
NeuroAnimator:
Fast Neural Network Emulation and Control of Physics-Based Models

Radek Grzeszczuk1 Demetri Terzopoulos2;1 Geoffrey Hinton2

1 Intel Corporation 2 University of Toronto

Abstract: Animation through the numerical simulation of physics-
based graphics models offers unsurpassed realism, but it can be
computationally demanding. Likewise, the search for controllers
that enable physics-based models to produce desired animations
usually entails formidable computational cost. This paper demon-
strates the possibility of replacing the numerical simulation and
control of dynamic models with a dramatically more efficient al-
ternative. In particular, we propose the NeuroAnimator, a novel ap-
proach to creating physically realistic animation that exploits neu-
ral networks. NeuroAnimators are automatically trained off-line
to emulate physical dynamics through the observation of physics-
based models in action. Depending on the model, its neural net-
work emulator can yield physically realistic animation one or two
orders of magnitude faster than conventional numerical simulation.
Furthermore, by exploiting the network structure of the NeuroAni-
mator, we introduce a fast algorithm for learning controllers that en-
ables either physics-based models or their neural network emulators
to synthesize motions satisfying prescribed animation goals. We
demonstrate NeuroAnimators for a variety of physics-based mod-
els.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; I.6.8 [Simulation and Model-
ing]: Types of Simulation—Animation

Keywords: physics-based animation, neural networks, learning,
motion control, backpropagation, dynamical systems, simulation.

1 Introduction

Animation based on physical principles has been an influential
trend in computer graphics. This is not only due to the unsur-
passed realism that physics-based techniques offer. In conjunction
with suitable control and constraint mechanisms, physical mod-
els also facilitate the production of copious quantities of realistic
animation in a highly automated fashion. Physics-based anima-
tion techniques are beginning to find their way into high-end com-
mercial systems. However, a well-known drawback has retarded

12200 Mission College Blvd., Santa Clara, CA 95052, RN6-35
E-mail: radek.grzeszczuk@intel.com
210 King’s College Road, Toronto, Ontario, Canada, M5S 3G4
E-mail: fdt jhinton g@cs.toronto.edu

their broader penetration—compared to geometric models, physi-
cal models typically entail formidable numerical simulation costs.

This paper proposes a new approach to creating physically real-
istic animation that differs radically from the conventional approach
of numerically simulating the equations of motion of physics-based
models. We replace physics-based models by fastemulatorswhich
automatically learn to produce similar motions by observing the
models in action. Our emulators have a neural network structure,
hence we dub themNeuroAnimators. The network structure of
NeuroAnimators furthermore enables a new solution to the con-
trol problem associated with physics-based models, leading to a re-
markably fast algorithm for synthesizing motions that satisfy pre-
scribed animation goals.

1.1 Overview of the NeuroAnimator Approach

Our approach is motivated by the following considerations:
Whether we are dealing with rigid [6, 1], articulated [7, 19], or non-
rigid [17, 10] dynamic animation models, the numerical simulation
of the associated equations of motion leads to the computation of a
discrete-time dynamical system of the form

st+�t = �[st;ut; ft]: (1)

These (generally nonlinear) equations express the vectorst+�t of
state variables of the system (values of the system’s degrees of free-
dom and their velocities) at timet+ �t in the future as a function�
of the state vectorst, the vectorut of control inputs, and the vector
ft of external forces acting on the system at timet.

Physics-based animation through the numerical simulation of a
dynamical system (1) requires the evaluation of the map� at every
timestep, which usually involves a non-trivial computation. Eval-
uating� using explicit time integration methods incurs a compu-
tational cost ofO(N) operations, whereN is proportional to the
dimensionality of the state space. Unfortunately, for many dynamic
models of interest, explicit methods are plagued by instability, ne-
cessitating numerous tiny timesteps�t per unit simulation time. Al-
ternatively, implicit time-integration methods usually permit larger
timesteps, but they compute� by solving a system ofN alge-
braic equations, generally incurring a cost ofO(N3) operations per
timestep.

We pose an intriguing question: Is it possible to replace the con-
ventional numerical simulator, which must repeatedly compute�,
by a significantly cheaper alternative? A crucial realization is that
the substitute, or emulator, need not compute the map� exactly,
but merely approximate it to a degree of precision that preserves
the perceived faithfulness of the resulting animation to the simu-
lated dynamics of the physical model.

Neural networks[2] offer a general mechanism for approximat-
ing complex maps in higher dimensional spaces.2 Our premise is
that, to a sufficient degree of accuracy and at significant compu-
tational savings, trained neural networks can approximate maps�

2Note that � in (1) is in general a high-dimensional map from
<s+u+f 7! <s, wheres, u, andf denote the dimensionalities of the
state, control, and external force vectors.

ACM Copyright Notice
Copyright ©1998 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires specific permission and/or a fee.

Supplemental Materials
Supplemental materials for this paper are available in the papers/grzeszcz directory.

not just for simple dynamical systems, but also for those associated
with dynamic models that are among the most complex reported in
the graphics literature to date.

The NeuroAnimator, which uses neural networks to emulate
physics-based animation, learns an approximation to the dynamic
model by observing instances of state transitions, as well as control
inputs and/or external forces that cause these transitions. Training a
NeuroAnimator is quite unlike recording motion capture data, since
the network observes isolated examples of state transitions rather
then complete motion trajectories. By generalizing from the sparse
examples presented to it, a trained NeuroAnimator can emulate an
infinite variety of continuous animations that it has never actually
seen. Each emulation step costs onlyO(N2) operations, but it is
possible to gain additional efficiency relative to a numerical simu-
lator by training neural networks to approximate a lengthy chain of
evaluations of (1). Thus, the emulator network can perform “super
timesteps”�t = n�t, typically one or two orders of magnitude
larger than�t for the competing implicit time-integration scheme,
thereby achieving outstanding efficiency without serious loss of ac-
curacy.

The NeuroAnimator offers an additional bonus which has cru-
cial consequences for animation control: Unlike the map� in the
original dynamical system (1), its neural network approximation is
analytically differentiable. In fact, the derivative of NeuroAnima-
tor state outputs with respect to control and external force inputs is
efficiently computable by applying the chain rule of differentiation.
Easy differentiability enables us to arrive at a remarkably fast gra-
dient descent optimization algorithm to compute optimal or near-
optimal controllers. These controllers produce a series of control
inputsut that enable NeuroAnimators to synthesize motions satis-
fying prescribed constraints on the desired animation. NeuroAni-
mator controllers are equally applicable to controlling the original
physics-based models.

1.2 Related Work

To date, network architectures have found only a few applications
in computer graphics. One application has been the control of an-
imated characters. Ridsdale [14] reports a method for skill acqui-
sition using a connectionist model of skill memory. The sensor-
actuator networks of van de Panne and Fiume [19] are recurrent
networks of units that take sensory information as input and pro-
duce actuator controls as output. Sims [16] employed a network
architecture to structure simple “brains” that control evolved crea-
tures. Our work differs fundamentally from these efforts.

The basis of our approach is related to work presented in the
mainstream neural network literature on connectionist control of
complex systems. Nguyen and Widrow demonstrated the neural
network based approximation and control of a nonlinear kinematic
system in their “truck backer-upper” [12]. More recently, Jordan
and Rumelhart [9] proposed a two step approach to learning con-
trollers for physical robots. In step one, a neural net learns a predic-
tive internal model of the robot, which maps from actions to state
transitions. In step two this forward model is used to learn an in-
verse model that maps from intentions to actions, by training the
inverse model so that it produces an identity transformation in cas-
cade with the established forward model.

