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1. INTRODUCTION

Digital cameras and scanners are no longer exotic
things or equipment of expensive photo labs: they have
become a permanent part of the market of digital
devices for home use. The desire to occupy a wider sec-
tor of the market is pushing the manufacturers to sim-
plify and, hence, cheapen production while preserving
the consumer features and functionality of the devices.

One of such simplifications is to use one array of
photo sensors for forming images instead of the three
arrays corresponding to the basic colors. Such an array
contains photo sensors of several kinds, each of which
is sensitive to a certain basic color. These elements are
arranged in the array in the mosaic form, which is
referred to as the Bayer pattern.

Thus, each element of the array contains informa-
tion about only one color component, whereas the out-
put digital image must contain all three components R,
G, and B for each pixel.

The problem of the interpolation of Bayer patterns
(also referred to as demosaicing or demosaicking) con-
sists in obtaining a full-color image by its Bayer pat-
tern. The purpose of the algorithm is to interpolate each
color plane at the points where the value of the corre-
sponding color component is unknown.

2. SURVEY OF THE EXISTING METHODS

The majority of the existing methods for solving this
problem can informally be divided into linear methods,
adaptive algorithms, and mathematical recovery methods.

 

2.1. Linear Methods

2.1.1. Independent interpolation of color planes.

 

The simplest demosaicing method is to separately
apply linear interpolation (for example, bilinear or
bicubic) to each color plane. Although this method is

fast and easy-to-implement, its application results in
the appearance of noticeable artifacts.

One of such artifacts, color moire, which is typical
of almost all methods, results from the fact that the
positions of sensors of different colors do not coincide.
Therefore, many methods use the redundancy of the
green pixels in the mosaic for qualitative recovery of
high frequencies of the image, and then interpolate the
red and blue colors with the use of the recovered green.

 

2.1.2. Interpolation of color ratios.

 

 The recovery of
the red and blue colors based on the recovered green
relies on certain assumptions about the relationship
between the color planes.

One of the assumptions of this kind is the assump-
tion of a fixed ratio of colors (for example, red-to-green
or blue-to-green ratios) within one object in the image
[2]. Then, having a fully recovered green component,
one can interpolate the red-to-green ratios at the adja-
cent points rather than the values of the red color at
these points. This yields a better result compared to the
independent interpolation of the color planes, since the
green component has a higher sampling rate and can be
recovered more accurately (even by means of a linear
method).

A weak point of this method is image areas contain-
ing a small amount of green. In this case, the ratios of
the other colors to the green are high and not accurate
because of the noise. This difficulty can be overcome
by interpolating the logarithms of the ratios (i.e., the
residuals of the colors) rather than the ratios them-
selves.

 

2.2. Adaptive Methods

 

The essence of the adaptive methods is to separately
select particular linear filters for each interpolated pixel
depending on heuristic rules calculated in the neighbor-
hood of a given pixel.
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2.2.1. The Edge-adaptive method.

 

 When interpolat-
ing color ratios (or their residuals), the quality of the
initial interpolation of the green color has a great effect
on the final result. Therefore, this interpolation should
be as accurate as possible; for example, one could use
the edge-directed interpolation instead of the linear
interpolation.

The simplest variant of the edge-directed interpola-
tion works as follows. For the pixel to be interpolated,
the vertical and horizontal gradients are determined by
its known neighboring pixels [1], and the direction in
which the gradient is smaller is assumed to be the direc-
tion along the edge in the neighborhood of this pixel.
Then, the desired value is determined as the half-sum of
two closest neighbors along the edge.

This method can be improved by considering a larger
domain and taking into account the gradients of the other
colors when selecting the interpolation direction [2].

After the green color has been recovered by this
method, the red and blue component are found by the
method of the interpolation of the color ratios.

 

2.2.2. The Kimmel algorithm.

 

 In the Kimmel algo-
rithm, the recovery of the image proceeds in the follow-
ing three stages:

(1) interpolation of the green color,
(2) interpolation of red and blue by using green, and
(3) correction.
Let us describe these stages in more detail.

