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Abstract

In this paper we propose a framework for obtaining quasi-dense
Euclidean structure reconstruction by means of guided quasi-dense
point tracking in image sequences. We use a stratified algorithm
that establishes most reliable sparse point correspondences first
then robustly estimates multiview geometry and finally propagates
sparse point features to quasi-dense matches and tracks. Notable
properties of our algorithm are built-in motion model selection us-
ing geometric robust information criteria (GRIC) that helps to avoid
common algorithm degeneracy. Matching outliers are segmented
by robust homography estimation for rotational camera movement
or by reprojection error thresholding otherwise. We employ auto-
matic keyframe selection that is used to provide frames with reason-
able disparity for reliable matching and reconstruction. These tech-
nique also reduces cost of computationally expensive quasi-dense
tracking.

Keywords: quasi-dense matching, quasi-dense tracking, point
tracking, 3D reconstruction, structure from motion

1 Introduction

The problem of automatic 3D reconstruction from image sequences
or structure-from-motion is one of the key areas of research in Com-
puter Vision as it is important from both theoretical and practical
points of view. An enormous progress has been made in this area
during the last decade and theoretical developments have reached
the level of maturity for a textbook [Hartley and Zisserman 2004].
The most successful approach to uncalibrated 3d reconstruction is
based on establishing correspondences on multiple images between
so called image features (distinguishing objects with geometrical
properties). The simplest and most widely used kind of feature is
a point. Traditionally, there were two kinds of point correspon-
dences between images: sparse and dense. Sparse correspondences
are established between distinct spots in the images. They can be
detected and matched with subpixel precision and therefore are reli-
able for geometry estimation. In contrast, dense correspondence are
established for every pixel of the images. Because generally each
pixel cannot always be reliably distinguished from other pixels es-
pecially in low-textured regions unconstrained dense matching re-
main an intractable problem. All existing dense matching methods
relies on relative camera positions, known a priori.In addition this
approach is very expensive computationally, so it is usually limited
to several images with small camera motion and calibrated cameras
setup. In short, sparse points are precise but there are too few of
them to reconstruct shape of scene objects. Dense correspondences
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could possibly allow full scene depth recovery but are error-prone.
The dense-based approach usually starts with sparse matching to
obtain information for camera calibration estimation, and then use
this information for 3d reconstruction via dense matching.

General pipeline for structure and motion estimation from image
sequences proceeds as follows:

• Establish point correspondences between consecutive frames.
Robustly estimate projective 2-view and 3-view geometry en-
coded in fundamental matrix and trifocal tensor respectively.
Inconsistent matches are detected and discarded at this stage;

• Projective reconstruction for the whole sequence is obtained
by merging of two- and three-view reconstructions for subse-
quences;

• Projective reconstruction is upgraded to metric using self-
calibration;

• Finally, accuracy of reconstruction is refined by means of
point reprojection error minimization w.r.t. points’ positions
in 3d and camera parameters. This process is calledbundle
adjustment.

In 2002 a new quasi-dense approach for establishing correspon-
dences was proposed by Lhuillier and Quan [2002a] [2002b] which
is essentially a compromise between the aforesaid two. Quasi-
dense points retain precision and reliability of sparse matches,
while greatly surpassing them in sheer numbers and uniformity of
coverage of scene surfaces. This idea is crucial to our work and
discussed in depth below.

2 Related work and discussion

Two general approaches exist for correspondence estimation. The
first is called feature matching and consists of two steps - indepen-
dent detection of features in all frames and their matching in certain
frame pairs (usually successive ones). The second is called feature
tracking. It proceeds by sequential tracking of positions of once
detected features, usually by searching for a single best candidate.
On of the most popular algorithm of this kind is Lucas-Kanade-
Tomasi tracker [1991]. Another popular approach performs an ex-
haustive search through possible matches measuring their similarity
by some cost function. SSD (Sum of Square Differences) or cross-
correlation are usually employed. The latter is preferable since it
is more robust to changes in image brightness and therefore used
in most modern algorithms. Search space is usually bounded either
by assumption of small frame-to-frame displacements which is the
case in video sequences or restricted by motion model and/or al-
ready estimated projective geometry. The latter case is referred to
asguided matching/tracking. In this work it is used for establishing
quasi-dense correspondences.

Algorithms that employ cross-correlation matching or tracking
combined by robust fundamental matrix and trifocal tensor esti-
mation are an established standard in sparse tracking [Pollefeys
et al. 1998], [Fitzgibbon and Zisserman 1998], [Pollefeys and Gool
2002]. Methods that are used to improve the performance of such
algorithms by selecting motion model and using the concept of
keyframes can be found in [Gibson et al. 2002], [Thormählen et al.



