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ABSTRACT 
 
In this paper, we propose a multiresolution framework for 
improving the quality of several image and audio processing 
algorithms. The results of algorithms operating at different 
time-frequency (or space-frequency) resolutions are 
adaptively combined in order to achieve a variable 
resolution of a filter bank. Applications of the proposed 
model to image noise reduction algorithms are demonstrated 
with examples of non-local means and adaptive PCA 
algorithms. 
 

1. INTRODUCTION 
 
It is well known that signal processing algorithms dealing 
with multimedia information should account for properties 
of human perception in order to achieve better processing 
quality. There exist multiple studies of human auditory 
perception and many models of the human visual system 
which are extensively employed in image and audio 
compression algorithms [1]. However a multiresolution 
approach can also be successfully used to adjust properties 
of processing algorithms to our perception. For noise 
reduction, a multiresolution approach is able to deal with 
non-white noises by adapting sub-band noise thresholds to 
actual detected noise level at each scale. 

In this paper, we consider a time-frequency (or space-
frequency) resolution of filter banks commonly used for 
image and audio analysis and processing and propose a 
multiresolution approach that improves several existing 
algorithms. 

We will focus on two recently proposed high-quality 
image denoising algorithms: non-local means [2] and 
adaptive principal component analysis (PCA) [3]. In section 
2, we briefly describe these two algorithms and point out 
their strengths and deficiencies. In section 3, we suggest a 
general multiresolution framework that we will apply to 
these algorithms to improve their quality. We describe the 
modified algorithms in section 4, and present simulation 
results in section 5. Section 6 highlights some other areas 
where the proposed multiresolution method can be applied. 
We conclude by describing the useful properties of the 
proposed framework. 

2. IMAGE DENOISING ALGORITHMS 
 
Most existing image denoising algorithms are based on one 
of two approaches. The first type of algorithm operates in a 
single resolution and performs averaging of neighboring 
pixels to achieve noise smoothing. The second type of 
algorithm performs decomposition of a signal into sub-
bands in order to apply some kind of coefficient shrinkage 
and then inverts the transform. 
 
2.1. Non-local means 
 
The state of the art in the first type of algorithms is a non-
local (NL) means algorithm [2]. This algorithm is an 
extension to the widely used neighborhood filtering 
algorithms that form a denoised pixel yi,j as a weighted sum 
of the surrounding pixels xi,j: 
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Here W(i,j,k,l) are the weights that usually depend on 
geometric distance of 2 pixel locations and photometric 
distance of 2 pixel values. The typical choice for W is 
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In [2] it is pointed that such algorithms are not robust 
enough in presence of noisy data and tend to create 
impulsive noise �shocks� from a white noise source. So, [2] 
presents a method that averages pixels using photometric 
similarity of their neighborhoods instead of similarity of 
single pixel values: 
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Here v(x) is a vector of pixel values from a geometric 
neighborhood of pixel x, which is usually defined as a 
square window centered at the pixel x. The range Ω for (k, 
m) in the NL means algorithm can be as large as a whole 
image, hence the name �non-local�. 

Our experiments confirmed the conclusion of [2] that 
the NL means algorithm significantly outperforms other 
neighborhood filtering algorithms in terms of PSNR and 



visual quality. However the quality of the algorithm is 
significantly dependent on a selected size of pixel 
neighborhoods (�block size�) and on area of Ω (�search 
range�). For small blocks and small search ranges, the 
algorithm is limited to suppression of only high-frequency 
noise and cannot remove low-frequency (large-scale) noise. 
For large blocks and search ranges, the algorithm removes 
low-frequency noise effectively, but becomes less sensitive 
to small details (occupying a small fraction of a block) and 
tends to over-smooth them. In a section 3, we will propose a 
method of using different block sizes for denoising of  
different image sub-bands which reduces the described 
artifacts. 
 
2.2. Adaptive principal components 
 
Another type of image denoising methods uses transforms 
to split the image into sub-bands and applies coefficient 
shrinkage to sub-band signals. Such methods try to employ 
the energy compaction property of different transforms (e.g. 
discrete wavelet transform (DWT) or Karhunen-Loeve 
transform) to better separate image data from noise data. 

The most widely used family of methods of this type is 
wavelet thresholding. Wavelets have a property of shape 
invariance of basis functions which allows one to control 
the Gibbs phenomenon via careful selection of a wavelet 
basis. However wavelets are not perfect in image energy 
compaction. The standard separable DWT does not allow 
good compaction of abrupt edges of different orientations: 
edges, being wide-band signals, are always spread into 
several wavelet sub-bands. There exist many modifications 
of the DWT with better rotational invariance, i.e. improving 
compaction of edges of different orientations [4]. 

