
Fuzzy reflections rendering

Anastassiya S. Kulikova

Moscow State University, Faculty of Computational Mathematics
Kirill A. Dmitriev

Keldysh Institute of Applied Mathametics RAS
Moscow, Russia

Abstract

The method proposed in the article adds the possibil ity of
rendering fuzzy reflections to the existing ray tracing systems. It
is based on the idea of special blurring. Depending on the
roughness of the reflecting surface, the specular component of
the image is blurred. Even such special filtering does not require
much time, besides it can be optimized to concrete processor
architecture. Even implementation of the method in C++
(without any assembly code) results only in 2 % decrease in
rendering speed.

Keywords: Ray Tracing, Fuzzy reflections, Rendering.

1. INTRODUCTION

Fuzzy (or glossy) reflections introduce greater realism to
rendered images. In real life we can find a lot of materials, which
produce such reflections. High computational complexity does
not allow wide usage of such materials in computer gr aphics
applications. We’ve found the following methods are currently
used for this interesting effect simulation:

Plugin to 3D Studio Max Raygun [3] allows rendering of glossy
materials by utilizing ray jittering in every point where backward
ray hits the surface. This method gives physically precise results,
but is very computationally expensive, since at least 16 samples
per pixel are required to receive noiseless image appearance.

Frank Suykens et al. [5] suggest using differential footprint of the
ray to filter texture of reflected object. In this way it is possible
to calculate accurate fuzzy reflection of textured surface. Though,
approach does not allow to receive glossy reflection of non -
textured surfaces, border between two objects (even textured
ones) also cannot be rendered correctly.

James Arvo in his PhD thesis [6] investigated analytical method
for fuzzy reflections simulation. The algorithm seems to work
efficiently for simple scenes (e.g. flat mosaic plate is reflected is
flat mirror). Method becomes computationally expensive if
number of reflected polygons is large since it supposes integral
evaluation along the border of each reflected polygon.

It is worth to mention the draft versions of fuzzy reflection
implementation in other plugin to 3D Studio Max called InSight.
Algorithm acts close to bump mapping approach. That is, in the
point of backward ray hit to surface, normal to surface is
perturbed in some random way with the variance of normal
distribution depending on surface roughness. Adaptive super
sampling based on color criteria allows reducing noise, since
typically forces several rays to be fired through single pixel. The
advantage of approach is that it gives only about 2 times

deceleration in worst case, which is less compared to above-
mentioned algorithms. Its big disadvantage is that it produces
very grainy appearance of the surface, which is not physically
plausible in most cases.

2. METHOD DESCRIPTION

The approach suggested also treats the surface as a set of random
micro-facets, assuming that their size is much less than pixel
size, thus no granularity is visible. Under some conditions this
approach is physically accurate; in other cases it is expected to
give a good approximation sufficient for a photo -realistic
appearance.

We implemented the method via two-pass rendering. The 1st pass
is the usual backward ray tracing assuming specular reflection.
Product of this pass is image, where for every pixel the following
information is known:

1. Physical luminance L0 calculated for perfect s pecular
reflection (because only “specular” component will be
subsequently blurred).

2. 3D coordinates of intersection point a in the glossy
surface (Figure 1).

3. 3D coordinates of the “end of ray” b, which is a hit point
of ideally reflected ray to the scene surface (Figure 1).

In case of the so-called “subsampling” mode, when some pixels
are not traced but interpolated, we calculate all the above values
with bi-linear interpolation.

In the second pass, the above image is “filtered”, which means
that for those pixels whose intersection point belongs to the
glossy surface, the following function is evaluated:

�

�

′′

′′

′′

′′′′
=

xy

xy

yyxxf

yyxxfyxL

yxL

,

,
0

),,,(

),,,(),(

),((1)

where L0(x,y) is the luminance of the original image at pixel
(x,y), and L(x,y) is the resulting luminance which represents
fuzzy reflections. Here f(x, x t, y, y t) are weight coefficients
depending on the material properties and on the ϑ angle. As in
our renderer the reflective properties of material were
characterized by the shininess and shininess strength, the
following formula was suggested:

f = 2 * ShinStrength * pow (cos (ϑ), Shininess) (2)

In renderers where specular characteristics of material are
determined by Phong coefficient (glossiness), the following
formula is suggested:

f = pow (cos (ϑ), p) (3)

Where p is Phong coefficient and ϑ(x,x′,y,y′) is the angle
between direction from intersection point to the end of “its” ray
(=specular ray) and ray fired from this point to the end of ray for
neighbour pixel (x′,y′) (see Fig.1).