2004], [Konushin et al. 2005]. In our work this issue is addressed
too.

Methods for obtaining euclidean reconstruction for extended image
sequences are discussed in [Hartley and Zisserman 2004], [Fitzgib-
bon and Zisserman 1998].

As it has been already noted in the introduction section sparse cor-
respondences provide too sparsely scattered 3d points as a recon-
struction that are not able to represent shape of scene objects that
is why additional techniques are necessary. Dense matching is dis-
cussed in [Scharstein and Szeliski 2002]. But dense methods are
not always reliable as weakly textured areas and very computation-
ally expensive.

Lhuillier and Quan [2002a] proposed a method they calledquasi-
dense matchingthat is positioned as the golden mean between
sparse and dense approaches. In a quasi-dense process frame-to-
frame quasi-dense matches are evenly distributed within textured
areas of images. This property leads to even distribution of corre-
sponding reconstructed 3d points and makes shape reconstruction
possible [Zeng et al. 2004],[Lhuillier and Quan 2005]. Their ap-
proach to constructing multi-frame quasi-dense point tracks is pre-
sented in [Lhuillier and Quan 2002b]. We propose a guided quasi-
dense tracking that is described in section 4. It differs from the
method presented in [Lhuillier and Quan 2002b] in several ways.
It uses most reliable sparse correspondences to estimate geometry
first. Sparse seed points are uniformly distributed to minimize pos-
sibility of degenerate configurations [Konushin et al. 2005]. Re-
sampled quasi-dense points are selected as most distinct points in
local blocks instead of just being their centers. We perform guided
quasi-dense tracking instead of matching to maximize number of
views where each feature is present. Our approach also incorpo-
rates selection of keyframes and motion model selection [Gibson
et al. 2002], [Thorm̈ahlen et al. 2004], [Konushin et al. 2005] for
improved reliability.

The process of obtaining reconstruction of euclidean 3d structure
from point matches is described in detail in [Hartley and Zisser-
man 2004] and [Pollefeys et al. 1999]. The final step of this
process is bundle adjustment which is usually performed using
sparse Levenberg-Marquardt algorithm (see [Hartley and Zisser-
man 2004] and [Triggs et al. 1999] for details). We use this tech-
nique as a final step too.

Algorithm pipeline outline is presented in Figure 1.

3 Sparse tracking and camera calibration

Quasi-dense matching methods are based on propagation of point
correspondences in neighborhood of seed matches supplied else-
where. In the most basic case, seed correspondences can be spec-
ified manually. However, several factors should be taken into ac-
count during seed matches generation. First, because quasi-dense
matches are established in an iterative fashion by propagating seed
matches (see Section 4 for details) absence of seed points in cer-
tain areas forbids creation of quasi-dense matches in these areas
and unreliable (outlier) seed points either completely cease prop-
agation or provide erroneous quasi-dense pixel matches in their
neighborhoods. Second, because quasi-dense points are less dis-
criminative than general point features, the tracking of quasi-dense
points is subject to greater error build-up and reliability of quasi-
dense tracks should be checked via precise geometrical constraints.
Third, establishing of quasi-dense correspondences and robust es-
timation of multi-view relations from quasi-dense matches is very
computationally expensive task.
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Figure 1: Algorithm pipeline outline

These factors place additional requirements on seed matches gen-
eration. To consider all of them we adapt a sparse feature track-
ing method described in [Konushin et al. 2005] for seed matches
generation. This method is based on partitioning the input image
sequence into several segments by adaptive selection of a num-
ber of keyframes. Keyframes are selected iteratively one-by-one
so that either homography or fundamental matrix is reliably esti-
mated from their matches while preserving the sufficient number of
sparse point tracks. We apply quasi-dense matching to keyframes
only. Such frames have sufficient number of sparse matches for
seed points for reliable quasi-dense matching and corresponding
viewpoints are relatively distant from each other to provide higher
than for all frames precision of estimation of 2d points positions.
This technique also lowers the computation cost of quasi-dense
tracking. Adaptive key-frame selection with correct corresponding
two-view relation selection via GRIC [Konushin et al. 2005] allows
correct guidance for quasi-dense matching under arbitrary camera
movement.