Inspired by these results, we exploit neural networks to produce
controlled, physically realistic animation satisfying user-specified
constraints at a fraction of the computational cost of conventional
numerical simulation.

2 Artificial Neural Networks

In this section we define a common type of artificial neural net-
work and describe the backpropagation training algorithm. Neu-

x
p

x
1

x =1
0

w0j

wpj

gΣ
zj yj

1

hidden
layer

output
layer

w
01

wqr

yr

y1

input
layer

vpq

v01

x
p

x
1

x =1
0

(a) (b)

Figure 1: (a) Mathematical model of a neuronj. (b) Three-layer
feedforward neural networkN. Bias units are not shaded.

roAnimator makes use of a neural network simulator calledXerion
which was developed at the University of Toronto and is available
publicly.3 The public availability of software such as Xerion con-
tributes to making our NeuroAnimator approach easily accessible
to the graphics community.

2.1 Neurons and Neural Networks

In mathematical terms, aneuronis an operator that maps<p 7! <.
Referring to Fig. 1(a), neuronj receives a signalzj that is the sum
of p inputsxi scaled by associated connection weightswij :

zj = w0j +

pX
i=1

xiwij =

pX
i=0

xiwij = x
T
wj ; (2)

wherex = [x0; x1; : : : ; xp]
T is the input vector (the superscriptT

denotes transposition),wj = [w0j ; w1j ; : : : ; wpj]
T is the weight

vector of neuronj, andw0j is the bias parameter, which can be
treated as an extra connection with constant unit input,x0 = 1,
as shown in the figure. The neuron outputs a signalyj = g(zj),
whereg is a continuous, monotonic, and often nonlinear activation
function, commonly the logistic sigmoidg(z) = �(z) = 1=(1 +
e�z).

A neural networkis a set of interconnected neurons. In a simple
feedforward neural network, the neurons are organized in layers so
that a neuron in layerl receives inputs only from the neurons in
layer l � 1. The first layer is commonly referred to as the input
layer and the last layer as the output layer. The intermediate layers
are called hidden layers.

Fig. 1(b) shows a fully connected network with only a single
hidden layer. We use this popular type of network in our algorithms.
The hidden and output layers include bias units that group together
the bias parameters of all the neurons in those layers. The input and
output layers use linear activation functions, while the hidden layer
uses the logistic sigmoid activation function. The output of thejth
hidden unit is therefore given byhj = �(

Pp

i=0
xivij).

2.2 Approximation by Learning

We denote a 3-layer feedforward network withp input units,q hid-
den units,r output units, and weight vectorw asN(x;w). It de-
fines a continuous mapN : <p 7! <r. With sufficiently largeq, a
feedforward neural network with this architecture can approximate
as accurately as necessary any continuous map� : <p 7! <r over

3Available fromftp://ftp.cs.toronto.edu/pub/xerion

ou
tp

ut
underfitted

input

overfitted

Figure 2: Depicted in a low-dimensional setting, a neural network
with too few neurons underfits the training data. One with too many
neurons overfits the data. The solid curve represents a properly
chosen network which provides a good compromise between ap-
proximation (fits the training data) and generalization (generates
reasonable output values away from the training examples).

a compact domainx 2 X [3, 8]; i.e., for an arbitrarily small� > 0
there exists a networkN such that

8x 2 X ; e(x;w) = k�(x)�N(x;w)k2 < �; (3)

wheree is the approximation error.
A neural network canlearn an approximation to a map� by

observing training data consisting of input-output pairs that sample
�. The training sequence is a set ofexamples, such that the� th
example comprises the pair�

x� = [x�1 ; x
�
2 ; : : : ; x

�
p]
T ;

y� = �(x�) = [y�1 ; y
�
2 ; : : : ; y

�
r]
T ;

(4)

wherex� is the input vector andy� is the associated desired output
vector. The goal of training is to utilize the examples to find a set
of weightsw for the networkN(x;w) such that, for all inputs
of interest, the difference between the network output and the true
output is sufficiently small, as measured by the approximation error
(3).

Training a neural network to approximate a map is analogous to
fitting a polynomial to data and it suffers from the same problems.
Mainly, a network with two few free parameters (weights) will un-
derfit the data, while a network with too many free parameters will
overfit the data. Fig. 2 depicts these problems in a low-dimensional
setting. To avoid underfitting, we use networks with a sufficient
number of weights. To avoid overfitting, we make sure that we use
sufficient training data. We use 8-10 times as many examples as
there are weights in the network, which seems sufficient to avoid
serious overfitting or underfitting.

2.3 Backpropagation Learning Algorithm

Rumelhart, Hinton and Williams [15] proposed an efficient al-
gorithm for training multi-layer feedforward networks, called the
backpropagation algorithm. The backpropagation algorithm seeks
to minimize the objective function

E(w) =

nX
�=1

e(x� ;w) =

nX
�=1

E� (w) (5)

which sums the approximation errorse from (3) over then training
examples. The off-line training version of the algorithm adjusts the
weights of the network using the gradient descent formula

w
l+1 = w

l + �rwE(wl); (6)

whererwE denotes the gradient of the objective function with
respect to the weights and� < 1 is referred to as thelearning rate.

Σ
+

−

Φ
x τ ()τ

N
N (,)τ

E ()
τ

w

Φ x

x w

Figure 3: The backpropagation algorithm learns a map� by ad-
justing the weightsw of the networkN in order to reduce the dif-
ference between in the network outputN(x� ;w) and the desired
output�(x�). Depicted here is the on-line version of the algorithm
that adjusts the weights of the network after observing each training
example.

An on-line training version of the backpropagation algorithm that
adjusts the weights of the network after each training example is
presented in [15]. Fig. 3 illustrates this process.

Backpropagation refers to the practical, recursive method to cal-
culate the component error derivatives of the gradient term in (6).
Applying the chain rule of differentiation, the backpropagation al-
gorithm first computes the derivatives with respect to weights in the
output layer and chains its way back to the input layer, computing
the derivatives with respect to weights in each hidden layer as it
proceeds.

To improve the learning rate, the gradient descent rule of the
basic backpropagation algorithm (6), which takes a fixed step in
the direction of the gradient, can be replaced by more sophisticated
nonlinear optimization techniques. Line search offers one way to
accelerate the training by searching for the optimal size step in the
gradient direction. Additional performance improvement can be
achieved by taking at each optimization step a direction orthog-
onal to previous directions. This is known as the conjugate gra-
dient method [13]. A simple but effective method for increasing
the learning rate augments the gradient descent update rule with a
momentum term. The momentum method updates the weights as
follows:

�wl+1 = ��wrwE(wl) + �w�w
l; (7)

w
l+1 = w

l + �wl+1; (8)

where the momentum parameter�w must be between 0 and 1. The
neural network simulator Xerion includes the above optimization
techniques and several others. Later in the paper we discuss the
types of optimization methods that we used to train NeuroAnima-
tors and to synthesize controllers.

3 From Physics-Based Models
to NeuroAnimators

In this section we explain the practical application of neural net-
work concepts to the construction and training of different classes
of NeuroAnimators. Among other subjects, this includes network
input/output structure, the use of hierarchical networks to tackle
physics-based models with large state spaces, and strategies for
generating good training datasets. We also discuss the practical
issue of applying the Xerion neural network simulator to train Neu-
roAnimators. Finally, we show sample results demonstrating the
accurate emulation of various dynamic models.