From the Figure 1 one can calculate that

()
),(),(),(),(

),(),(),,(),(
),,,(cos

yxyxyxyx

yxyxyxyx
yyxx

abab

abab

−′′⋅−′′
−−′′

=′′ϑ (3)

We assume that the reflecting surface is glossy, so that nearly all
reflected energy contains in cone ϑ ≤ Θ < 10°. In this case
contribution of far pixels is negligible, and we can confine the
sum in (1) to the neighbourhood of pixel (x, y). The latter
comprises pixels (x′, y′) such that the rays fired to them from
camera deviate from ray fired to the central pixel (x, y) be angle
less than:

α = Θ/(1 + s/r) (4)

where s is the distance from camera to intersection point on
glossy surface (point a) and r is the distance from the latter to the
end of ray (point b). From the angular size we can easily estimate
the radius in pixels:

ρ = α×(image size)/(view angle) (5)

ϑ
camera

a(x,y)

a(x′,y′)

b(x′,y′)

b(x,y)

Figure 1: The thick curve at right bottom corner is glossy
reflector; thick curve at the top is the object reflected in it; small
arrows on reflector show local normals and solid long arrows
show specularly reflected rays which were traced in the 1st pass;
the dashed arrow is the ray considered for fuzzy reflecti on
simulation and ϑ is the angle between it and direction of ideal
specular reflection.

Thus, we obtain the following formula for determining the
blurred color:

�

�

<−′<−′

<−′<−′

′′

′′′′

=

dxxdyy

dxxdyy

yyxxf

yyxxfyxL

yxL

||,||

||,||
0

),,,(

),,,(),(

),((6)

(or equally we can use round instead of rectangular area)

The filter function is evaluated at the centres of pixels. It would
be better to evaluate f(x,x′,y,y′) as average over pixel, but that is
too expensive.

3. BASIC OPTIMIZATIONS

When implemented as described above the algorithm
considerably decreases rendering speed. The following
optimizations were made. They do not lead to drawbacks in
quality, but allow faster rendering.

The filtering (1) may be expensive in case of large filter size.
The following means can be used to accelerate that:

a) Force restriction on the filter size.

b) Adaptive interpolation is possible. We can “blur” the image
ignoring antialiasing. While blurring we do not split pixel in
subpixels.

c) The weight coefficients can be tablulated on a regular mesh.
It is done on the first pass of renderer. Then the calculation
of arccos is obviated, as well as e.g. raising to power γ in
Phong model.

d) While testing the preliminary implementation it was
observed that the coefficients calculated in the above -
mentioned way are similar to Gauss kernel. Therefore it is
possible to use Gauss convolution. The subtle differences in
images are usually not seen by pure eye.

e) The filter size can be calculated at each fourth pixel,
because it is reasonable to assume that the angles do not
change considerably between adjacent pixels.

3.1 RESULTS

Lower we give images for surface roughness equal to 0%, 10%
and 50% correspondingly. One can clearly see that roughness
level has strong effect on image appearance.

Figure 2: Sample scene, no fuzzy reflections

Figure 3: Sample scene, surface roughness 10%

Figure 4: Sample scene, surface roughness 50%

4. CONCLUSION

The advantages of the method are its speed, physical accuracy
under certain conditions. The algorithm can be added to any
renderer as a second pass. The following limitations are inherent
in the method:

Reflections after reflection by the first encountered glossy surface
are not handled. That is the method can not accurate handle the
case when e.g. glossy surface reflects ideal mirror which in turn
reflects something. This is because the method assumes that rays
form intersection point till ray end are straight lines.

Similarly, if one fuzzy object is reflected in other fuzzy object,
the fuzziness of furthest object (first one) will be ignored. This
assumption looks reasonable since fuzziness of primary reflection
should hide sharpness of secondary one anyway.

Then, the method is inaccurate when the reflected object has
BRDF with narrow lobe. This is because the luminance of object
point b in filtering is assumed to be the same when we observe it
from point a and a′′′′ that is at different directions, see Fig.1. But
usually the angle between those directions is small, and for
BRDF smooth enough that will not affect image quality.

5. REFERENCES

[1] (Internet link)

http://www.cs.byu.edu/courses/cs455/phase4.raytracing.html

[2] (Internet link)

http://math.ucsd.edu/~sbuss/Math155/18_Assign4B.html

[3] (Internet link)

http://www.righthemisphere.com/raygun30/product_information.
htm

[4] (Internet link)

http://www.geisswerks.com/ryan/PROG-STIL

[5] Frank Suykens, Yves Willems. Path diffe rentials and
Applications. Proceedings of the 12th Eurographics Workshop on
Rendering, 2001 pp. 254-265

[6] James Arvo. “Analytic Methods for Simulated Light
Transport", Ph.D. Thesis, Yale University, December, 1995.

About authors

Anastassiya S. Koulikova is the student of Computational
Mathematics Faculty.
E-mail: akulikova@hotbox.ru

Kirill A. Dmitriev is the PhD student in Keldysh Institute of
Applied Mathematics RAS.

E-mail: kadmitr@gin.keldysh.ru

 kirill@mpi -sb.mpg.de