To increase image area coverage and provide sufficient number of
precise seed points our sparse tracking algorithm uniformly selects
features in images. Each image is partitioned into set of rectangular
regions which are called bins. LetN be the number of bins and
M is desired number of features.M/N best features are selected
from each bin and used for tracking (see [Konushin et al. 2005] for



details). The idea is illustrated in Figure 2.

Figure 2: Partitioning features into bins. Size of circle represents
relative feature quality. Left: detected sparse features. Right: fil-
tered sparse features, some good points have been neglected in
densely populated bins

Described tracking algorithm includes computing 2-view (funda-
mental matrix or homography) and 3-view (trifocal tensor) geo-
metric constraints that allows us to perform guided matching and
tracking of quasi-dense features.

As a final step sparse structure and motion are recovered using al-
gorithm similar to [Fitzgibbon and Zisserman 1998]. Recovered
cameras permit quasi-dense feature track filtration by reprojection,
see Section 4.3.

4 Establishing quasi-dense matches

In this section three main algorithms are described in detail. The
first two are variations of quasi-dense matching for 2 and 3 images
respectively. They are employed by tracking procedure which is
described in the third section as a means of establishing putative
correspondences between successive pairs and triples of keyframes.
Overall tracking pipeline is presented in Figure 1.

4.1 Quasi-dense matching for 2 frames

Pixel-to-pixel quasi-dense correspondences are obtained at first.
This process is generally the same as in [Lhuillier and Quan 2002a].
They are established through recursive propagation of existing
pixel-to-pixel matches. This process is initialized by seed matches
that are sparse matches downsampled to pixel precision.

Match quality is measured by Zero-mean Normalized Cross-
Correlation (ZNCC) that is invariant to slight brightness variations:

∑∆∈Wr
(I1(x1 +∆)− Ī1(x1)) · (I2(x2 +∆)− Ī2(x2))

∑∆∈Wr

(

I1(x1 +∆)− Ī1(x1)
)2

·∑∆∈Wr

(

I2(x2 +∆)− Ī2(x2)
)2

wherex1 = (x1,y1)
T , x2 = (x2,y2)

T – coordinates of compared
pixels, I i(x) – intensity of pixelx in ith image,Wr = {(i, j)|i, j ∈
−r, r, r ∈ N} – correlation window with radiusr (typically 5), Ī(x)
– mean intensity in windowW with centerx. ZNCC∈ (0,1). Only
matches with ZNCC greater than a certain thresholdz are chosen
as possible candidates. This threshold depends on correlation win-
dow. For quasi-dense matching we use relatively small window
with r = 2 and non-restrictive ZNCC threshold of 0.5.

To be selected a quasi-dense pixel match must also passcross-
consistency check, i.e. ZNCC(x,y) must be maximum among pos-
sible candidate matches forx in the second image as well as fory
in the first image. To limit a variety of possible candidate matches
2d disparity gradient limitand epipolar constraint or homography
(2-frame specific) are used.

2d disparity gradient limit assumes optical flow smoothness and
limits possible candidates to close neighbors of already estab-
lished match(x1,x2) being propagated (see pseudocode below). If
N (x) = {x + ∆|∆ ∈ Wn} whereWn is a neighborhood window (n
is typically 2) then 2d disparity gradient limit restricts new possible
matches to

N (x1,x2) =
{(u1,u2)|u1 ∈ N (x1), u2 ∈ N (x2), ‖(u1−u2)− (x1−x2)‖∞ ≤ d}
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Figure 3: Neighborhood of(x1,x2) where possible matches foru1

are in the frame in the neighborhood ofx2 and possible matches for
v2 are in the frame in the neighborhood ofx1

d is chosen to be the smallest possible (1) to limit bad matches at
the occluding contours in [Lhuillier and Quan 2002a]. We relax this
restriction (make it 2) since bad matches are filtered out by epipolar
and trifocal constraints.

Confidence measure s(x) is used to select pixels that can be chosen
as a quasi-dense pixel feature. To prohibit propagation is weakly
textured regions it is simply maximum intensity difference with the
closest neighbors:

s(x) = max
∆∈Wc

|I(x+∆)− I(x)|

c is usually 1.x with s(x) less than a thresholdt (typically 1-2% of
maximum image intensity) are rejected.

The propagation algorithm pseudocode is presented in Algorithm 1.