 

2.2.2.1. Interpolation of the green color in the Kim-
mel algorithm.

 

 The unknown value of the green compo-
nent is determined in the Kimmel algorithm as a linear
combination of the known values of the four closest
neighbors. The weights 

 

E

 

i

 

 in this linear combinations are
the probabilities that 

 

G

 

i

 

 belong to the same object as 

 

G

 

5

 

.
The weights 

 

E

 

i

 

 are computed as follows.
First, the notion of a “derivative” along the four

directions (vertical, horizontal, and two diagonal) at a
given point is introduced.

Suppose that it is required to calculate the deriva-
tives at the point 

 

P

 

5 (Fig. 8). The use of the letter 

 

P

 

means that the derivatives are computed in the same
way independent of what component is given in the pat-
tern at point 

 

P

 

5. Then, the derivatives are computed by
the formulas

where 

 

P

 

i

 

 are values of the intensity at this point speci-
fied in the pattern. It should be emphasized that, what-
ever component is specified at point 

 

P

 

5 (green, red, or
blue), we always compute differences between the
intensities of the same color.

If, at point 

 

P

 

5, a value of green is given, we can
determine the derivatives a little bit more accurately by
setting

In this case, the weight function is given by

where 

 

D

 

(

 

P

 

i

 

) is the derivative along 

 

P

 

i

 

.

 

2.2.2.2. Interpolation of red and blue by using the
known green color.

 

 The red and blue colors are recov-
ered by means of the above-described method of the
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Fig. 2.

 

 Interpolation of color planes.
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Fig. 3.

 

 Linear interpolation of a pixel in position 5.
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interpolation of the color ratios. The ratios themselves
are interpolated in the same way as the green pixels
were interpolated at the first stage with the use of the
weight function 

 

E

 

 defined above.
The interpolation formula for the blue color is similar.

 

2.2.2.3. Correction in the Kimmel algorithm.

 

 This is
the key stage of the algorithm, since the majority of the
artifacts (e.g., the color moire) are suppressed just at
this stage. The basic idea of this stage is as follows.

In the interpolation of the red (blue) color, we
assumed that the ratio of the red (blue) color to the
green color is fixed within one object. This implies that
the ratio of the green to the red (blue) must also be fixed
in this region. Therefore, having the interpolation of the
red and blue completed, one can correct the green pix-
els to meet this assumption. However, this will change
the original values of the ratios of the red (blue) to the
green, so that one will have to modify the values of the
red (blue) color. The authors of this method [3] suggest
repeating this process three times alternately modifying
values of the green and red (blue) colors.

Thus, the correction stage can formally be described
as follows:

• Repeat three times:
• Modify the values of the green color in accordance

with the values of the ratios of the green to the blue and
red by the formulas

• Modify the values of the red and blue colors in
accordance with the values of their ratios to the green
by the formulas

• End of the loop.

 

2.3. Mathematical Methods

2.3.1. Optimal recovery.

 

 To better recover the green
color (which affects the quality of the entire interpola-
tion), one can apply the well-known and approved
methods, such as, for example, NEDI [7] or the optimal
recovery method [4], which is an extension of the
former.

For example, in [5], it is suggested to replace the
interpolation of the green in the above-described Kim-
mel algorithm [3] by the interpolation by means of the
optimal recovery method, and the interpolation of the
color ratios, by the interpolation of the color residuals.

The idea of the optimal recovery method is to extend
the NEDI method, which is described below, by intro-
ducing additional functionals that impose bounds on
the values of the pixels obtained. This makes it possible
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Fig. 4. Original image (a), Bayer pattern (b), bilinear inter-
polation (c), and the suggested method (d).
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to obtain better results owing to the suppression of the
artifacts inherent in the NEDI method by means of the
bounding functionals. Let us briefly describe the theory
of the optimal recovery method.

Let x be an unknown vector and F be a linear func-
tional. Suppose that the values of a set of L linear func-
tionals of x are known: Fi (i = 1, …, L). Further, we
assume that the desired vector x belongs to the ellipsoi-
dal class

where Q is a given matrix.

