 4 8 16 32 64 128 256

Local Command Queue Size

0

4

8

12

16

20

24

Sp
ee

du
p

(e)
March / no rast @ 24 procs

0 4 8 12 16 20 24

Processors

0

4

8

12

16

20

24

Sp
ee

du
p

Legend
Linear Speedup

1 Context
2 Contexts
3 Contexts
4 Contexts
5 Contexts
6 Contexts
7 Contexts
8 Contexts

Ordered
Unordered

4 8 12 16 20 24 28 32

Cell Dimensions

0

4

8

12

16

20

24

Sp
ee

du
p

(f)
March / no rast @ 24 procs

Figure 4: Performance Graphs. The speedup curves for two applications, Nurbs and March, are drawn in (a) and (b) for a varying
numbers of contexts using the Argus graphics library. These same graphs are plotted for a version of Argus which assumes infinite fill
rate in (c) and (d). The effects of buffering are illustrated in (e), and the effects of synchronization granularity are demonstrated in (f).

within the parallel API. At the other end of the spectrum is
framebuffer-sequential consistency—only framebuffer accesses
are atomic. A whole spectrum of consistency models can be
enumerated in such a fashion. The OpenGL specification does
not require an implementation to support any consistency model.
In order to support the parallel API, however, a graphics system
should provide at least fragment-sequential consistency in order
to support features which depend on an atomic read-modify-write
operation on the framebuffer (such as depth buffering).

The consistency model which an architecture supports is re-
lated to the location in the pipeline where synchronization con-
straints between graphics streams are resolved. The Argus pipe-
line described in Section 6.1 synchronizes and merges multiple
graphics streams early in the pipeline, thus supporting command-
sequential consistency. One problem with such an architecture is
that geometry processing cannot occur on primitives which are
blocked due to synchronization constraints. Another problem is
that ordering dependencies not required by the synchronization
commands are introduced early in the pipeline at the global com-
mand queue.

An alternate architecture addresses these problems by merging
graphics streams at the rasterizers, thus supporting fragment-
sequential consistency. We implemented such an alternate ver-
sion of Argus in which the entire pipeline up to and including the
tile rasterization threads is replicated for each context. Every tile
thread executes every synchronization command, and threads
which share the same tile merge their streams by obtaining exclu-
sive access to the tile. One disadvantage of this approach is the
extra buffering requirements due to the fact that the size of the
graphics data expands as it gets farther down the pipeline. An-
other problem with this alternate approach is the high cost of
synchronization since synchronization commands must be exe-
cuted by every tile rasterizer—this proved prohibitively expensive
in the framework of Argus. Of course, many architectures other
than the two we tried are possible, and an architect should evalu-
ate the effects of a proposed architecture on these same issues.

7.2 Architectural Requirements
While a graphics system which implements the parallel API is in
many respects similar to one which implements a serial API, an
architecture should take special care in addressing three particular
areas. First, the architecture must have a mechanism that effi-
ciently handles multiple simultaneous input streams. Second, the
state management capabilities of the architecture must be able to
handle multiple simultaneous graphics states. And third, the
rasterization system must be able to handle texture data for multi-
ple streams efficiently.

In designing current systems, graphics architects have gone to
great lengths to allow the seamless sharing of the graphics hard-
ware between multiple windows by significantly reducing the
context switch time. Although this same mechanism can be used
for the parallel API, the context switch time must be reduced even
further in order to handle multiple input streams at a much finer
granularity. Argus does this by making use of a thread library
which can switch threads in less than a microsecond as well as
allowing multiple input ports. A hardware system could allow
multiple input ports by replicating command processors. Ideally,
each of the command processors could handle either a single
graphics stream at a high rate or multiple graphics streams at
lower rates. This would result in peak performance on serial ap-
plications and good performance on highly parallel applications.

The parallel API imposes special requirements on the handling
of state. In past architectures, state changes have been expensive
due to pipeline flushing. Recent graphics architectures, however,
have taken measures to allow large numbers of state changes [19].
To a first order, the number of state changes for a given scene as
issued by one application thread is the same as the number of state
changes for the same scene as issued by multiple application
threads since the number of inherent state changes in a scene is
constant. However, the parallel API increases the amount of state
that has to be accessible to the different portions of the graphics
system: the various graphics processors must be able to switch
between the states of different graphics streams without dramati-
cally affecting performance. Hardware implementations which
allow for multiple simultaneous contexts have already been dem-
onstrated [13, 26]. In Argus, multiple simultaneous contexts are
handled efficiently by taking advantage of state coherence in the
state management algorithm through the use of shared memory
and processor caching.