After quasi-dense pixel matches have been computed we obtain lo-
cal homographies and resampled quasi-dense subpixel correspon-
dences. We subdivide first image into rectangular blocks and ro-
bustly (using RANSAC) fit a local affine transformationH to pixel
quasi-dense correspondences(u1,u2) whose first pointu1 is within
the block assuming that most pixel matches within the block are
approximately lying on the single planar patch [Lhuillier and Quan
2005]. RANSAC also provides information about pixel matches
that do not fit to the transformation. They are considered outliers.
If we need a new feature point in this block (see the section about
tracking) then pointu1 from the pixel match with the maximum
ZNCC among inlier correspondences within is selected as the repre-
sentative point of the block and transferred to the second image with
subpixel precision using estimatedH. This is different from [Lhuil-
lier and Quan 2005] where block centers are selected as represen-
tative points. Our approach is superior since block center may not
correspond to a point with any image information or may be within
the outlier subregion that is not fitted by homography.



Algorithm 1 Two-frame quasi-dense pixel match propagation

Input : Seed pixel matches
Output : Quasi-dense pixel matches inMap

Seeds - collection of matches to be propagated
Map - collection of matches sorted by ZNCC
LocalMap - collection of local matches sorted by ZNCC

Add seed matches toMap andSeeds

while Seeds is not empty{
Pull match(x1,x2) with maximum ZNCC fromSeeds

ClearLocalMap
for all matches(u1,u2) from N (x1,x2) {

if s(u1) > t ands(u2) > t and
ZNCC(u1,u2) > zand
(u1,u2) fit the motion model

Add (u1,u2) to LocalMap
}

while LocalMap is not empty{
Pull match(u1,u2) with maximum ZNCC fromLocalMap
if neither(u1,∗) nor (∗,u2) are present inMap

Add (u1,u2) to Map andSeeds
}

}

On image 1 On image 2

H12

Figure 4: Block in the first image transferred to the second. Some
pixel matches are shown (not all of them). Representative point is
rounded by a circle in each image.

All these obtained quasi-dense subpixel correspondences are
checked by fundamental matrixF or homographyH that was ro-
bustly estimated from seed sparse points during the sparse algo-
rithm stage (model is selected according to the GRIC [Konushin
et al. 2005]). I.e. for pixelu1 corresponding pixelu2 must lie close
to epipolar lineF ·u1 or predicted positionH ·u1 respectively:

distl p(F ·u1,u2) < dtF or

distpp(H ·u1,u2) < dtH

distl p denotes distance from line to point,distpp denotes distance
from point to point anddtF , dtH are corresponding thresholds (usu-
ally selected to be 1-2 pixels). GRIC selection of homography
means either motion (camera rotates around a fixed point) or struc-
ture (all considered points are coplanar) degeneracy.

Quasi-dense 2 frame matching algorithm outline:
Input : Pair of images, seed pixel matches andF or H for this pair
of frames.

1. Propagate seed matches to quasi-dense pixel matches usingF
or H for guided matching;

2. For each small block of the first image estimate a local affine
homography that transfers quasi-dense pixel points within the
block to their correspondences in the second image. Throw
away pixel matches that do not fit this affinity;

3. Use estimated local affine homographies to transfer subpixel
quasi-dense points within the block. These may be either
newly detected representative point of the block or point
tracked from the previous frame (see the section about track-
ing);

4. Subpixel point correspondences are checked against motion
model and are thrown away if they do not fit.

Output : Local homographies and representative Quasi-dense point
matches for each block

4.2 Quasi-dense matching for 3 frames

We propose quasi-dense matching for 3 frames that extends 2 frame
approach and allows detection of inconsistent matches when epipo-
lar constraint is too weak allowing erroneous displacement along
the epipolar line.

Again Pixel-to-pixel-to-pixel (it’s shortened to ’3-pixel’ hereafter)
quasi-dense correspondences are obtained at first. They are estab-
lished through recursive propagation of existing 3-pixel matches.
This process is initialized by seed matches that are 3-frame sparse
matches downsampled to pixel precision.

Quality of match(u1,u2,u3) is measured by product of ZNCCs (we
call it ZNCC3):

ZNCC(u1,u2) ·ZNCC(u2,u3) ·ZNCC(u1,u3)

That means that all submatches(u1,u2), (u2,u3), (u1,u3) must be
consistent. The thresholdzon this product is set again to 0.5.

Cross-consistency checkalso naturally extends to 3 images: for
eachui ZNCCs withu j anduk must be maximum among possi-
ble matches onjth andkth image respectively ({i, j,k} are permu-
tations of{1,2,3}). 2d disparity gradient limitis also employed
and trifocal tensor (preestimated from sparse points) is used to pre-
dict position in the third image when supplied with positions in the
other two images. It is used here instead of reprojection due to
performance reasons.
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Figure 5: Neighborhood of(x1,x2,x3) where possible matches for
u1 are in the frames in the neighborhoods ofx2 andx3 ,possible
matches forv2 are in the frames in the neighborhoods ofx1 andx3

Confidence measureis used in the same way as with two-frame
matching.