Our task is to construct neural networks that approximate� in
the dynamical system (1). We propose to employ backpropagation
to train feedforward networksN� to predict future states using su-
per timesteps�t = n�t while containing the approximation error
so as not to appreciably degrade the physical realism of the result-
ing animation. Analogous to (1), the basic emulation step is

st+�t = N�[st;ut; ft]: (9)

1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111

111
111
111
111
111
111
111
111
111
111
111
111

88
88
88
88
88
88
88

1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111

1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111

8
8
8
8
8
8
8

...

111
111
111
111
111
111
111
111
111
111
111
111
111
111
111

1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111

88
88
88
88
88
88
88

1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111

1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111

88
88
88
88
88
88
88

...

s

s

s
1

3

M−1

controller

sMs2
sM+1

u1 u2 uM−1 uM

Figure 4: Forward emulation using a neural network. At each itera-
tion, the network output becomes the state input at the next iteration
of the algorithm. Note that the same emulator network is used re-
cursively.

The trained emulator networkN� takes as input the state of the
model, its control inputs, and the external forces acting on it at time
t, and produces as output the state of the model at timet + �t
by evaluating the network. The emulation process is a sequence
of these evaluations. After each evaluation, the network control
and force inputs receive new values, and the network state inputs
receive the emulator outputs from the previous evaluation. Fig. 4
illustrates the emulation process. The figure represents each emu-
lation step by a separate network whose outputs become the inputs
to the next network. In reality, the emulation process employs a
recurrent network whose outputs become inputs for the subsequent
evaluation step.

Since the emulation step is large compared with the physical sim-
ulation step, we often find the sampling rate of the motion trajectory
produced by the emulator too coarse for animation. To avoid mo-
tion artifacts, we resample the motion trajectory at the animation
frame rate, computing intermediate states through linear interpola-
tion of states obtained from the emulation. Linear interpolation pro-
duces satisfactory motion, although a more sophisticated scheme
could improve the result.

3.1 Network Input/Output Structure

The emulator network has a single set of output variables specify-
ing st+�t. The number of input variable sets depends on whether
the physical model is active or passive and the type of forces in-
volved. A dynamical system of the form (1), such as the multi-link
pendulum illustrated in Fig. 5(a), with control inputsu comprising
joint motor torques is known as active, otherwise, it is passive.

Fig. 5(b) illustrates different emulator input/output structures. If
we wish, in the fully general case, to emulate an active model under
the influence of unpredictable applied forces, we employ a full net-
work with three sets of input variables:st, ut, andft, as shown in
the figure. For passive models, the controlut = 0 and the network
simplifies to one with two sets of inputs,st andft.

In the special case when the forcesft are completely determined
by the state of the systemst, we can suppress theft inputs, allow-
ing the network to learn the effects of these forces from the state
transition training data. For example, the active multi-link pendu-
lum illustrated in Fig. 5(a) is under the influence of gravityg and
joint friction forces� . However, since bothg and� are completely
determined byst, they need not be provided as emulator inputs. A
simple emulator with two input setsst andut can learn the response
of the multi-link pendulum to those external forces.

The simplest type of emulator has only a single set of inputs
st. This emulator can approximate passive models acted upon by
deterministic external forces.

2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222

222
222
222
222
222
222
222
222
222
222
222
222
222
222
222

2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222

222
222
222
222
222
222
222
222
222
222
222

2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222

222
222
222
222
222
222
222
222
222
222
222

2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222

222
222
222
222
222
222
222
222
222
222
222

44444444444
44444444444
44444444444

θ ,θ1 1

.

θ ,θ2 2

.

.
0θ ,θ0

 f0

τ +1 u1

τ +0 u0

 f1

τ +2 u2

 f2
g

s t

f t

u t

s t

s t

s t

f t

u t

t+ ts ∆

t+ ts ∆

t+ ts ∆

t+ ts ∆

(a) (b)

Figure 5: Three-link physical pendulum and network emulators. (a)
An active pendulum with joint friction�i, motor torquesui, applied
forcesfi, and gravityg. Without motor torques, the pendulum is
passive. (b) Different types of emulators.

∆NΦ Ty
∆

NΦ

s t

ut

f t
t+ ts ∆

(a)

,
Tx

,
TyNΦ Ty

∆,

NΦ

s t

ut

f t
t+ ts ∆

(b)

,
Tx

,
Ty

s t

ut

f t
t+ ts ∆σNΦTx

σ σTy Ty
∆

NΦ

(c)

Figure 6: Transforming a simple feedforward neural networkN�

into a practical emulator networkN�
� that is easily trained to em-

ulate physics-based models. The following operators perform the
appropriate pre- and post-processing:T0

x transforms inputs to lo-
cal coordinates,T�

x normalizes inputs,T�
y unnormalizes outputs,

T0

y transforms outputs to global coordinates,T�
y converts from a

state change to the next state (see text).

3.2 Input and Output Transformations

The accurate approximation of complex functional mappings using
neural networks can be challenging. We have observed that a simple
feedforward neural network with a single layer of sigmoid units has
difficulty producing an accurate approximation to the dynamics of
physical models. In practice, we often must transform the emulator
to ensure a good approximation of the map�, as we explain next.

A fundamental problem is that the state variables of a dynamical
system can have a large dynamic range (e.g., the position and veloc-
ity of an unconstrained particle can take values from�1 to+1).
A single sigmoid unit is nonlinear only over a small region of its
input space and approximately constant elsewhere. To approximate
a nonlinear map� accurately over a large domain, we would need
to use a neural network with many sigmoid units, each shifted and
scaled so that their nonlinear segments cover different parts of the
domain. The direct approximation of� is therefore impractical.

A successful strategy is to train networks to emulatechangesin
state variables rather than their actual values, since state changes
over small timesteps will have a significantly smaller dynamic
range. Hence, in Fig. 6(a) we restructure our simple networkN�

as a networkN�
� which is trained to emulate the change in the

state vector�st for given state, external force, and control inputs,
followed by an operatorT�

y that computesst+�t = st + �st to
recover the next state.

We can further improve the approximation power of the emula-
tor network by exploiting natural invariances. In particular, note
that the map� is invariant under rotation and translation; i.e., the
state changes are independent of the absolute position and orien-
tation of the physical model relative to the world coordinate sys-
tem. Hence, in Fig. 6(b) we replaceN�

� with an operatorT0

x that
converts the inputs from the world coordinate system to the local
coordinate system of the model, a networkN0

� that is trained to
emulate state changes represented in the local coordinate system,
and an operatorT0

y that converts the output ofN0

� back to world
coordinates.

A final improvement in the ability of the NeuroAnimator to ap-
proximate the map� accrues from the normalization of groups of
input and output variables. Since the values of state, force, and con-
trol variables can deviate significantly, their effect on the network
outputs is uneven, causing problems when large inputs must have a
small influence on outputs. To make inputs contribute more evenly
to the network outputs, we normalize groups of variables so that
they have zero means and unit variances. Appendix A provides the
mathematical details. With normalization, we can furthermore ex-
pect the weights of the trained network to be of order unity and they
can be given a simple random initialization prior to training. Hence,
in Fig. 6(c) we replaceN0

� with an operatorT�
x that normalizes its

inputs, a networkN�
� that assumes zero mean, unit variance inputs

and outputs, and an operatorT�
y that unnormalizes the outputs to

recover their original distributions.
Although the final emulator in Fig. 6(c) is structurally more com-

plex than the standard feedforward neural networkN� that it re-
places, the operators denoted by the letterT are completely deter-
mined by the state of the model and the distribution of the training
data, and the emulator networkN�

� is much easier to train. A more
detailed presentation of the restructured emulator can be found in
[4].