Note that the functionals Fi determine a hyperplane
X in the n-dimensional space, and its intersection with
the ellipsoid K is a hyperdisk Cx. The optimal recovery
problem consists in finding a vector  x ∈ Cx that min-
imizes the approximation error of the desired func-
tional:

K x Rn: xTQx∈ ε≤{ },=

x̂

δ ŷ y– ,
x

T
Qx

max=

where  = ( ) and y = F(x). The solution of the prob-
lem is the so-called Chebyshev center, the vector  ∈ X
with the minimal Q-norm. It has been shown in [4] that
the desired vector  can be represented as a linear com-
bination of representatives φi of the linear functionals Fi,

In the problem of the pattern interpolation, for the vec-
tor x, a subset of this pattern that contains the interpolated
pixel in the position j is taken. In this case, F(x) = xj, and,
for the known functionals Fi (i = 1, …, L), the known
values of the neighboring pixels are taken, Fi(x) = xi,
where xi are given in the pattern. Then, F( ) is the
desired value of the interpolated pixel.

Clearly, the basic problem here is to construct the
class K, i.e., to select such a Q that most adequately rep-
resents the image in the neighborhood of the interpo-
lated pixel. It was shown in [4] that Q = (SST)–1, where
S is a training set written as a matrix consisting of m
learning column vectors x ∈ Rn.

In [5], the recovery of the green color proceeds in
the two following stages:

• Coarse recovery. The class K roughly models the
image in the neighborhood of the pixel being interpo-
lated, since the learning vectors are taken only at given
points of the pattern (i.e., on the original sparse grid).

• Accurate recovery. The learning vectors are taken
from the image interpolated at the first stage; therefore,
they have the same scale as that of the vector x being
estimated.

At both stages, the training set S consists of all pos-
sible learning vectors falling within the window of size
15 × 15 with the center located at the pixel being inter-
polated.

The second stage can often be omitted. It consider-
ably improves the quality only in the high-frequency
areas, i.e., in the places of repeating fine-textured pat-
terns.

2.3.2. Alternating projections. The method of alter-
nating projections [6] is classified among the so-called
POCS (projection onto convex sets) methods. The basic
idea of the method consists in obtaining an initial
approximation of the interpolated image and subse-
quently improving it by means of the alternate satisfac-
tion of two sets of constraints.

The first constraint set is the set of the color values
specified in the pattern: the results of the interpolation
must coincide with these values at the points where the
latter are specified.

The second constraint set is obtained by using the
assumption that the high frequencies (details) of all
three color components at any point are close to one
another. This can be achieved by allowing the wavelet
coefficients of red and blue differ from the wavelet
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Fig. 7. Interpolation of the green color in the Kimmel algorithm.
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Fig. 6. Edge-directed interpolation. G1, G2, G4, and G5 are
known values of the green, and G3 is the value being inter-
polated.
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coefficients of green not more than by a given thresh-
old. The threshold can be either unique for the entire
image or different for each point being a function of
some local characteristics of the neighborhood of this
point. It describes the proximity of the high frequencies
corresponding to the different color planes. If they are
very close, the threshold must be low; if a large differ-
ence between them is expected (allowed), it must be
high. For grayscale images, the threshold may be set
equal to zero.

Thus, the algorithm scheme looks as follows.
• Initial interpolation of the green color by some

method (for example, using the Edge-Adaptive
method).

• Repeat several times:
— Perform the wavelet transform of all color

planes.
— Modify the wavelet coefficients for red and blue

such that they differ from those for green by not more
than a given threshold.

— Perform the inverse wavelet transform.
— Substitute the initial values of the colors at the

points where they were specified in the pattern.
— End of loop.

