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1 Introduction

This paper concerns the analysis of multi-view imagery in order to obtain a scene de-

scription and, speci�cally, the correspondence problem that occurs in this analysis. The

required scene description in this case consists of the classes of the objects present in the

scene and their parameters: position, size and orientation. The images are aerial pho-

tographs and the objects in the images are man-made objects, such as buildings, roads

etc. The goal of the complete system is the fully automatic analysis of aerial photographs

of urban areas. The output of the system is a scene description that can be used to gener-

ate or update a GIS (Geo Information System). Up to now a system has been developed

that performs this analysis on a single image [2, 3]. The advantage of using multi-view

imagery compared to using single images is that (partly) occluded buildings may still

be recognized, because they can be more clearly visible in other images acquired from

a di�erent viewpoint. However, the use of multi-view imagery complicates the analysis,

because the objects in the di�erent images have to be corresponded to each other. In this

paper a solution to this correspondence problem is presented on object hypothesis level.

First the image analysis system for single images is described in short. Then the system

is extended for multiple images and the method for corresponding object hypotheses is

presented. Finally, experiments and conclusions are given.

2 The analysis system for single images

The basic setup of the single image analysis system is shown in �gure 1. The segmentation

process consists of a segmentation based on region growing, followed by a shape-based

segmentation correction process [4], which results in well de�ned segments. These segments

are fed into the hypothesis generation stage [5], which generates hypotheses of the classes

of objects (in our case di�erent types of buildings) and a rough estimate of the parameters

(size, position, orientation). The hypothesis generation uses so-called aspects [6], or views
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Figure 1: Basic setup of the single image analysis system

of the objects, which are stored in an object model database. It applies a relaxation

procedure to obtain the most likely object, i.e. the object of which a certain aspect matches

a combination of segments best. The hypotheses are fed to the parameter estimation stage,

where, based on the object hypothesis and the rough parameter estimates, the parameters

of the objects are estimated [1]. For this estimation procedure an iterative estimator,

based on a Gauss-Newton optimisation procedure, is used which optimises the match

between the object model and the segmented image by varying the object parameters.

The optimisation procedure is performed for each object separately. The �nal stage is the

veri�cation stage, where the residue obtained from the optimisation process is compared

with a certain threshold, to determine whether the initial hypothesis is acceptable. The

output of the analysis consists of the accepted hypotheses.

3 Extension to multi-view imagery

The analysis on a single image has as a major disadvantage that buildings that are oc-

cluded by other buildings cannot be recognised well (depending on how much of a building

is occluded, partly occluded buildings can sometimes be recognised though.) By using mul-

tiple images, acquired from di�erent viewpoints, this problem can be circumvented. The

use of multiple images results in more hypotheses which may refer to the same object.

Therefore, a processing stage is required to determine which hypotheses possibly refer to

the same object. In our approach, each image is handled separately up to and including

the hypothesis generation step in �gure 1. After this step, a hypothesis correspondence

stage has been introduced to compare the hypotheses found in one image to hypotheses

found in the other images, and to �nd out which of the hypotheses correspond to the same

object. There is another problem, related to the correspondence problem. The parameter

estimation process can be obscured if in an image buildings occlude each other. The esti-

mation of parameters of buildings that occlude each other in one or more images can be

done more accurately if the estimation is performed for these objects simultaneously. The

hypothesis corresponding stage provides the proximity information, required to decide for

the simultaneous estimation of parameters of more than one object. The parameter esti-

mation process uses the combined hypothesis information and the proximity information



to estimate the parameters from the multi-view imagery (i.e. all images are used simulta-

neously in the estimation process). The setup for the multi-view imagery analysis system

is shown in �gure 2.
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Figure 2: Setup of a multi-view imagery analysis system.

4 The hypothesis corresponding method

4.1 Distance measures and correspondence

The objective of the corresponding stage is threefold:

1. Reduction of the number of hypotheses. All corresponding hypotheses are grouped

into a hypothesis group. From this group a new hypothesis is formed that replaces

the original corresponding hypotheses.

2. Hypotheses that result in occlusion in one or more images must be marked, so that

their parameters can be estimated simultaneously.

3. Di�erent hypotheses (i.e. not corresponding) that occupy the same space should be

marked, because they can not be true at the same time. These will be referred to as

"mutually exclusive".

After the hypothesis generation stage on single images, for each image there is a list of

hypotheses, containing the following information:

1. Object class

2. Initial estimation of position



3. Initial estimation of size

4. Initial estimation of orientation

5. Reliability of the hypothesis

For testing occlusion, a simpli�cation was used, i.e. if the distance between buildings is

below a certain threshold, they are marked as "close" and may cause occlusion in one or

more images. For mutually exclusive hypotheses, after the estimation process, the most

likely hypothesis is selected.

In order to determine if two hypotheses i and j correspond, are "close" or mutually

exclusive, three distance measures are de�ned:

D(i; j) geometrical distance between 2 hypotheses

O(i; j) measure of "overlap", i.e. how much space is shared

M(i; j) feature match quality, i.e. how well the hypothesised objects resemble (takes into

account: object class, size, orientation)

Correspondence can now be de�ned as:

(O(i; j) � Omin) and (M(i; j) �Mmin) (1)

i.e. for correspondence there must be a certain minimum of overlap between the hypotheses

and the hypotheses must resemble each other enough.