Algorithm 2 Three-frame quasi-dense pixel match propagation

Input : Seed pixel matches
Output : Quasi-dense pixel matches inMap

Seeds - collection of matches to be propagated
Map - collection of matches sorted by ZNCC3
LocalMap - collection of local matches sorted by ZNCC3

Add seed matches toMap andSeeds

while Seeds is not empty{
Pull match(x1,x2,x3) with maximum ZNCC3 fromSeeds

ClearLocalMap
for all matches(u1,u2,u3) from N (x1,x2,x3) {

if s(u1) > t, s(u2) > t, s(u3) > t and
ZNCC3(u1,u2,u3) > zand
(u1,u2,u3) fits the motion model

Add (u1,u2,u3) to LocalMap
}

while LocalMap is not empty{
Pull match(u1,u2,u3) with max ZNCC3 fromLocalMap
if neither(u1,∗,∗) nor (∗,u2,∗) nor (∗,∗,u3)
are present inMap

Add (u1,u2,u3) to Map andSeeds
}

}

After quasi-dense pixel matches have been computed we obtain lo-
cal homographies and resampled quasi-dense subpixel correspon-
dences. We subdivide first image into rectangular blocks and ro-
bustly (using RANSAC) fit a local affine transformationsH12 and
H13 to pixel quasi-dense correspondences(u1,u2) and(u1,u3) re-
spectively whose first pointu1 is within the block assuming that
most pixel matches within the block are approximately lie on the
single planar patch [Lhuillier and Quan 2005]. RANSAC proce-
dures provide information about pixel matches that do not fit to
either of the transformations. They are considered outliers. If we
need a new feature point in this block (see the section about track-
ing) then point(u1 from the pixel match with the maximum ZNCC3
among inlier correspondences within the block is selected as the
representative point of this block and transferred to the second and
the tird images with subpixel precision using estimatedH12 and
H13.

The propagation algorithm outline is generally the same in the two-
frame case, it is presented in Algorithm 2.

All these obtained quasi-dense subpixel correspondences are
checked by trifocal tensorT or (what is equivalent and gener-
ally preferred) by reprojection of point triangulated from each pair
among three frames to the third and measuring a distance to the
tracked point position that must be less than a threshold (typically
1-2 pixels). If any of the reprojected point positions does not satisfy
this constraint this feature is considered to be an outlier. I.e. for a
match(u1,u2,u3) the following constraints must be satisfied:

distpp(repro j f rom(u1,u2),u3) < dtT and

distpp(repro j f rom(u2,u3),u1) < dtT and

distpp(repro j f rom(u3,u1),u2) < dtT

ThresholddtT is usually selected to be 1-2 pixels.

On image 1 On image 2

H12

On image 3

H13

Figure 6: Block in the first image transferred to the second and the
third. Some pixel matches are shown (not all of them). Representa-
tive point is rounded by a circle in each image.

Quasi-dense 3 frame matching algorithm outline:
Input : Triple of images, seed pixel matches and trifocal tensorT.

1. Propagate seed matches to quasi-dense pixel matches usingT
for guided matching;

2. For each small block of the first image estimate local affine
homographies that transfers quasi-dense pixel points within
the block to their correspondences in the second image and
the third images. Throw away pixel matches that do not fit
either of these affinities;

3. Use estimated local affine homographies to transfer subpixel
quasi-dense points within the block. These may be either
newly detected representative point of the block or point
tracked from the previous frame (see the section about track-
ing);

4. Subpixel point correspondences are checked against motion
model and are thrown away if they do not fit.

Output : Local homographiesH12,H13 and representative Quasi-
dense point matches for each block

4.3 Quasi-dense tracking for multiple frames

To achieve better reconstruction accuracy longer tracks are prefer-
able. We establish quasi-dense tracks by means of the following
procedure for each keyframe, which comes in two variants relying
on two or three frame matching respectively that are described in
the previous sections.

Subpixel quasi-dense pixel matches are obtained by two or three-
frames algorithm for the last two or three frames including the cur-
rent. That means that this algorithm starts with the first two or three
keyframes from the sequence beginning and repeatedly executed
for the consecutive pairs or triples of keyframes (see Figure 7). The
last frame is denoted as ‘current’ hereafter.