2.4. Estimation of the Algorithm Quality

To estimate the quality of the algorithms for the
interpolation of the Bayer patterns, the PSNR estimate
is widely used. To calculate it, a full-color original
image is used. From this image, the corresponding
Bayer pattern is artificially created and is supplied to
the input of the interpolation algorithm. The interpo-
lated image obtained is compared with the original full-
color image by means of the PSNR. The difference
between the two images can also be measured by apply-
ing other techniques, such as the calculation of the
color differences in perceptually uniform color models
(for example, ∆E00, [9]) and the use of human percep-
tion models and distortion masking. In this paper, we
use the PSNR and ∆E00 estimates, along with the visual
assessment of the interpolation artifacts.

The basic artifacts of the interpolated images that
are important from the visual estimate standpoint are
presented in Fig. 10.

3. SUGGESTED ALGORITHM

The suggested algorithm consists of the following
stages:

(1) Accurate interpolation of the green color with the
use of the gradient interpolation and NEDI methods.

(2) Application of a modified Kimmel algorithm
(adaptively variable number of iterations plus some
other insignificant modifications).

(3) Projection onto the input data.

(4) Repetition of the above stages with the use of the
interpolated image.

Let us consider these stages in more detail.

3.1. Interpolation of the Green Color

In our method of the interpolation of the green color,
we determine the direction and weights of the interpo-
lation based on only the green component (the red and
blue components are not used at all). This is explained
by the facts that the red and blue components in the
Bayer pattern have worse resolution and the aliasing
arising in these components may result in an incorrect
determination of the interpolation direction.

3.1.1. NEDI. The NEDI (New Edge-Directed Interpo-
lation) method has been suggested in [7] (see also [5, 8]).
The NEDI method is characterized by the accurate inter-
polation of the image edges without the effect of jagged
edges. However, it has a number of disadvantages as well,
such as high computational complexity, watercolor arti-
facts in fine-textured regions, and the algorithm instability
in smooth regions of the image [10]. Therefore, we sug-
gest combining the NEDI method with simpler edge-
adaptive interpolation methods.
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Fig. 9. Interpolation of the red color in the Kimmel algo-
rithm.
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Fig. 10. Color moire (a), zipper effect (b), loss of sharpness
(c), and jagged edges (d).
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In our method, we use a modification of NEDI sug-
gested in [8] (intensity map blurring, spatial aperture
extension). To make the operation of the matrix inver-
sion in the calculation of the optimal weights more sta-
ble, a random white noise of small amplitude is added
to the intensity map.

3.1.2. Gradient interpolation. For the second (sim-
pler) interpolation method, we use the gradient interpo-
lation. In the simplified gradient interpolation method,
we select either the vertical or horizontal interpolation
directions by comparing local vertical and horizontal
gradients of the green component of the image. The
interpolation direction is selected as that corresponding
to the smaller gradient.

All gradients are averaged over the neighborhood of
the current pixel. At the first step, the gradient H is aver-
aged over a small neighborhood (formula 1):

Here, D[] is the absolute value of one horizontal difference.
Next, the vertical and horizontal gradients are com-

pared. If their values are close, it is concluded that the
interpolation direction is not well defined. In this case,
the gradients are computed in a wider neighborhood:

D i j,[ ] G i j,[ ] G i j 2+,[ ]– ,=

H D i j 1–,[ ] D i 1– j 2–,[ ]+=

+ D i 1+ i 2–,[ ] D i 1– j,[ ] D i 1+ j,[ ]+ +

+ D i j 3–,[ ] D i j 1+,[ ] D i 2– j 1–,[ ]+ +

+ D i 2+ j 1–,[ ] D i j 5–,[ ] D i j 3+,[ ]+(+

+ D i 2– j 3–,[ ] D i 2+ j 3–,[ ]+

+ D i 2– j 1+,[ ] D i 2+ j 1+,[ ]+

+ D i 1– j 4–,[ ] D i 1+ j 4–,[ ]+

+ D i 1– j 2+,[ ] D i 1+ j 2+,[ ] )/2.+

If |H – V| < β · (H + V) 
then Use bigger window

We use the following three neighborhoods: the least
(in accordance with formula 1) neighborhood of size
about 4 × 4 pixels, an average neighborhood of size
10 × 10 pixels, and a large neighborhood of an approx-
imate size 22 × 22 pixels. After the direction has finally
been selected, the interpolation is performed by averag-
ing two neighboring pixels in the given direction (see
Fig. 11).