Two hypotheses are marked mutually exclusive if:

(O(i; j) � Omin) and (M(i; j) < Mmin) (2)

i.e. the hypotheses occupy the same space, but do not resemble each other, hence it is

impossible that both are correct.

Finally two hypotheses can possibly cause occlusion if:

(D(i; j) < Dmax) (3)

In the above de�nitions 1-3, the constants Omin, Mmin and Dmax depend on (among

others) the size of the buildings, the ight height and viewing angles.

Note that two hypotheses can only have one of the above described relations: they either

correspond or are exclusive or are close or have none of the relations.



4.2 The hypothesis corresponding algorithm

The hypothesis corresponding algorithm consists of the following steps:

� Put all hypotheses of all images into a list.

� Combine the hypotheses that correspond according to eq.1 into groups. Note that

one hypothesis may occur in several hypothesis groups, for example if hypothesis A

corresponds to B and C and hypotheses B and C do not correspond, the groups AB

and AC are formed).

� Calculate the "average" of the parameters of the hypotheses in the hypothesis groups

and assign these to the hypothesis groups. The list of hypothesis groups is now in

fact a new list of hypotheses. The "average" could be a weighted average that takes

into account the reliability of the individual hypotheses in the group. Currently, an

unweighted average is used.

� Determine which pairs of hypothesis groups are mutually exclusive.

� Determine which pairs of hypothesis groups are 'close'.

In the current implementation, the geometrical distance measure D(i; j) is the Euclidean

distance in 3-D between the centres of gravity of the two hypotheses (see �g.3.)

Figure 3: Distance between two hypotheses

For the overlap O(i; j), currently only the overlap in the ground plane is used. This is

illustrated in �g.4. The overlap of the ground plane is de�ned as the ratio between the

area of the intersection of the two ground planes and the larger of the two ground planes:

O(i; j) =
Ai ^Aj

max(Ai; Aj)
(4)



Where Ai and Aj are the areas of the ground planes of the hypotheses i and j. This yields

a number between 0 and 1 which is 0 for no overlap at all and 1 if the ground planes of

the hypotheses i and j coincide.

Figure 4: Overlap of two hypotheses

In the feature matchM(i; j) the class, size and orientation of the hypotheses are compared.

In the current implementation the class match is 0 for hypotheses of di�erent classes and

1 for equal classes.

The size match is obtained by aligning the hypotheses (i.e. discarding the rotations and

the translations) and performing a volume intersection. The size match is de�ned as the

ratio of the shared volume and the joint volume:

Msize(i; j) =
Vi ^ Vj

Vi _ Vj
(5)

Where Vi and Vj are the volumes of the aligned hypotheses i and j. This again yields a

number between 0 and 1. The shared and total volumes are illustrated in �g.5.

The orientation match is de�ned as:

M(i; j) = 1�
j i � j j

�
(6)

Where i and j are the rotation angles of hypotheses around the vertical axis. The range

of the orientation match is 0 for a �
2
radians angle di�erence to 1 for a 0 or � radians angle

di�erence between the hypotheses (the hypotheses are assumed to be symmetric for the

two main axes). In the alignment process symmetry problems like for instance two cubes

that di�er �
2
radians in orientation are detected and corrected.

The feature match is constructed by multiplying the class, size and orientation matches:



Figure 5: Two aligned hypotheses (left) for size comparison and their common volume

(right)

M(i; j) =Mclass �Msize �M (7)

And since the three range from 0 to 1 the combined feature match also ranges from 0 to

1.

5 Experiments

A number experiments was conducted to evaluate the algorithm and to check whether the

output of the hypothesis corresponding algorithm makes sense. The hypothesis lists that

form the input of the hypothesis correspondence algorithm were generated by hand. Four

characteristic scenes were generated:

� 2 corresponding hypotheses

� 2 exclusive hypotheses

� 2 'close' hypotheses

� a scene with several di�erent corresponding, exclusive and close hypotheses

The results of the simulated scenes are shown in the �gures 6 to 9.



class match 1.0

size match 0.739094

orientation match 0.968169

feature match 0.715568

overlap 0.628244

distance 0.360555

Figure 6: Typical case of two corresponding hypotheses before (left) and after (right) the

hypothesis corresponding process and their distance measures

class match 1.0

size match 0.6

orientation match 0.690986

feature match 0.414592

overlap 0.493782

distance 0.538516

Figure 7: Typical case of two exclusive hypotheses and their distance measures



class match 1.0

size match 0.6

orientation match 0.690986

feature match 0.414592

overlap 0.0

distance 2.33238

Figure 8: Typical case of two 'close' hypotheses and their distance measures

Figure 9: Typical case of multi-view hypotheses (left) and the result after hypothesis

corresponding (right). The three hypotheses in the middle are marked mutually exclusive



6 Conclusions

A method for solving the correspondence problem of multi-view imagery on hypothesis

level is presented. Three distance measures are de�ned: feature match, overlap and geo-

metrical distance. These distance measures are used to determine whether hypotheses are

corresponding, mutually exclusive or close. The result of the hypothesis corresponding is

a list of hypothesis groups. Within each group all hypotheses correspond. Furthermore

mutual exclusive pairs of groups and 'close' groups are marked. The operation of the

hypothesis corresponding method is demonstrated with a number of typical scenes. The

next step is to apply the method on real data. We plan to use a dataset that has been

made available on the internet by the Swiss Federal Institute of Technology (ETH) in

Z�urich, Switzerland.
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