3.3 Hierarchical Networks

As a universal function approximator, a neural network should in
principle be able to approximate the map� in (1) for any dynam-
ical system given enough sigmoid hidden units and training data.
In practice, however, significant performance improvements accrue
from tailoring the neural network to the physics-based model.

In particular, neural networks are susceptible to the “curse of
dimensionality”. The number of neurons needed in hidden layers
and the training data requirements grow quickly with the size of
the network, often making the training of large networks imprac-
tical. We have found it prudent to structure NeuroAnimators for
all but the simplest physics-based models as hierarchies of smaller
networks rather than as large, monolithic networks. The strategy
behind a hierarchical representation is to group state variables ac-
cording to their dependencies and approximate each tightly cou-
pled group with a subnet that takes part of its input from a parent
network.

A natural example of hierarchical networks arises when approx-
imating complex articulated models, such as Hodgins’ mechanical
human runner model [7] which has a tree structure with a torso and
limbs. Rather than collect all of its 30 controlled degrees of free-
dom into a single large network, it is natural to emulate the model
using 5 smaller networks: a torso network plus left and right arm
and leg networks.

Hierarchical representations are also useful when dealing with
deformable models with large state spaces, such as the biomechani-
cal model of a dolphin described in [5] which we use in our experi-
ments. The mass-spring-damper dolphin model (Fig. 7) consists of

1
2

3
4

5
6

Figure 7: Hierarchical state representation for the dolphin mechan-
ical model. Red nodes mark point masses and green nodes mark
numbered local centers of mass. Green lines associate groups of
point masses to their local center.

23 point masses, yielding a state space with23� 3 = 69 positions
and 69 velocities, plus 6 controlled degrees of freedom—one for
each independent actuator. Rather than constructing a monolithic
neural network with69 + 69 = 138 state inputsst and outputs
st+�t, we subdivide hierarchically. A natural subdivision is to rep-
resent each of the 6 body segments as a separate sub-network in the
local center of mass coordinates of the segment, as shown in the
figure.

3.4 Training NeuroAnimators

To arrive at a NeuroAnimator for a given physics-based model,
we train the constituent neural network(s) by invoking the back-
propagation algorithm on training examples generated by simulat-
ing the model. Training requires the generation and processing of
many examples, hence it is typically slow, often requiring several
CPU hours. However, it is important to realize that training takes
place off-line, in advance. Once a NeuroAnimator is trained, it can
be reused readily to produce an infinite variety of fast animations.
Training a NeuroAnimator is quite unlike recording motion capture
data. In fact, the network never observes complete motion trajecto-
ries, only sparse examples of individual state transitions. The im-
portant point is that by generalizing from the sparse examples that
it has learned, a trained NeuroAnimator will produce an infinite va-
riety of extended, continuous animations that it has never seen.

More specifically, each training example consists of an input vec-
tor x and an output vectory. In the general case, the input vector
x = [sT0 ; f

T
0 ;u

T
0]

T comprises the state of the model, the external
forces, and the control inputs at timet = 0. The output vector
y = s�t is the state of the model at timet = �t, where�t is the
duration of the super timestep. To generate each training example,
we would start the numerical simulator of the physics-based model
with the initial conditionss0, f0, andu0, and run the dynamic sim-
ulation forn numerical time steps�t such that�t = n�t. In princi-
ple, we could generate an arbitrarily large set of training examples
fx� ;y�g, � = 1; 2; : : :, by repeating this process with different
initial conditions.

The initial conditions can be sampled at random among all valid
state, external force, and control combinations. To learn a good
neural network approximationN� of the map� in (1), we would
like ideally to sample� as uniformly as possible over its domain.
Unfortunately, for most physics-based models of interest, the do-
main has high dimensionality, often making a uniform sampling
impractical. However, we can make the best use of computational
resources by concentrating them on sampling those state, force, and
control inputs that typically occur as a physics-based model is used
in practice.

Fig. 8 illustrates an effective sampling strategy using the dy-
namic dolphin model as an example. We simulate the model over an
extended period of time with a fixed timestep�t. During the simula-
tion, we apply typical control inputs to the model. For the dolphin,
the control inputs are coordinated muscle actions that produce loco-
motion. At well-separated timest = tk during the simulation, we

t2 t3 t4 t5t1
t + t2 t + t3 t + t4t + t1

t + t5∆ ∆ ∆ ∆ ∆

u1

u2

u3

Figure 8: An effective state transition sampling strategy illustrated
using the dynamic dolphin model. The dynamic model is simulated
numerically with typical control input functionsu. For each train-
ing example generated, the blue model represents the input state
(and/or control and external forces) at timetk, while the red model
represents the output state at timetk + �t. The long time lag en-
forced between samples reduces the correlation of the training ex-
amples that are produced.

,
Tx

,s t

ut

f t
t+ ts ∆σNΦTx

σ

NΦ

σTy
−1() Ty()−1

Ty
∆()−1

Figure 9: Transforming the training data for consumption by the
networkN�

� in Fig. 6(c). The inputs of the training set are trans-
formed through the operators on the input side of the network in
Fig. 6(c). The outputs of the training set are transformed through
the inverses of the operators at the output side of the network in
Fig. 6(c).

record a set of training examplesf[sTtk ; f
T
tk
;uTtk]

T ; stk+�tg, k =
1; 2; : : : The lag between successive samples is drawn randomly
from a uniform distribution over the interval�t � (tk+1 � tk) �
5�t. The considerable separation of successive samples in time
helps reduce the correlation of the training data, improving learn-
ing. Furthermore, we randomize the order of the training samples
before starting the backpropagation training algorithm. Clearly, the
network observes many independent examples of typical state tran-
sitions, rather than any continuous motion.

3.5 Network Training in Xerion

As mentioned earlier, to train the emulator shown in Fig. 6(c) we
need only train the networkN�

� because the operators denoted by
the letterT are predetermined. As shown in Fig. 9, before present-
ing the training data to the networkN�

�, we transform the inputs
of the training set through the operatorsT0

x andT�
x and transform

the associated outputs through the operators(T�
y)

�1, (T0

y)
�1, and

(T�
�)

�1 which are the inverses of the corresponding operators used
during the forward emulation step shown in Fig. 6(c).

We begin the off-line training process by initializing the weights
of N�

� to random values from a uniform distribution in the range
[0; 1] (due to the normalization of inputs and outputs). Xerion auto-
matically terminates the backpropagation learning algorithm when
it can no longer reduce the network approximation error (3) signif-
icantly.

We use the conjugate gradient method to train networks of small
and moderate size. This method converges faster than gradient

Model State Force Control Hidden State Training
Description Inputs Inputs Inputs Units Outputs Examples
Pendulum
passive 6 — — 20 6 2,400
active 6 — 3 20 6 3,000
ext. force 6 3 3 20 6 3,000
Lander 13 — 4 50 13 13,500
Truck 6 — 2 40 6 5,200
Dolphin
global net 78 — 6 50 78 64,000
local net 72 — 6 40 36 32,000

Table 1: Structure of the NeuroAnimators used in our experiments.
Columns 2, 3, and 4 indicate the input groups of the emulator, col-
umn 4 indicates the number of hidden units, and column 5 indicates
the number of outputs. The final column shows the size of the data
set used to train the model. The dolphin NeuroAnimator includes
six local nets, one for each body segment.

descent, but the efficiency becomes less significant when training
large networks. Since this technique works in batch mode, as the
number of training examples grows, the weight updates become too
time consuming. For this reason, we use gradient descent with the
momentum term (7–8) when training large networks. We divide the
training examples into small sets, calledmini-batches, each con-
sisting of approximately 30 uncorrelated examples, and update the
network weights after processing each mini-batch.