In the two frame case we have a set of local affine transformations to
the second image for each small block of the first image after quasi-
dense pixel matching has completed. We transfer all quasi-dense
feature points that are being tracked (i.e. were active on the previ-
ous frame) from the previous frame to the current using these local
affine transformations. The quality of the correspondences is vali-
dated by checking against geometric constraints. In our stratified al-
gorithm we use camera information obtained from the sparse stage
and may predict point position by reprojecting 3d point triangu-
lated from previous projections of this feature. But if this point was
present on only two frames its triangulation accuracy may be poor.



Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 Frame 6

current keyframeprevious keyframes

current pair

current triple

Figure 7: Current and previous frames for 2-frame and 3-frame based tracking

That’s why we prefer an alternative approach when we consider
last position as valid and perform triangulation for all keyframes
including current. If the accuracy of reconstruction (measured by
maximum error of reprojection for all frames where projection of
this point is present) remains below an inlier threshold then point
position in the current frame is considered approved. After all the
existing points have been analyzed we look through blocks of the
first frame (of this pair, not a sequence) where affine transformation
was built but there were no existing points. We initialize new tracks
in these blocks by selecting representative point in the block (see
section 4.1) in the first frame and make a beginning of new track
with this point and its position in the second image determined by
local affinity transfer. This technique allows us to maintain density
of quasi-dense correspondences through the sequence.

The three frame case is more complicated since pixel matches are
established between three frames at once. There are possibly fewer
pixel matches but they are more reliable. The other part is generally
the same as for two frames except that we search for empty blocks
in the first frame of the triple instead of a pair and newly added
quasi-dense feature tracks will immediately contain three frames.
The second and the third entries of the track are obtained using
first-to-second and first-to-third local affine homographies.

5 Quasi-dense structure reconstruction

After quasi-dense tracking has been completed reconstruction of 3d
quasi-dense points is obtained. As we already have all the cameras
estimated on the sparse stage it is a straightforward multi-frame tri-
angulation. Standard algorithm from [Hartley and Zisserman 2004]
is employed for this task. After that bundle adjustment with point-
only variation is performed.

6 Experimental results

We have studied behavior of the algorithms on a number of real
world sequences captured by a hand-held camera (Canon IXUS
500). Quantitative evaluation results for two sample sequences (15
and 30 frames long respectively) are presented in the following ta-
bles:

Method Number of points RMS Mean track length
SPARSE 1463 0.42 6.9

QUASI-LQ 6723 0.5 3.5
QUASI-2F 8213 0.46 3.8
QUASI-3F 7562 0.45 4.1

Method Number of points RMS Mean track length
SPARSE 2743 0.37 7.4

QUASI-LQ 12245 0.47 3.8
QUASI-2F 14303 0.45 4.2
QUASI-3F 13117 0.42 4.6

SPARSE denotes sparse points tracking method from [Konushin
et al. 2005]. QUASI-LQ denotes quasi-dense matching method
from [Lhuillier and Quan 2002b]. QUASI-2F denotes proposed
quasi-dense tracking with 2-frame matching method. QUASI-
3F denotes proposed quasi-dense tracking with 3-frame matching
method.

RMS denotes mean reprojection distance for all points for all cam-
eras after euclidean bundle adjustment.

Sample frame and quasi-dense structure reconstruction are pre-
sented in Figure 8.

As can be clearly seen from the tables both QUASI-2F and QUASI-
3F provide longer tracks than QUASI-LQ method due to more care-
ful selection of initial quasi-dense features. Besides this QUASI-3F
is superior to QUASI-LQ and QUASI-2F in terms of accuracy mea-
sured as RMS.

7 Conclusion and future work

In this paper a new guided quasi-dense structure estimation frame-
work has been proposed. It has been demonstrated that it provides
higher precision of 3d points estimations than that of other quasi-
dense matching methods.

Our method differs from existing methods in several ways. First,
we apply quasi-dense matching only to pairs and triples of adap-
tively selected key-frames, for which multi-view relation can be
reliably estimated. Second, we use sparse feature tracks that uni-
formly distributed in images as seed matches for quasi-dense corre-
spondence propagation. Third, we estimate camera movement from
scene structure and use projective or Euclidian multi-view geome-
try to guide quasi-dense matching for 3-frames segments. Outliers
in quasi-dense matches are segmented by thresholding reprojection
error of corresponding 3d points.



Figure 8: Sample frame from a sequence and quasi-dense 3d reconstruction
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