In a more complicated interpolation method, instead of
selecting one of the two directions, the interpolation
weights are computed by the formula presented in Fig. 12.

The large power of the gradients in the denominator
of the fractions makes it possible to avoid mixing of the
vertical and horizontal interpolation directions. This, in
turn, allows us to avoid the color moire, which often
results from such a mixing.

The next modification improves the quality of the
interpolation in smooth regions. It consists in reducing
the power of the gradients in the denominators for
smooth regions of the image. In such regions, the image
noise plays an important role in forming the gradients,
and the resulting interpolated image may have a “water-
color” artifact, whereas the ordinary bilinear interpola-
tion does not result in such an artifact. Therefore, the
reduction of the power of the gradients in the denomi-
nator increases the mixing of the vertical and horizontal
interpolation and makes the method similar to the bilin-
ear interpolation method. In our algorithm, depending
on the region smoothness, the power of the gradients in
the denominator reduces from 8 to 4 or 2.

As a result of the gradient interpolation, we obtain
an interpolated green component and an additional
array storing the coordinates of the pixels for which the
window of the maximum size was used for the compu-
tation of the gradient. This array will be used in what
follows for identifying complicated (“problematic”)
regions of the image where the direction of the interpo-
lation might be computed incorrectly.

3.1.3. Combination of the gradient interpolation
and NEDI. Our method of the interpolation of the green
component combines the NEDI and gradient interpola-
tion methods, which allows us to get rid of the artifacts
inherent in both methods and to speed up the NEDI
method (since NEDI is now applied to a small portion
of the image pixels). To this end, after the gradient
interpolation of the green color, we apply a special clas-
sification algorithm, which determines the proportions
of mixing the NEDI and gradient interpolation results
for each pixel, to the resulting image. The purpose of
the classification algorithm is to divide the image pixels
into two classes. The first class includes edge regions of
the image. The second class includes smooth regions of
the image, high-frequency domains (i.e., repeating
small patterns), and fine-texture regions (grass, leaves,

G5 G6G4

G2

G8

(1) Computation of the horizontal

(2)
G3=(G2+G8)/2

Else
G3=(G4+G6)/2

If H ≥ V

and vertical gradients H and V

Fig. 11. Gradient interpolation of the green color (simplified
variant).

G5 G6G4

G2

G8

(1) E2 = E8 = 1/(ε + V8)

(2) E4 = E6 = 1/(ε + H8)

(3) G3 is computed in accordance with Fig. 9

Fig. 12. Gradient interpolation of the green color (simpli-
fied variant).
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and the like). To the first class, we apply the NEDI algo-
rithm, since it yields nice results on edges. To the sec-
ond class, the gradient interpolation is applied, since
NEDI, in this case, results in artifacts.

The classifier used constructs a solution taking into
account a combination of the following criteria:

(1) Presence of details in the neighborhood of the
given pixel. The criterion is computed as a linear filter
(3 × 3) approximating the second derivative ((0, 1, 0),
(1, –4, 1), (0, 1, 0)). This criterion allows us to classify
smooth regions as those belonging to the second class.

(2) Ratio of the low-frequency energy to the high-
frequency energy in the neighborhood of the given
pixel. The criterion is computed by means of the local
windowed two-dimensional Fourier transform (win-
dow size is 8 × 8 pixels). The total energy of the coeffi-
cients for the high-frequency and low-frequency
regions is computed. Low frequencies here are frequen-
cies ranging from 0 to 0.25 periods per pixel (the zero
frequency is excluded from the consideration since it
corresponds to the average block luminance and has no
effect on the edge determination). Based on this crite-
rion, regions with the prevailing high-frequency infor-
mation (small repeating patterns) fall into the second
class, and the regions near the boundaries, into the first
class (due to the fact that the low-frequency informa-
tion dominates in the edges).