Appendix B contains an example Xerion script which specifies
and trains a NeuroAnimator.

3.6 Example NeuroAnimators

We have successfully constructed and trained several NeuroAnima-
tors to emulate a variety of physics-based models, including the
3-link pendulum from Fig. 5(a), a lunar lander spacecraft, a truck,
and the dolphin model from Fig. 7. We used SD/FAST4 to simu-
late the dynamics of the rigid body and articulated models, and we
employ the simulator developed in [18] to simulate the deformable-
body dynamics of the dolphin. Fig. 10 shows rendered stills from
animations created using NeuroAnimators trained with these mod-
els.

Table 1 summarizes the structures of the NeuroAnimators devel-
oped to emulate these models (note that for the hierarchical dolphin
NeuroAnimator, the table indicates the dimensions for only one of
its six sub-networks; the other five are similar). In our experiments
we have not attempted to minimize the number of network weights
required for successful training. We have also not tried to minimize
the number of hidden units, but rather used enough units to obtain
networks that generalize well while not overfitting the training data.
We can always expect to be able to satisfy these guidelines in view
of our ability to generate sufficient training data. Section 5 will
present a detailed analysis of our results, including performance
benchmarks indicating that the neural network emulators can yield
physically realistic animation one or two orders of magnitude faster
than conventional numerical simulation of the associated physics-
based models.

4 NeuroAnimator Controller Synthesis

We have demonstrated that it is possible to emulate a dynamical
system using a trained neural network. We turn next to the prob-
lem of control; i.e., producing physically realistic animation that
satisfies goals specified by the animator.

4SD/FAST is a commercial system for simulating rigid body dynamics,
available from Symbolic Dynamics, Inc.

Figure 10: NeuroAnimators used in our experiments. The image at the upper left shows the emulator of a physics-based model of a planar
multi-link pendulum suspended in gravity, subject to joint friction forces, external forces applied on the links, and controlled by independent
motor torques at each of the three joints. The image at the upper right shows the emulator of a physics-based model of a truck implemented as
a rigid body, subject to friction forces where the tires contact the ground, controlled by rear-wheel drive (forward and reverse) and steerable
front wheels. The image at the lower left shows the emulator of a physics-based model of a lunar lander, implemented as a rigid body subject
to gravitational forces and controlled by a main rocket thruster and three independent attitude jets. The image at the lower right shows the
emulator of a physics-based deformable (mass-spring-damper) model of a dolphin capable of locomoting via the coordinated contraction of
6 independently controlled muscle actuators which deform its body, producing hydrodynamic propulsion forces.

4.1 Motivation

A popular approach to the animation control problem iscontroller
synthesis[11, 19, 5]. Controller synthesis is a generate-and-test
strategy. Through repeated forward simulation of the physics-based
model, controller synthesis optimizes a control objective function
that measures the degree to which the animation generated by the
controlled physical model achieves the desired goals. Each simula-
tion is followed by an evaluation of the motion through the function,
thus guiding the search.

While the controller synthesis technique readily handles the
complex optimal control problems characteristic of physics-based
animation, it is computationally very costly. Evaluation of the
objective function requires a forward simulation of the dynamic
model, often subject to complex applied forces and constraints.
Hence the function is almost never analytically differentiable,
prompting the application of non-gradient optimization methods
such as simulated annealing [19, 5] and genetic algorithms [11].
In general, since gradient-free optimization methods perform es-
sentially a random walk through the huge search space of possible
controllers, computing many dynamic simulations before finding a
good solution, they generally converge slowly compared to opti-
mization methods guided by gradient directions.

The NeuroAnimator enables a novel, highly efficient approach
to controller synthesis. Outstanding efficiency results not only be-
cause of fast controller evaluation through NeuroAnimator emula-
tion of the dynamics of the physical model. To a large degree it also

stems from the fact that we can exploit the neural network approxi-
mation in the trained NeuroAnimator to compute partial derivatives
of output states with respect to control inputs. This enables the
computation of a gradient, hence the use of fast gradient-based op-
timization for controller synthesis.

In the remainder of this section, we first describe the objective
function and its discrete approximation. We then propose an effi-
cient gradient based optimization procedure that computes deriva-
tives of the objective function with respect to the control inputs
through a backpropagation algorithm.

4.2 Objective Function and Optimization

Using (9) we write a sequence of emulation steps

si+1 = N�[si;ui; fi]; 1 � i �M; (10)

wherei indexes the emulation step, andsi, ui and fi denote, re-
spectively, the state, control inputs and external forces in theith
step. Figure 4 illustrates forward emulation by the NeuroAnimator
according to this index notation.

Following the control learning formulation in [5], we define a
discrete objective function

J(u) = �uJu(u) + �sJs(s); (11)

a weighted sum (with scalar weights�u and�s) of a termJu that
evaluates the controlleru = [u1;u2; : : : ;uM] and a termJs that

evaluates the motions = [s1; s2; : : : ; sM+1] produced by the Neu-
roAnimator usingu, according to (10). Via the controller evalua-
tion termJu, we may wish to promote a preference for controllers
with certain desirable qualities, such as smooth lower amplitude
controllers. The distinction between good and bad control func-
tions also depends on the goals that the animation must satisfy. In
our applications, we used trajectory criteriaJs such as the final
distance to the goal, the deviation from a desired speed, etc. The
objective function provides a quantitative measure of the progress
of the controller learning process, with larger values ofJ indicating
better controllers.

A typical objective function used in our experiments seeks an
efficient controller that leaves the model in some desired statesd at
the end of simulation. Mathematically, this is expressed as

J(u) =
�u
2

MX
i=1

u
2
i +

�s
2
(sM+1 � sd)

2; (12)

where the first term maximizes the efficiency of the controller and
the second term constrains the final state of the model at the end of
the animation.

4.3 Backpropagation Through Time

Assuming a trained NeuroAnimator with a set of fixed weights, the
essence of our control learning algorithm is to iteratively update the
control parametersu so as to maximize the objective functionJ in
(11). As mentioned earlier, we exploit the NeuroAnimator structure
to arrive at an efficient gradient descent optimizer:

u
l+1 = u

l + �xruJ(u
l); (13)

wherel denotes the iteration of the minimization step, and the con-
stant�x is the learning rate parameter.

At each iteration l, the algorithm first emulates the for-
ward dynamics according to (10) using the control inputs
ul = [ul1;u

l
2; : : : ;u

l
M] to yield the motion sequencesl =

[sl1; s
l
2; : : : ; s

l
M+1], as is illustrated in Fig. 4. Next, it computes

the components ofruJ in (13) in an efficient manner. The cascade
network structure enables us to apply the chain rule of differen-
tiation within each network, chaining backwards across networks,
yielding a variant of the backpropagation algorithm calledback-
propagation through time[15]. Instead of adjusting weights as in
normal backpropagation, however, the algorithm adjusts neuronal
inputs, specifically, the control inputs. It thus proceeds in reverse
through the network cascade computing components of the gradi-
ent. Fig. 11 illustrates the backpropagation through time process,
showing the sequentially computed controller updates�uM to �u0.