A better approach for construction of a transform basis 
has been suggested in [3], where it is proposed to use a 
principal component analysis (PCA) to build a locally 
adaptive image basis which has the best possible energy 
compaction. After the locally optimal basis is found, the 
image block is transformed using this basis and transform 
coefficients are soft-thresholded. Then the transform is 
inverted and denoised blocks are overlap-added to produce 
the resulting image. The optimal energy compaction 
properties of the adaptive PCA transform provide very high 
quality in the resulting denoised images. However the 
algorithm performance is again very dependent on the 
transform block size. With small blocks the algorithm is 
unable to suppress low-frequency noise (see illustrations in 
[6]), and with large blocks the Gibbs phenomenon becomes 
stronger. The cause of the Gibbs phenomenon is the fixed-
size support of all PCA basis functions: they are all defined 
on the same block. It would be advantageous to reduce the 
support of high-frequency basis functions to reduce the 
number of oscillations leading to the Gibbs phenomenon. In 
section 3, we propose a general framework for this. 

 

3. MULTIRESOLUTION FRAMEWORK 
 
Problems with the space-frequency or time-frequency 
resolution of filter banks do not arise only in image 
denoising algorithms. As we point in [5], the tradeoff 
between time resolution and frequency resolution is also 
critical to the performance of many audio processing 
algorithms based on the short-time Fourier transform 
(STFT). Better frequency resolution of the transform 
allowing finer separation of signal harmonics inevitably 
reduces time resolution and brings the Gibbs phenomenon 
leading to temporal smearing of transient events in audio. 

There have been many attempts to build filter banks 
with variable time-frequency resolution for audio 
compression purposes [1]. However such attempts are 
limited by the fact that compression requires the critical 
sampling property of filter banks. This significantly restricts 
the freedom to vary time-frequency resolution. On the other 
hand, image and audio processing methods allow 
redundancy in oversampled filter banks which leads to the 
following proposed multiresolution framework for signal 
processing algorithms in Fig. 1. 
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Fig. 1. Scheme of the proposed multiresolution framework. 

 
The same processing algorithm is running in several 

instances with different fixed time-frequency resolutions 
that work in parallel on the same input data stream. Their 
resulting signals are combined by another filter bank with a 
fixed time-frequency resolution. The block where transform 
domain (filter bank) coefficients of different signals are 
mixed together will be called a �mixer of coefficients�. The 
process of mixing can be controlled by some prior strategy 



(e.g. reflecting properties of human perception) or 
depending on local signal features (e.g. on its stationarity). 

Fig. 1 shows the example of parallel processing with 
just two different time-frequency resolutions, but in practice 
more parallel blocks can be used (depending on available 
computational power) to control time-frequency resolution 
smoother. 

Since mixing of processed signals x1[t] and x2[t] is 
performed in the transform domain, the suggested method 
allows achieving of arbitrary time-frequency resolution in 
arbitrary areas of time-frequency (or space-frequency) 
plane. 
 

4. MULTI-RESOLUTION VARIANTS OF IMAGE 
DENOISING ALGORITHMS 

 
It is well known that our eye is sensitive to noise across 
different frequency ranges, with a maximal sensitivity at the 
mid-frequency range. When observing an image we first 
make an overall glance, and at this stage we are sensitive to 
large-scale details and low-frequency noise. After that we 
can focus our attention on particular smaller image features 
and at this stage we become more sensitive to smaller-scale 
details and higher-frequency noise. It is important that noise 
reduction algorithms suppress noise in a wide frequency 
range, especially taking into account the ever increasing 
pixel resolution of photo images. 
 
4.1. Adaptive principal components 
 
Let�s apply the suggested multiresolution framework to the 
adaptive PCA (APCA) method from [3] in order to reduce 
the support area (and the number of oscillations) of the 
high-frequency basis vectors of the APCA. In this 
algorithm, the space-frequency resolution of the method is 
controlled by PCA block size. Let�s process the input image 
with APCA algorithm with 2 different block sizes (we 
suggest 6x6 and 16x16 pixel blocks, but it can be modified 
depending on the image size and scale of details). As a 
result, we get two denoised images: one will have the Gibbs 
phenomenon effectively suppressed, and another will have 
effective low-frequency noise suppression. 

To obtain the final result we simply need to combine 
these two images using a filter bank. We suggest using a 
non-decimated DWT (or a laplacian pyramid) as a mixer 
filter bank. Both images are transformed with the DWT (we 
used Haar and D4 wavelets with similar results), and two 
upper (high-pass) levels of wavelet coefficients are taken 
from the first image, while the rest of coefficients (low-
pass) are taken from the second image. In this way, we take 
a high-quality low frequency band from the second image, 
and Gibbs-free high frequency band from the first image. 
After performing the inverse DWT we get the resulting 
image with significantly reduced artifacts (see [5] and [6] 
for demonstration). 