(3) Complexity of the two-dimensional image struc-
ture in the neighborhood of the given pixel. The crite-
rion is computed as follows. First, the 8 × 8 region
around the given pixel is transformed to a two-color
palette (by the K-means method with a very small num-
ber of iterations). Then, the number of the connected
regions in the binary image obtained is determined (we
consider the 8-connectivity; i.e., each pixel has eight
neighbors related to it). By means of this criterion,
regions with simple structure (near the edges, there usu-
ally exist only two connected regions: one from one
side of the edge, and the other, from another side) and
fine-texture regions (leaves, grass, and the like) are
classified as regions of the first and second classes,
respectively.

A combination of these criteria means that, to each
pixel, the “probability” of its occurrence in the first or
second classes is assigned. It is this number that deter-
mines the proportions of mixing the NEDI and gradient
interpolation results (Fig. 13a).

Since the classification is done before the NEDI inter-
polation, the NEDI may be applied to only those points
where the corresponding weight is not equal to zero (to
further speed up the interpolation, the threshold can be
increased from 0 to 0.3 without any loss of accuracy).

3.2. Modification of the Kimmel Algorithm

Having done the interpolation of the green color, we
interpolate the red and blue by means of a modified
Kimmel algorithm. The basic distinction of the modi-

fied algorithm from the original one is that the number
of the iterations is adaptively varied.

3.2.1. Variable number of iterations. The standard
Kimmel algorithm uses three iterations for recovering
the red and blue colors. We carried out experiments to
study the dependence of the resulting image on the
number of the iterations. The results of the experiments
showed that, as the number of the iterations grows, the
color moire is better suppressed owing to better mutual
matching of the three color components. However,
simultaneously, the color saturation in the regions of
the color changeover worsens [11]. Three iterations are
usually quite sufficient for the majority of the images
and yield the best values of the PSNR. However, the
results can considerably be improved by adaptively
controlling the number of the iterations.

The basic goal of the Kimmel algorithm is to remove
the color moire, which appears because of the aliasing of
the red and blue components, i.e., in the regions where,
because of the low sampling rate, the high spatial fre-
quencies cannot be captured. The basic idea of our
approach is to find such regions and to use an increased
number of the Kimmel iterations in these regions. The
search for such regions is based on two criteria.

The first criterion is an uncertainty of the determina-
tion of the gradient the information about which is
stored in the auxiliary array (see Section 3.1.2).

The second criterion is the image regions classifier
similar to that described in Section 3.1.3. The distinction
of the former from the latter consists in that the second
criterion is used in the inverse manner (since the regions
with the prevailing high-frequency information must be
classified as those from the second class) and the third
criterion is not used (in practice, these classifiers are
combined, since they work with the same data).

The result of the classifier operation is a distribution
map showing the probabilities that the pixels belong to
the second class. This map is further referred to as the
“problem map,” since it shows the regions where the
color moire may probably appear (Fig. 13b).

(‡) (b)

Fig. 13. Classification of pixels for switching the interpola-
tion methods (a) and the “problem map” (b) (the original
image is shown in Fig. 4).
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The “problem map” is used to select the number of
the iterations in the Kimmel algorithm: in “no problem”
regions, the number of the iterations may be small, e.g.,
one or two iterations. In the “problematic” regions, the
number of the iterations increases up to 10–12.

3.2.2. Extending the window for the gradient calcu-
lation. When calculating the interpolation weights in
the Kimmel algorithm, the gradients along several
directions are computed. Each gradient is found as a
difference of two pixels: Grad = |G[i, j] – G[k, m]|.

In our algorithm, the computation of the gradient is
modified through the calculation of differences in a
larger spatial window:

Grad 8 G i j,[ ] G k m,[ ]–⋅=

+ G i 1+ j,[ ] G k 1+ m,[ ]–

+ G i 1– j,[ ] G k 1– m,[ ]–

+ G i j 1+,[ ] G k m 1+,[ ]–

Statue Lighthouse Sails

Portrait Window Crayon

Barbara Lena_c Lt + Houses

Mosaic Sparkles Boat

Fig. 14. Test set of images.
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This resulted in a slight increase in the PSNR.