The forward emulation and control adjustment steps are repeated
for each iteration of (13), quickly yielding a good controller. The
efficiency stems from two factors. First, each NeuroAnimator em-
ulation of the physics-based model consumes only a fraction of
the time it would take to numerically simulate the model. Second,
quick gradient descent towards an optimum is possible because the
trained NeuroAnimator provides a gradient direction.

The control algorithm based on the differentiation of the em-
ulator of the forward model has important advantages. First, the
backpropagation through time can solve fairly complex sequential
decision problems where early decisions can have substantial ef-
fects on the final results. Second, the algorithm can be applied to
dynamic environments with changing control objectives since it re-
learns very quickly.

More efficient optimization techniques can be applied to improve
a slow convergence rate of the gradient descent algorithm (13).
Adding momentum (7–8) to the gradient descent rule improves the

1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111

1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111

88
88
88
88
88
88
88

111
111
111
111
111
111
111
111
111
111
111
111
111
111
111

1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111

88
88
88
88
88
88
88

...

111
111
111
111
111
111
111
111
111
111
111
111
111
111
111

1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111

88
88
88
88
88
88
88
88

1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111

111
111
111
111
111
111
111
111
111
111
111
111

88
88
88
88
88
88
88
88...

sM−1

sM+1s3

s2
s1

δ

δ

δ
δ

δ

controller

sMδ

u1δ u2δ uM−1δ uMδ

Figure 11: The backpropagation through time algorithm. At each
iteration the algorithm computes the derivatives of the objective
function with respect to the inputs of the emulator using the chain
rule and it adjusts the control inputs to decrease the value of the
objective function.

effective learning:

�ul+1 = �xruJ(u
l) + �x�u

l; (14)

u
l+1 = u

l + �ul+1; (15)

where�x is the momentum parameter used to update the inputs,
and l is the iteration of the minimization step. Learning with the
momentum term is very fast. Section 6 includes a performance
comparison of the different optimization techniques.

Up to now we have assumed that the objective is a known ana-
lytic function of the states and the controls of the model, as in (11).
Although this definition covers a wide range of practical problems,
our approach to control learning can handle objective functions
whose analytic form is unknown in advance. See [4] for further
discussion.

An additional advantage of our approach is that once an optimal
controller has been computed, it can be applied to control either the
NeuroAnimator emulator or to the original physical model, yielding
animations that in most cases differ only minimally.

5 NeuroAnimator Synthesis Results

As we discussed earlier, we have successfully constructed and
trained several NeuroAnimators to emulate a variety of physics-
based models pictured in Fig. 10. The ensuing discussion presents
performance benchmarks and an error analysis.

5.1 Performance Benchmarks

An important advantage of using neural networks to emulate dy-
namical systems is the speed at which they can be iterated to pro-
duce animation. Since the emulator for a dynamical system with
the state vector of sizeN never uses more thanO(N) hidden units,
it can be evaluated using onlyO(N2) operations. Appendix C con-
tains the computer code for the forward step. By comparison, a sin-
gle simulation timestep using an implicit time integration scheme
requiresO(N3) operations. Moreover, a forward pass through the
neural network is often equivalent to as many as 50 physical simu-
lation steps, so the efficiency is even more dramatic, yielding per-
formance improvements up to two orders of magnitude faster than
the physical simulator.

In the remainder of this section we useNn
� to denote a neural

network model that was trained with super timestep�t = n�t.
Table 2 compares the physical simulation times obtained using the

Model Physical N
25

�
N
50

�
N
100

�
N
50

�
with

Description Simulation Regularization
Passive Pendulum 4.70 0.10 0.05 0.02 —
Active Pendulum 4.52 0.12 0.06 0.03 —
Truck 4.88 — 0.07 — —
Lunar Lander 6.44 — 0.12 — —
Dolphin 63.00 — 0.95 — 2.48

Table 2: Comparison of simulation time between the physical sim-
ulator and different neural network emulators. The duration of each
test was 20,000 physical simulation timesteps.

SD/FAST physical simulator and 3 different neural network mod-
els: N25

� , N50
� , andN100

� . For the truck model and the lunar lan-
der model, we have trained onlyN50

� emulators. The neural net-
work model that predicts over 100 physical simulation steps offers
a speedup of anywhere between 50 and 100 times depending on the
type of physical model.

5.2 Approximation Error

As Fig. 12 shows, an interesting property of the neural network em-
ulation is that the error does not increase appreciably for emulators
with increasingly larger super timesteps; i.e., in the graphs, the error
over time forN25

� , N50
� , andN100

� is nearly constant. This is at-
tributable to the fact that an emulator that can predict further into the
future must be iterated fewer steps per given interval of animation
than an emulator that cannot predict so far ahead. Thus, although
the error per iteration may be higher for the longer-range emula-
tor, the growth of the error over time can remain nearly the same
for both the longer and shorter range predictors. This means that
the only penalty for using emulators that predict far ahead might be
a loss of detail (high frequency components in the motion) due to
coarse sampling. However, we did not observe this effect for the
physical models with which we experimented, suggesting that the
physical systems are locally smooth. Of course, it is not possible
to increase the neural network prediction time indefinitely, because
eventually the network will no longer be able to approximate the
physical system at all adequately.

Although it is hard to totally eliminate error, we noticed that
the approximation error remained within reasonable bounds for the
purposes of computer animation. The neural network emulation
appears comparable to the physical simulation, and although the
emulated trajectory differs slightly from the trajectory produced by
the physical simulator, the emulator reproduces all of the visually
salient properties of the physical motion.

5.3 Regularization of Deformable Models

When emulating spring-mass systems in which the degrees of free-
dom are subject to soft constraints, we discovered that the mod-
est approximation error of even a well-trained emulator network
can accumulate as the network is applied repeatedly to generate
a lengthy animation. Unlike an articulated system whose state is
represented by joint angles and hence is kinematically constrained
to maintain its connectivity, the emulation of mass-spring systems
can result in some unnatural deformations after many (hundreds or
thousands) emulation steps. Accumulated error can be annihilated
by periodically performing regularization steps through the applica-
tion of the true dynamical system (1) using an inexpensive, explicit
Euler time-integration step

vt+�t = vt + �td(st);

xt+�t = xt + �tvt+�t;

where the state isst = [vTt ;x
T
t]

T andd(st) are the deformation
forces generated by the springs at timet. It is important to note that

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

0.25
passive−kinematic chain

time [s]

e(
x)

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

0.25
active−kinematic chain

time [s]

e(
x)

(a) (b)

Figure 12: The errore(x) in the state estimation incurred by differ-
ent neural network emulators, measured as the absolute difference
between the state variables of the emulator and the associated phys-
ical model. Plot (a) compares the approximation error for the pas-
sive pendulum for 3 different emulator networks:N25

� (solid),N50
�

(dashed),N100
� (dot-dashed). Plot (b) shows the same comparison

for the active pendulum. All experiments show the averaged error
over 30 simulation trials and over all state variables. The duration
of each trial was 6000 physical simulation timesteps.

this inexpensive, explicit Euler step is adequate as a regularizer,
but it is impractical for long-term physical simulation because of
its inherent instability. To improve the stability when applying the
explicit Euler step, we used a smaller spring stiffness and larger
damping factor when compared to the semi-implicit Euler step used
during the numerical simulation [18]. Otherwise the system would
oscillate too much or would simply become unstable.