Note that in this method we didn�t use all the 
capabilities of the mixer of coefficients in our model. We 
didn�t perform any image analysis and didn�t adapt mixing 
rules to local image features. This is justified by the fact that 
the APCA method itself adapts the shape of its basis vectors 
to local image features sufficiently well. 

 
4.2. Non-local means 

 
The non-local means algorithm can benefit from the same 
multiresolution approach. In a manner similar to that 
described in section 4.1, we process the image with 2 
versions of the NL means algorithm. One has a block size of 
8x8 pixels and a search range of 5x5 pixels, and another one 
has a block size of 16x16 pixels and search range of 11x11 
pixels. The results were combined using the same DWT 
approach as in section 4.1. 

 
4.3. Optimization 

 
A significant reduction of computational complexity is 
possible for both suggested denoising methods. The larger 
part of the complexity (typically about 70%) of these 
multiresolution algorithms is contained in the single-
resolution processor that works with a larger block size. 
However, since only low frequencies are taken from the 
resulting image of this processor, we can perform the 
processing on a decimated version of the image. The 
original image is reduced in size by 2x2 pixel averaging. 
Then the processing algorithm with a large block size is 
applied to the downsampled image. Finally, the image is 
upscaled back to the original size by means of bilinear 
interpolation. It is important that parameters of a single-
resolution algorithm are scaled to account for image 
downsampling. For example, the block size and search 
range should be reduced by 2 times to cover the same area 
in the image. The downsampling operation also reduces the 
noise level of the image (by 6 dB for white noise and 2x2 
downsampling). 

As a result of this modification, the overall 
computational cost of the multiresolution algorithms 
becomes only fractionally higher than the computational 
cost of corresponding single-resolution algorithms. The 
added cost is processing of the additional image with only 
one quarter area of the original image plus multiresolution 
framework overhead. 

Another specific optimization is applicable to the non-
local means algorithm. In the original paper [2] it was 
proposed to calculate the resulting image on a pixel-by-pixel 
basis. This is very computationally expensive, especially for 
large block sizes and search ranges. We suggest a 
significant reduction of computational complexity by 
averaging whole blocks instead of pixels. The size of 
averaged block can vary from 1x1 (the original algorithm) 
to the size of a similarity block v(x). The dramatic reduction 



of computational cost is achieved at the expense of only 
slight decrease of visual quality and PSNR. The optimized 
version of the algorithm becomes suitable for realtime video 
processing. 

 
5. SIMULATION RESULTS 

 
The suggested modifications to the image denoising 
methods significantly improve visual quality of the resulting 
images by reducing the Gibbs phenomenon (ringing and 
noise residuals around edges) and suppressing a low-
frequency noise. Fig. 2 shows the results of our 
modification of NL means algorithm. The results of our 
multiresolution adaptive PCA algorithm can be found in [5]. 
More detailed results can be found on our demo web-page 
[6]. We have tested the modified NL means method on 
video sequences and registered the improvements of 
average PSNR as shown in table 1. 

 

a. b. 

c. d. 
Fig. 2. Results of image denoising. a. original image, b. noisy 

image, c. non-local means method, d. multi-resolution variant of 
non-local means method. 

 
Method PSNR, dB 
Noisy video 23.87 
Non-local means 33.91 
Multi-resolution NL means 34.28 

Table 1. PSNR results for video denoising. 
 

6. OTHER APPLICATIONS OF THE 
MULTIRESOLUTION APPROACH 

 
Other applications of the multiresolution approach have 
been found in audio processing algorithms. In [5] we 
describe STFT filter banks with variable resolution for 

audio denoising. The adaptation of a filter bank time-
frequency resolution is performed not only to the static 
frequency resolution of human auditory system, but also to 
local signal features which reduces Gibbs phenomenon near 
transients. 

Another application has been found in analysis of audio 
using adaptive spectrograms. A time-frequency resolution 
of spectrograms can be adapted using the criterion of best 
compaction of local energy on a time-frequency plane. This 
prevents time smearing of transients and frequency 
smearing of stationary harmonics at the same time. The 
meaningfulness of a spectrogram for audio analysis is 
significantly increased as the new spectrogram reveals 
additional subtle details not present in traditional single-
resolution STFT spectrograms. 
 

7. CONCLUSION 
 
We have proposed the multiresolution variants of two state-
of-the-art image denoising algorithms and achieved the 
improvement in visual quality (reduction of Gibbs 
phenomenon and low-frequency noise) and PSNR measure. 
We suggest using this general framework for modification 
of other image and audio processing algorithms. 
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