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Abstract  

The method proposed in the article adds the possibil ity of 
rendering fuzzy reflections to the existing ray tracing systems. It 
is based on the idea of special blurring. Depending on the 
roughness of the reflecting surface, the specular component of 
the image is blurred. Even such special filtering does not require 
much time, besides it can be optimized to concrete processor 
architecture. Even implementation of the method in C++ 
(without any assembly code) results only in 2 % decrease in 
rendering speed.  
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1. INTRODUCTION 

Fuzzy (or glossy) reflections introduce greater realism to 
rendered images. In real life we can find a lot of materials, which 
produce such reflections. High computational complexity does 
not allow wide usage of such materials in computer gr aphics 
applications. We’ve found the following methods are currently 
used for this interesting effect simulation: 

Plugin to 3D Studio Max Raygun [3] allows rendering of glossy 
materials by utilizing ray jittering in every point where backward 
ray hits the surface. This method gives physically precise results, 
but is very computationally expensive, since at least 16 samples 
per pixel are required to receive noiseless image appearance. 

Frank Suykens et al. [5] suggest using differential footprint of the 
ray to filter texture of reflected object. In this way it is possible 
to calculate accurate fuzzy reflection of textured surface. Though, 
approach does not allow to receive glossy reflection of non -
textured surfaces, border between two objects (even textured 
ones) also cannot be rendered correctly. 

James Arvo in his PhD thesis [6] investigated analytical method 
for fuzzy reflections simulation. The algorithm seems to work 
efficiently for simple scenes (e.g. flat mosaic plate is reflected is 
flat mirror). Method becomes computationally expensive if 
number of reflected polygons is large since it supposes integral 
evaluation along the border of each reflected polygon. 

It is worth to mention the draft versions of fuzzy reflection 
implementation in other plugin to 3D Studio Max called InSight. 
Algorithm acts close to bump mapping approach. That is, in the 
point of backward ray hit to surface, normal to surface is 
perturbed in some random way with the variance of normal 
distribution depending on surface roughness. Adaptive super 
sampling based on color criteria allows reducing noise, since 
typically forces several rays to be fired through single pixel. The 
advantage of approach is that it gives only about 2 times 

deceleration in worst case, which is less compared to above-
mentioned algorithms. Its big disadvantage is that it produces 
very grainy appearance of the surface, which is not physically 
plausible in most cases. 

2. METHOD DESCRIPTION 

The approach suggested also treats the surface as a set of random 
micro-facets, assuming that their size is much less than pixel 
size, thus no granularity is visible. Under some conditions this 
approach is physically accurate; in other cases it is expected to 
give a good approximation sufficient for a photo -realistic 
appearance. 

We implemented the method via two-pass rendering. The 1st pass 
is the usual backward ray tracing assuming specular reflection. 
Product of this pass is image, where for every pixel the following 
information is known: 

1. Physical luminance L0 calculated for perfect s pecular 
reflection (because only “specular” component will be 
subsequently blurred). 

2. 3D coordinates of intersection point a in the glossy 
surface (Figure 1). 

3. 3D coordinates of the “end of ray” b, which is a hit point 
of ideally reflected ray to the scene surface (Figure 1). 

In case of the so-called “subsampling” mode, when some pixels 
are not traced but interpolated, we calculate all the above values 
with bi-linear interpolation. 

In the second pass, the above image is “filtered”, which means 
that for those pixels whose intersection point belongs to the 
glossy surface, the following function is evaluated: 
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where L0(x,y) is the luminance of the original image at pixel 
(x,y), and L(x,y) is the resulting luminance which represents 
fuzzy reflections. Here  f(x, x t, y, y t)  are weight coefficients 
depending on the material properties and on the ϑ angle. As in 
our renderer the reflective properties of material were 
characterized by the shininess and shininess strength, the 
following formula was suggested: 

f  =  2 * ShinStrength * pow  (cos (ϑ),  Shininess)   (2) 

In renderers where specular characteristics of material are 
determined by Phong coefficient  (glossiness), the following 
formula is suggested: 



f  =  pow  ( cos (ϑ),  p)   (3) 

Where p is Phong coefficient and ϑ(x,x′,y,y′) is the angle 
between direction from intersection point to the end of “its” ray 
(=specular ray) and ray fired from this point to the end of ray for 
neighbour pixel (x′,y′) (see Fig.1). 