3.2.3. Semi-recursive color update. In the original
Kimmel algorithm, the new values of the corrected
colors are calculated by means of one array, and the
new values themselves are written to another array.
At the next iteration, the arrays swap over. In our
algorithm, we write the new values of the pixels to
the original array and use them when computing
weighted values of the subsequent interpolated pix-
els. The array of the pixels is looked through from
left to right and from top to bottom in the course of
the odd iterations and in the reverse order in the
course of the even iterations. This small modification
also improved the resulting value of the PSNR.

3.3. Projection onto the Input Data

The operation of the Kimmel algorithm results in
matching three color components and reduces the color
moire. On the other hand, the algorithm modifies values
of the color components at the points where they were
initially given. Obviously, the substitution of the origi-
nal values of the color components for the interpolated
values at these points improves the PSNR. It turns out
that the visual quality of the image is also improved in
this case. If we consider the interpolation problem as
the problem of projecting onto convex sets of con-
straints (POCS) [6], the substitution of the original val-
ues of the color components is the projection of the
image onto the input data.

In our algorithm, we use a more complicated
model of projecting images to the input data. The
idea of the method is to modify two other color com-
ponents of the given pixel together with the color
component being substituted. These components are
modified in accordance with the local model of the
color variation in the image.

The local model is constructed as follows. We try
to approximate all colors of the pixels from the
neighborhood of the given pixel by a straight line in
the three-dimensional color space. Let us represent
the colors of these pixels as a “cloud” consisting of
points in the three-dimensional color space. Then,
we need to draw a straight line in the space that opti-
mally approximates this cloud. In our method, we
simplify the standard LMS problem by taking the
line segment connecting the two points of the cloud
that are most distant from one another. This interval
is called a color direction vector. It shows the domi-
nant direction of the color variation in the three-
dimensional color space in the neighborhood of the
given pixel of the image. For example, if there is a
boundary between the black and white colors
(including intermediate colors as well) in the neigh-
borhood of the given pixel, then the color direction
vector will have equal components R, G, and B.

+ G i j 1–,[ ] G k m 1–,[ ]– .

In our algorithm, we use the 3 × 3 neighborhood
and, after finding the color direction vector, determine
the deviation of the pixels belonging to the neighbor-
hood from this vector. This deviation may be viewed as
an indicator of the consistency of the local one-dimen-
sional color model.

When the color direction vector is found, the sub-
stitution of the original color components is made as
follows: the original component being substituted
determines the magnitude of the shift of the pixel
color, and the shift direction is determined by the
color direction vector.

This simple rule needs certain refinements, since it
can result, for example, in very large variations of the
components if the color direction vector is perpendicu-
lar to the color component being substituted. Therefore,
in our implementation, we introduced certain restric-
tions on the maximum variation of the color compo-
nents of the following form (based on the example of
the substitution of the green component):
Green = OriginalGreen;

if (CDV[Green]>eps)

{

Amount = 1 – eps/CDV[Green] + 
GryscaleMeasure;
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Fig. 15. The values of the PSNR–RGB for different images.

Average values of the PSNR on the test images

Method Average value
of PSNR–RGB

Average value
of PSNR–

CIEDE2000

Bilinear 27.50 35.56

Kimmel 33.50 42.57

AQua-2 34.63 42.99

Alternating projections 35.24 42.76

Suggested algorithm 37.10 44.36
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Red += (OriginalGreen – Green) * CDV[Red] /

CDV[Green] * Amount;

Bound(Red, –Limit, +Limit);

Blue += (OriginalGreen – Green) * CDV[Blue] /

CDV[Green] * Amount;

Bound(Blue, –Limit, +Limit);

}

Here, Red, Green, and Blue are values of the color
components, OriginalGreen is the value of the green
component being substituted, {CDV[Red],
CDV[Green], CDV[Blue]} is the color direction vector,
and Limit is the restriction on the variation of the color
components (may be computed with regard to the con-
sistency of the local color model).

