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Abstract. Boosting methods are known to exhibit noticeablerfitting on
some datasets, while being immune to overfittingotrer ones. In this paper
we show that standard boosting algorithms are pptagpriate in case of over-
lapping classes. This inadequateness is likelyetthb major source of boosting
overfitting while working with real world data. Teerify our conclusion we use
the fact that any overlapping classes’ task careleced to a deterministic task
with the same Bayesian separating surface. Thisbeadone by removing
“confusing samples” — samples that are misclaskifig a “perfect” Bayesian
classifier. We propose an algorithm for removingfosing samples and ex-
perimentally study behavior of AdaBoost trainedtioa resulting data sets. Ex-
periments confirm that removing confusing sampleps boosting to reduce
the generalization error and to avoid overfitting both synthetic and real
world. Process of removing confusing samples afswiges an accurate error
prediction based on the work with the training sets

1. Introduction

Problem of overfitting is one of the key problemsniachine learning. Boosting
was first believed to be immune to overfitting.was even reported to eventually
lower its test error while training after the tiiaig error reaches zero. Later, Dietterich
[4] found that boosting is very sensitive to no&@®l overfits it greatly. Grove [11]
and Friedman et al [9] noted that boosting actuallgrfits on some real-world data-
sets, although much less then one should expautdth general model after consid-
erable amount of iterations.

The best explanation of boosting generalizatiorabdities so far is margin theory
[26]. It was put under serious doubt by Briemangegxnents, but was rehabilitated
recently [22]. Margin theory provides an upper gafieation bound independent of
number of iterations made by boosting. This bounggssts that boosting may not
overfit even if ran for many rounds. But as staigdauthors: “unfortunately, however,
in their current form, our upper bounds are toospaistic to be used as actual nu-
merical estimates of the error®. Although margiedty explains why boosting may
not overfit it does not provide any explanation wigosting actually does overfit in
practice on real world data even with constant derify base learner (stump).
Domingos [5] showed the relation between margimthexplanation of boosting and
bias-variance explanation. He also made an intagestatement that reducing vari-



ance (increasing margins) is beneficial only fobiased samples, while for biased
samples it is preferable to have high variance lowargin). Biased sample is a sam-
ple, for which the optimal prediction, for a givéyss and the family of classifiers,
differs from its current label. Freund & Schapi@ in their discussion on Friedmans
paper suggest that for overlapping classes (whepedt@n error is not zero)
“AdaBoost is not the optimal method in this cask’should be noted that in real
world applications it is a rare case if Bayesiareis zero and classes are perfectly
separable due to imperfect feature vector reprasent of objects, limitations of
measuring equipment and noise.

2. Related work

After the discovery of the fact that boosting dogerfit many works were devoted
to explaining and avoiding this phenomenon. Sevausthors reported that boosting
tends to increase the weights of few hard-to-lsamples, which leads to overfitting.
Several modifications of the reweighting schemeewgroposed that make weights
change more smoothly. Domingo et al. [6] proposmalification of AdaBoost in
which the weights of the examples are kept bourmeits initial value, however the
authors admit no significant difference between Balast and its modification in
experiments on noisy data. Friedman [10] suggéstisshrinking the weights of base
hypothesis would increase boosting generalizatapability.

The property of concentrating on few hard-to-lepatterns can be interpreted in
terms of margin maximization; this view leads tgukarized modifications. Ratsch et
al. [21] view boosting as minimization of cost ftinoal through an approximate
gradient descent with respect to a margin. Theaasthropose regularization methods
to achieve “soft margins” for AdaBoost which shoakbid boosting from concentrat-
ing on misclassified samples with large negativeging. Friedman [10] also consid-
ers regularization methods through introducing prtipnal shrinkage into gradient
boosting.

In contrast to regularization methods and weighinking methods, we do not pe-
nalize algorithm’s behavior that can lead to ovénfj and concentrate on removing
samples that we prove to be harmful for boostingci®n 3. ). We consider such
approach more appropriate because it explicitly siittly defines samples to be
ignored, rather then penalize behavior that seensatd to overfitting, but also may
be the fitting of hard data.