 

From the Figure 1 one can calculate that 
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We assume that the reflecting surface is glossy, so that nearly all 
reflected energy contains in cone ϑ ≤ Θ < 10°. In this case 
contribution of far pixels is negligible, and we can confine the 
sum in (1) to the neighbourhood of pixel ( x, y). The latter 
comprises pixels (x′, y′) such that the rays fired to them from 
camera deviate from ray fired to the central pixel (x, y) be angle 
less than: 

α = Θ/(1 + s/r)   (4) 

where s is the distance from camera to intersection point on 
glossy surface (point a) and r is the distance from the latter to the 
end of ray (point b). From the angular size we can easily estimate 
the radius in pixels: 

ρ = α×(image size)/(view angle)   (5) 
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Figure 1: The thick curve at right bottom corner is glossy  
reflector; thick curve at the top is the object reflected in it; small 
arrows on reflector show local normals and solid long arrows 
show specularly reflected rays which were traced in the 1st pass; 
the dashed arrow is the ray considered for fuzzy reflecti on 
simulation and ϑ is the angle between it and direction of ideal 
specular reflection. 

 

Thus, we obtain the following formula for determining the 
blurred color: 
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(or equally we can use round instead of rectangular area) 

The filter function is evaluated at the centres of pixels. It would 
be better to evaluate f(x,x′,y,y′) as average over pixel, but that is 
too expensive. 

 

3. BASIC OPTIMIZATIONS 

When implemented as described above the algorithm 
considerably decreases rendering speed. The following 
optimizations were made. They do not lead to drawbacks in 
quality, but allow faster rendering. 

The filtering (1) may be expensive in case of large filter size. 
The following means can be used to accelerate that: 

a) Force restriction on the filter size. 

b) Adaptive interpolation is possible. We can “blur” the image 
ignoring antialiasing. While blurring we do not split pixel in 
subpixels. 

c) The weight coefficients can be tablulated on a regular mesh. 
It is done on the first pass of renderer. Then the calculation 
of arccos is obviated, as well as e.g. raising to power γ in 
Phong model. 

d) While testing the preliminary implementation it was 
observed that the coefficients calculated in the above -
mentioned way are similar to Gauss kernel. Therefore it is 
possible to use Gauss convolution. The subtle differences in 
images are usually not seen by pure eye. 

e) The filter size can be calculated at each fourth pixel, 
because it is reasonable to assume that the angles do not 
change considerably between adjacent pixels.  

  

3.1 RESULTS 
 

Lower we give images for surface roughness equal to 0%, 10% 
and 50% correspondingly. One can clearly see that roughness 
level has strong effect on image appearance. 

 

 



 
Figure 2: Sample scene, no fuzzy reflections 

 

 

 

Figure 3:  Sample scene, surface roughness 10% 

 

 

Figure 4: Sample scene, surface roughness 50% 

 

4. CONCLUSION 

The advantages of the method are its speed, physical accuracy 
under certain conditions. The algorithm can be added to any 
renderer as a second pass. The following limitations are inherent 
in the method: 

Reflections after reflection by the first encountered glossy surface 
are not handled. That is the method can not accurate handle the 
case when e.g. glossy surface reflects ideal mirror which in turn 
reflects something. This is because the method assumes that rays 
form intersection point till ray end are straight lines. 

Similarly, if one fuzzy object is reflected in other fuzzy object, 
the fuzziness of furthest object (first one) will be ignored. This 
assumption looks reasonable since fuzziness of primary reflection 
should hide sharpness of secondary one anyway. 

Then, the method is inaccurate when the reflected object has 
BRDF with narrow lobe. This is because the luminance of object 
point b in filtering is assumed to be the same when we observe it 
from point a and a′′′′ that is at different directions, see Fig.1. But 
usually the angle between those directions is small, and for 
BRDF smooth enough that will not affect image quality. 
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