One type of state which requires special attention is texture.
Unlike the rest of the state associated with a context (with the
exception of display lists), texture state can be shared amongst
multiple contexts, thus exposing the need for efficient download
of and access to shared texture data. The semantics of texture
download are the same as all other graphics commands: it is sus-
ceptible to buffering, and synchronization must occur to guarantee
its effects from the point of view of other contexts. Efficient im-
plementations of synchronized texture download can be realized
by extending the idea of the “texture download barrier” found in
the SGI InfiniteReality [19]. The access of texture memory may
also require special care. Since hardware systems have a limited
amount of local texture memory, applications issue primitives in
an order which exploits texture locality. The parallel API can
reduce this locality since the rasterizers can interleave the ren-
dering of several command streams. In architectures which use
implicit caching [4, 10], the effectiveness of the cache can possi-
bly be reduced. In architectures which utilize local texture mem-
ory as an explicit cache, texture management is complicated. In
Argus, shared texture download is facilitated by shared memory,
and locality of texture access is provided by the caching hardware.

8 FUTURE WORK
The parallel API provides a new paradigm for writing parallel
graphics applications. Many graphics algorithms exist that need
an immediate-mode interface but are limited by application com-
putation speed (e.g., [11, 24]), and parallelizing them can help
greatly. There are two other uses of the parallel API which are of
special interest. Scene graph libraries such as Performer [22] are
parallel applications which traverse, cull, and issue scenes on
multiple processors. Pipeline parallelism is used to distribute
different tasks among different processors, but Performer is lim-
ited on most applications by the single processor responsible for
the issuing of the graphics commands. The parallel API can be
used to write such libraries in a homogeneous, scalable fashion.
A second novel use of the parallel API is to write a “compiler”
that can automatically parallelize the graphics calls of a serial
graphics application. Recent advances in compiler technology
allow automatic parallelization of regular serial applications [1],
and extending this work to encompass graphics applications
would be an interesting research direction.

Another significant step in validating the parallel API is im-
plementing an architecture with hardware acceleration. While

Argus is an excellent software system for studying the issues in
the design of the parallel API, its performance is limited by poor
rasterization speed, especially when texturing is enabled. One
possible architecture consists of implementing the parallel API on
a cluster of interconnected PCs with rasterization hardware. An-
other possibility is to extend the basic sort-middle interleaved
architecture [17] of a high-end system such as the SGI InfiniteRe-
ality [19]. Though this task is by no means easy, we believe that
such a system is feasible with the techniques described in Section
7.2. The parallel API can also be implemented by a variety of
other, more exotic architectures.

Image composition architectures such as PixelFlow [8, 18] are
one class of rendering architectures that have not been addressed
by the parallel API. Because these machines are not designed to
do ordered drawing of primitives, the parallel API needs to be
extended to allow a relaxed ordering model in which the require-
ment of drawing in strict order can be enabled and disabled.

9 CONCLUSION
We have designed a parallel immediate-mode graphics interface.
By introducing synchronization commands into the API, ordering
between multiple graphics streams can be explicitly constrained.
Since synchronization is done between graphics streams, an ap-
plication thread is able to continue issuing graphics commands
even when its graphics stream is blocked. The API provides a
natural paradigm for parallel graphics applications that can be
used in conjunction with the existing retained-mode constructs of
an immediate-mode interface. The feasibility of this API has been
demonstrated by a sample implementation which provides scal-
able performance on a 24 processor system.

Acknowledgements
We would like to thank Matthew Eldridge, Kekoa Proudfoot,
Milton Chen, John Owens, and the rest of the Stanford Graphics
Lab for their insights about this work. We thank Kurt Akeley and
the anonymous reviewers for their helpful comments in revising
the paper. We thank Dale Kirkland for describing the parallel
interface used by Intergraph. For support, we thank Silicon
Graphics, Intel, and DARPA contract DABT63-95-C-0085-
P00006. For machine time, we thank Chris Johnson and the Uni-
versity of Utah. And finally, we thank our loved ones.

References
[1] S. Amarasinghe, J. Anderson, C. Wilson, S. Liao, B. Murphy, R.

French, M. Lam, and M. Hall. Multiprocessors from a Software
Perspective. IEEE Micro, 16:3, pages 52-61, 1996.