We achieve the best results when performing a few regularization
steps after each emulation step. This produces much smoother mo-
tion than performing more regularization step but less frequently.
Referring to Table 2 for the case of the deformable dolphin model,
the second column indicates the simulation time using the physical
simulator described in [18], the fourth column shows the simulation
time using theN50

� emulator, and the last column reveals the impact
of regularization on the emulation time. In this case, each emulation
step includes 5 iterations of the above explicit Euler regularizer.

6 Control Learning Results

We have successfully applied our backpropagation through time
controller learning algorithm to the NeuroAnimators presented in
Section 5. We find the technique very effective—it routinely com-
putes solutions to non-trivial control problems in just a few itera-
tions. The efficiency of the fast convergence rate is further ampli-
fied by the replacement of costly physical simulation with much
faster NeuroAnimator emulation. These two factors yield outstand-
ing speedups, as we report below.

Fig. 13(a) shows the progress of the control learning algorithm
for the 3-link pendulum. The purple pendulum, animated by a Neu-
roAnimator, is given the goal to end the animation with zero veloc-
ity in the position indicated in green. We make the learning prob-
lem very challenging by setting a low upper limit on the internal
motor torques of the pendulum, so that it cannot reach its target
in one shot, but must swing back and forth to gain the momentum
necessary to reach the goal state. Our algorithm takes 20 backprop-
agation through time iterations to learn a successful controller.

Fig. 13(b) shows the truck NeuroAnimator learning to park. The
translucent truck in the background indicates the desired position
and orientation of the model at the end of the simulation. The Neu-
roAnimator produces a parking controller in 15 learning iterations.

Fig. 13(c) shows the lunar lander NeuroAnimator learning a soft
landing maneuver. The translucent lander resting on the surface in-

dicates the desired position and orientation of the model at the end
of the animation. An additional constraint is that the descent veloc-
ity prior to landing should be small in order to land softly. A suc-
cessful landing controller was computed in 15 learning iterations.

Fig. 13(d) shows the dolphin NeuroAnimator learning to swim
forward. The simple objective of moving as far forward as possible
produces a natural, sinusoidal swimming pattern.

All trained controllers have a duration of 20 seconds of anima-
tion time; i.e., they take the equivalent of 2,000 physical simula-
tion timesteps, or 40 emulator super-timesteps usingN50

� emulator.
The number of control variables (M in u = [u1;u2; : : : ;uM]) op-
timized varies: the pendulum optimizes 60 variables, 20 for each
actuator; the lunar lander optimizes 80 variables, 20 for the main
thruster, and 20 for each of the 3 attitude thrusters; the truck op-
timizes 40 variables—20 for acceleration/deceleration, and 20 for
the rate of turning; finally, the dolphin optimizes 60 variables—one
variable for every 2 emulator steps for each of the 6 muscle actua-
tors.

Referring to the locomotion learning problem studied in [5], we
next compare the efficiency of our new backpropagation through
time control learning algorithm using NeuroAnimators and the
undirected search techniques—simulated annealing and simplex—
reported in [5]. The locomotion learning problem requires the dol-
phin to learn how to actuate its 6 independent muscles over time
in order to swim forward as efficiently as possible, as defined by an
objective function that includes actuator work and distance traveled.
Our earlier techniques take from 500 to 3500 learning iterations to
converge because they need to perform extensive sampling of the
control space in the absence of gradient information. By contrast,
the gradient directed algorithm converges to a similar solution in as
little as 20 learning iterations. Thus, the use of the neural network
emulator offers a two orders of magnitude reduction in the number
of iterations and a two orders of magnitude reduction in the exe-
cution time of each learning iteration. In terms of actual running
times, the synthesis of the swimming controller which took more
than 1 hour using the technique in [5] now takes less than 10 sec-
onds on the same computer.

Hierarchically structured emulators, in which a global network
represents the global aspects of motion and a set of sub-networks
refine the motion produced by the global network, enable us to en-
hance the performance of our controller learning algorithm. For
example, when applying the dolphin NeuroAnimator to learn loco-
motion controllers, we improve efficiency by employing only the
global deformation network which accounts for the deformation
of the entire body and suppressing the sub-networks that account
for the local deformation of each body segment relative to its own
center-of-mass coordinate system, since these small deformations
do not significantly impact the locomotion. Similarly for a hierar-
chical human NeuroAnimator, when learning a controller that uses
a subset of joints, we need only activate the sub-networks that rep-
resent the active joints.

We next compare the convergence of simple gradient descent and
gradient descent with the momentum term on the control synthesis
problem. Fig. 14 illustrates the progress of learning for the lunar
lander problem. The results obtained using the momentum term are
shown in the plot on the left and were generated using the param-
eters�x = 1:5, �x = 0:5 in (14). The results obtained using the
simple gradient descent are shown in the plot on the right and were
generated using�x = 1:0 in (13)—the largest learning rate that
would converge. Clearly, the momentum term decreases the error
much more rapidly, yielding an improved learning rate.

7 Conclusion

We have introduced the NeuroAnimator, an efficient alternative to
the conventional approach of producing physically realistic anima-

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20

ob
je

ct
iv

e
fu

nc
tio

n

function evaluations

backpropagation through time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20

ob
je

ct
iv

e
fu

nc
tio

n

function evaluations

backpropagation through time

(a) (b)

Figure 14: The plots show the value of the objective as a function
of the iteration of the control learning algorithm. The plot on the
left was produced using the momentum term. It converges faster
than simple gradient descent plotted on the right.

tion through numerical simulation. NeuroAnimator involves the
learning of neural network emulators of physics-based models by
observing the dynamic state transitions produced by such models
in action. The training takes place off-line and in advance. Anima-
tions subsequently produced by a trained NeuroAnimator approxi-
mate physical dynamics with dramatic efficiency, yet without seri-
ous loss of apparent fidelity. We have demonstrated the practicality
of our technique by constructing NeuroAnimators for a variety of
nontrivial physics-based models. Our unusual approach to physics-
based animation furthermore led us to a novel controller synthesis
method which exploits fast emulation and the differentiability of
the NeuroAnimator approximation. We presented a “backpropaga-
tion through time” learning algorithm which computes controllers
that satisfy nontrivial animation goals. Our new control learning
algorithm is orders of magnitude faster than prior algorithms.

Acknowledgments

We thank Zoubin Ghahramani for valuable discussions that led to
the idea of the rotation and translation invariant emulator, which
was crucial to the success of this work. We are indebted to Steve
Hunt for procuring the equipment that we needed to carry out our
research at Intel. We thank Sonja Jeter for her assistance with the
Viewpoint models and Mike Gendimenico for setting up the video
editing suite and helping us to use it. We thank John Funge and
Michiel van de Panne for their assistance in producing animations,
Mike Revow and Drew van Camp for assistance with Xerion, and
Alexander Reshetov for his valuable suggestions about building
physical models.