The variable Amount reduces the action of the color
component being substituted on other color compo-
nents of the given pixel. Its value is computed on the
basis of the following two criteria:

(1) Reduction of the action to avoid instability in the
case where the vector CDV is perpendicular to the
green component (the term with Eps).

(2) Increase of the action when the direction of CDV
is close to {1, 1, 1}. This criterion makes it possible to
increase the relationship of the color components for
black-and-white images and to improve the quality of
the recovery. Simultaneously, it reduces the relation-
ship of the color components for regions with
changeover between different colors, which also
improves the quality and reduces the “zipper effect”
artifact.

3.4. Repeated Iteration of the Algorithm

The quality of the resulting image can additionally
be improved by applying the entire algorithm once
again. At this stage, in the interpolation of the green
component, the image with full resolution, which was
obtained after the first iteration, is used. In this way, the
quality of the interpolation of the green component is
considerably improved, especially in the regions where
the high-frequency information dominates. In the
course of the first iteration, the interpolation direction
could be determined incorrectly because of the aliasing,
which appeared due to an insufficient sample rate for
the green color. After projecting the image onto the
input data in the course of the first iteration, the desired
high frequencies are partially recovered, which
improves the repeated interpolation of the green com-
ponent in the course of the second algorithm iteration.

4. RESULTS AND DISCUSSIONS

We compared the suggested method with the best
above-described algorithms. For the test set, we used
several images, which are often used in publications.

The result of the application of the algorithm to the
Bayer pattern generated by a given image was com-
pared with the original image. The quality of the recov-
ery was measured by means of the PSNR calculated in
the color space RGB and in terms of the color differ-
ences ∆E00 in the color space CIEDE2000 [9].

The test images are shown in Fig. 14. (Averaged)
results of the application of various interpolation meth-
ods to these images are presented in the table.

The values of the PSNR for each image are plotted
in Fig. 15.

Figures 16 and 17 show examples of the image
interpolation obtained by means of different algo-
rithms. Other examples and illustrations can be found
in [11].

Let us describe specific features of the resulting
images obtained by different algorithms.

The linear algorithms (bilinear and bicubic interpo-
lation) demonstrate the worst quality and the maximum
number of artifacts.

The Kimmel algorithm shows good results on the
boundaries between different colors and almost elimi-
nates the “zipper effect” artifact. However, it is not
capable of eliminating the color moire in complex high-
frequency regions of the image. As the number of the
iterations grows, the suppression of the moire is
improved, but the color saturation reduces.

The algorithm AQua-2, which is based on the Opti-
mal Recovery and Kimmel algorithms, demonstrates
better results owing to the use of a more complicated
interpolation of the green color. The disadvantages of
the method are the great dependence of the resulting
image on the window size OR (the lack of the window
size adaptation) and the insufficient sharpness of the
resulting image (since the image is not projected onto
the initial data after the Kimmel algorithm).

The Alternating Projections method works well in
the case of images for which the color direction vector
coincides with the gray color axis (including grayscale
images). However, if the image does not meet this
requirement (for example, near the boundaries between
different colors), the algorithm results in a pronounced
zipper effect.

In our method, we tried to combine the advantages
of all considered algorithms and to adaptively control
the size of the gradient computation window, the num-
ber of the iterations in the Kimmel algorithm, and the
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Original Bilinear Kimmel

AP AQua Suggested algorithm

Fig. 16. Results of the application of different methods to the image Lighthouse.

Original Bilinear Kimmel

AP AQua Suggested algorithm

Fig. 17. Results of the application of different algorithms to the image Barbara.
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projection of the image onto the input data. Based on
the results of the PSNR measurements and on the visual
quality of the images, we may conclude that the sug-
gested algorithm for interpolating the Bayer patterns is
superior to all other algorithms discussed in this paper.
The temporal complexity of our method is about three
times higher than that of the Kimmel algorithm.
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