[2] A. Beers, M. Agrawala, and N. Chaddha. Rendering from Com-
pressed Textures. Computer Graphics (SIGGRAPH 96 Proceed-
ings), volume 30, pages 373-378, 1996.

[3] J. Blinn. Me and My (Fake) Shadow. IEEE Computer Graphics
and Applications, 8:1, pages 82-86, 1988.

[4] M. Cox, N. Bhandari, and M. Shantz. Multi-Level Texture Cach-
ing for 3D Graphics Hardware. Proceedings of the 25th Interna-
tional Symposium on Computer Architecture, 1998.

[5] T. Crockett. Design Considerations for Parallel Graphics Librar-
ies. Proceedings of the Intel Supercomputer Users Group 1994,
1994.

[6] M. Deering. Geometry Compression. Computer Graphics
(SIGGRAPH 95 Proceedings), volume 29, pages 13-20, 1995.

[7] E. Dijkstra. Cooperating Sequential Processes. Programming
Languages, pages 43-112, 1968.

[8] J. Eyles, S. Molnar, J. Poulton, T. Greer, A. Lastra, N. England,
and L. Westover. PixelFlow: The Realization. Proceedings of the
1997 SIGGRAPH/Eurographics Workshop on Graphics Hard-
ware, pages 57-68, 1997.

[9] J. Gettys and P. Karlton. The X Window System, Version 11.
Software—Practice and Experience, 20:S2, pages 35-67, 1990.

[10] Z. Hakura and A. Gupta. The Design and Analysis of a Cache Ar-
chitecture for Texture Mapping. Proceedings of the 24th Interna-
tional Symposium on Computer Architecture, 1997.

[11] H. Hoppe. View-Dependent Refinement of Progressive Meshes.
Computer Graphics (SIGGRAPH 97 Proceedings), volume 31,
pages 189-198, 1997.

[12] M. Kilgard. OpenGL Programming for the X Window System,
Addison-Wesley, 1996.

[13] D. Kirkland. Personal Communication. Intergraph Corp., 1998.

[14] L. Lamport. How to Make a Multiprocessor Computer that Cor-
rectly Executes Multiprocess Programs. IEEE Transactions on
Computers, 28:9, pages 241-248, 1979.

[15] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA Highly
Scalable Server. Proceedings of the 24th Annual Symposium on
Computer Architecture, 1997.

[16] W. Lorensen and H. Cline. Marching Cubes: A High-Resolution
3D Surface Reconstruction Algorithm. Computer Graphics
(SIGGRAPH 87 Proceedings), volume 21, pages 163-169, 1987.

[17] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs. A Sorting Classi-
fication of Parallel Rendering. IEEE Computer Graphics and Ap-
plications, 14:4, pages 23-32, 1994.

[18] S. Molnar, J. Eyles, and J. Poulton. PixelFlow: High-Speed Ren-
dering Using Image Composition. Computer Graphics
(SIGGRAPH 92 Proceedings), volume 26, pages 231-240, 1992.

[19] J. Montrym, D. Baum, D. Dignam, and C. Migdal. InfiniteReality:
A Real-Time Graphics System. Computer Graphics (SIGGRAPH
97 Proceedings), volume 31, pages 293-302, 1997.

[20] J. Neider, T. Davis, and M. Woo. OpenGL Programming Guide.
Addison-Wesley, 1993.

[21] T. Porter and T. Duff. Compositing Digital Images. Computer
Graphics (SIGGRAPH 84 Proceedings), volume 18, pages 253-
259, 1984.

[22] J. Rohlf and J. Helman. IRIS Performer: A High Performance
Multiprocessing Toolkit for Real-Time 3D Graphics. Computer
Graphics (SIGGRAPH 94 Proceedings), volume 28, pages 381-
395, 1994.

[23] R. Scheifler and J. Gettys. The X Window System. ACM Trans-
actions on Graphics, 5:2, pages 79-109, 1986.

[24] T. Sederberg and S. Parry. Free-Form Deformation of Solid Geo-
metric Models. Computer Graphics (SIGGRAPH 86 Proceed-
ings), volume 20, pages 151-160, 1986.

[25] J. Torborg and J. Kajiya. Talisman: Commodity Real-Time 3D
Graphics for the PC. Computer Graphics (SIGGRAPH 96 Pro-
ceedings), volume 30, pages 57-68, 1996.

[26] D. Voorhies, D. Kirk, and O. Lathrop. Virtual Graphics. Com-
puter Graphics (SIGGRAPH 88 Proceedings), volume 22, pages
247-253, 1988.