A Normalizing Network Inputs & Outputs

In Section 3.2 we recommended the normalization of emulator in-
puts and outputs. Variables in different groups (state, force, or con-
trol) require independent normalization. We normalize each vari-
able so that it has zero mean and unit variance as follows:

~xnk =
xnk � �xi

�xi
; (16)

where the mean of theith group of inputs is

�xi =
1

NK

NX
n=1

ki+KiX
k=ki

xnk ; (17)

and its variance is

�xi =
1

(N � 1)(K � 1)

NX
n=1

ki+KiX
k=ki

(xnk � �i)
2: (18)

(a) (b) (c) (d)

Figure 13: Results of applying the control learning algorithm to four different NeuroAnimators. (a) The 3-link pendulum NeuroAnimator
in purple must reach the state indicated in green with zero final velocity. (b) The truck NeuroAnimator learning to park in the position and
orientation of the translucent vehicle in the background. (c) The lunar lander NeuroAnimator learning to land with low descent velocity in
the position and orientation of the translucent vehicle on the surface. (d) The dolphin NeuroAnimator learning to swim. The objective of
locomoting as far forward as possible produces a natural, periodic swimming pattern.

Heren = 1; : : : ; N indexes the training example,k = ki; : : : ; ki+
Ki indexes the variables in groupi,Ki represents the size of group
i, andxnk denotes thekth input variable for thenth training ex-
ample. A similar set of equations computes the means�yj and the
variances�yj for the output layer of the network:

~ynk =
ynk � �yj

�yj
: (19)

B Example Xerion Script

The following is a Xerion script that specifies and trains the network
N�
� used to build the NeuroAnimator for the lunar lander model.

#! /u/xerion/uts/bin/bp_sh

The network has 13 inputs, 50 hidden units, and
13 outputs. The hidden layer uses the logistic
sigmoid as the activation function (default).
uts_simpleNet landerNet 13 50 13
bp_groupType landerNet.Hidden {HIDDEN DPROD LOGISTIC}

Initialize the example set. Read
the training data from a file.
set trainSet "landerNet.data"
uts_exampleSet $trainSet
uts_loadExamples $trainSet landerNet.data

Randomize the weights in the network.
random seed 3
uts_randomizeNet landerNet

Initialize the minimizer and tell it to use
the network and the training set defined above.
bp_netMinimizer mz
mz configure -net landerNet -exampleSet trainSet

Start the training and save the weights
of the network after the training is finished.
mz run
uts_saveWeights landerNet landerNet.weights

C Forward Pass Through the Network

The following is a C++ function for calculating the outputs of a neu-
ral network from the inputs. It implements the core loop that takes a
single super timestep in an animation sequence with a trained Neu-
roAnimator.

BasicNet::forwardStep(void)
{

int i,j,k;

double *input = inputLayer.units;
double *hidden = hiddenLayer.units;
double *output = outputLayer.units;
double **ww = inputHiddenWeights;
double **vv = hiddenOutputWeights;

// compute the activity of the hidden layer
for (j=0;j<hiddenSize;j++) {

hidden[j] = biasHiddenWeights[j];
for (k=0;k<inputSize;k++)

hidden[j] += input[k]*ww[k][j];
hidden[j]=hiddenLayer.transFunc(hidden[j]);

}

// compute the activity of the output layer
for (i=0;i<outputSize;i++) {

output[i] = biasOutputWeights[i];

for (j=0;j<hiddenSize;j++)
output[i] += hidden[j]*vv[j][i];

output[i]=outputLayer.transFunc(output[i]);
}

}

References

[1] David Baraff. Analytical methods for dynamic simulation of non-penetrating
rigid bodies. In Jeffrey Lane, editor,Computer Graphics (SIGGRAPH ’89 Pro-
ceedings), volume 23, pages 223–232, July 1989.

[2] C. M. Bishop.Neural Networks for Pattern Recognition. Clarendon Press, 1995.
[3] G. Cybenko. Approximation by superposition of sigmoidal function.Mathemat-

ics of Control Signals and Systems, 2(4):303–314, 1989.
[4] R. Grzeszczuk.NeuroAnimator: Fast Neural Network Emulation and Control of

Physics-Based Models. PhD thesis, Department of Computer Science, University
of Toronto, May 1998.

[5] Radek Grzeszczuk and Demetri Terzopoulos. Automated learning of Muscle-
Actuated locomotion through control abstraction. In Robert Cook, editor,SIG-
GRAPH 95 Conference Proceedings, Annual Conference Series, pages 63–70.
ACM SIGGRAPH, Addison Wesley, August 1995. held in Los Angeles, Cali-
fornia, 06-11 August 1995.

[6] James K. Hahn. Realistic animation of rigid bodies. In John Dill, editor,Com-
puter Graphics (SIGGRAPH ’88 Proceedings), volume 22, pages 299–308, Au-
gust 1988.

[7] Jessica K. Hodgins, Wayne L. Wooten, David C. Brogan, and James F. O’Brien.
Animating human athletics. In Robert Cook, editor,SIGGRAPH 95 Conference
Proceedings, Annual Conference Series, pages 71–78. ACM SIGGRAPH, Addi-
son Wesley, August 1995. held in Los Angeles, California, 06-11 August 1995.

[8] K. Hornik, M. Stinchcomb, and H. White. Multilayer feedforward networks are
universal approximators.Neural Networks, 2:359–366, 1989.

[9] M. I. Jordan and D. E. Rumelhart. Supervised learning with a distal teacher.
Cognitive Science, 16:307–354, 1992.

[10] Gavin S. P. Miller. The motion dynamics of snakes and worms. In John Dill,
editor, Computer Graphics (SIGGRAPH ’88 Proceedings), volume 22, pages
169–178, August 1988.

[11] J. Thomas Ngo and Joe Marks. Spacetime constraints revisited. In James T.
Kajiya, editor,Computer Graphics (SIGGRAPH ’93 Proceedings), volume 27,
pages 343–350, August 1993.

[12] D. Nguyen and B. Widrow. The truck backer-upper: An example of self-learning
in neural networks. InProceedings of the International Joint Conference on
Neural Networks, volume 2, pages 357–363. IEEE Press, 1989.

[13] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.Numerical
Recipes: The Art of Scientific Computing, Second Edition. Cambridge University
Press, 1992.

[14] G. Ridsdale. Connectionist modeling of skill dynamics.Journal of Visualization
and Computer Animation, 1(2):66–72, 1990.

[15] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal represen-
tations by error backpropagation. In D. E. Rumelhart, J. L. McCleland, and the
PDP Research Group, editors,Parallel Distributed Processing: Explorations in
the Microstructure of Cognition, volume 1, pages 318–362. MIT Press, 1986.

[16] Karl Sims. Evolving virtual creatures. In Andrew Glassner, editor,Proceedings
of SIGGRAPH ’94 (Orlando, Florida, July 24–29, 1994), Computer Graphics
Proceedings, Annual Conference Series, pages 15–22. ACM SIGGRAPH, ACM
Press, July 1994. ISBN 0-89791-667-0.

[17] Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. Elastically de-
formable models. In Maureen C. Stone, editor,Computer Graphics (SIGGRAPH
’87 Proceedings), volume 21, pages 205–214, July 1987.

[18] Xiaoyuan Tu and Demetri Terzopoulos. Artificial fishes: Physics, locomotion,
perception, behavior. In Andrew Glassner, editor,Proceedings of SIGGRAPH
’94 (Orlando, Florida, July 24–29, 1994), Computer Graphics Proceedings, An-
nual Conference Series, pages 43–50. ACM SIGGRAPH, ACM Press, July 1994.
ISBN 0-89791-667-0.

[19] Michiel van de Panne and Eugene Fiume. Sensor-actuator networks. In James T.
Kajiya, editor,Computer Graphics (SIGGRAPH ’93 Proceedings), volume 27,
pages 335–342, August 1993.