Other authors see unboundness of loss functioheamajor source of overfitting.
Viewing boosting as a gradient descent search fyoaal fit in function space allows
modifying loss functions. Mason et al. [15] viewsadsting as gradient descent on an
appropriate cost functional in a suitable innerdouiat space. Proposed modification of
boosting algorithm with normalized sigmoid costdtion was reported to outperform
AdaBoost when boosting decision stumps, particylirithe presence of label noise.
Friedman [10] considers Huber loss function.

Rosset [23] proposes an approach of weight degaghfgervation weights which is
equivalent to "robustifying" the underlying lossh@ition. However the author admits
that in experiments on real-world data there icolsistent winner between the non-
decayed and the decayed versions of boosting giguri



In contrast to referenced methods, we see the smirce of boosting overfitting
not in an inappropriateness of particular loss fiem¢ but in general concept of aver-
age loss minimization (Section 3. ). We show thé& procedure is not adequate for
tasks with overlapping classes’.

A large body of research addresses learning iptagence of noise. Robust statis-
tics emerged in the 1960s in the statistical comiyniih2]. However in classification
tasks we cannot use the usual definition of rolmsstrirom statistics. In random classi-
fication noise model, the binary label of each eplenwhich the learner receives is
independently inverted from the true label withefixprobability, which is referred to
as the noise rate.

Krause & Singer [14] suggest employing EM algoritand changing loss function
to make boosting tolerant to known level of noiBakenouchi & Eguchi [27] develop
a modification of AdaBoost for classification noisase. The authors modify loss
function and show that proposed method moderatesotierweighting for outliers
using a uniform weight distribution.

In contrast to the works described above we doasstime presence of classifica-
tion noise and do not request any prior knowledgeua data such as noise level. It
should be noted that our method provides perforengain on real world data without
adding artificial noise, while most methods showf@enance gain only if noise is
present, and several even note degraded perfornfanzartificial noise added.

Previous research demonstrates that removing haainmes is worthwhile
[17][16][1]. The main goal of these approachesighhance the classification accu-
racy by improving the quality of training data. Beemethods have various mecha-
nisms to identify examples “suspicious, surprisgargclose to the boundary” [1]. In
most works the decision as to which of the examplesild be excluded is based on
observations of algorithm behavior. In [17] anaysif dynamical evolution of
AdaBoost weights is performed for estimating ‘hasii of every training example.
Then the points with hardness above certain thidshihich is a parameter of the
algorithm, are removed from the training set. Imtcast to referenced works we ex-
plicitly and strictly define samples to be removawl propose non-parametric algo-
rithm for removing these samples.

Our underlying concept resembles comments provigedomingos [5] who states
that increasing margin (lowering variance) for sosaeples can actually be harmful
for the learner.

In this paper we study the reasons of overfittid@osting in case of noiseless
data with overlapping classes. In this case bathpsss (x,+1) and (x,—1) (consid-
ering binary classification task) can occur withsitiwe probabilities. We show that
minimization of average loss over the training sétich is used by all boosting-like
algorithms, is not adequate in case of overlapgiagses. We call training samples
that have conditional probability of their own lhbmver than of the opposite “confus-
ing samples”. Forcing classifier to fit confusingngles by minimizing average loss
over the training set can lead to non-optimal sohgt We view this as one of the
main reasons of boosting overfitting on real-watéda.

Removing confusing samples from the dataset leadsdieterministic task with the
same Bayesian separating surface. This findingesigghat by removing these sam-
ples from training set we can enhance boostinghiliyies and avoid overfitting.



Described below is the algorithm for removing cairig samples, which requires
no prior information about data. We also show h@megalization error can be pre-
dicted from the training set only, by estimating #imount of confusing samples. In
order to support our conclusions we perform expenis on both synthetic and real
world data from UCI-repository. Experiments confithat removing confusing sam-
ples helps avoiding overfitting and increasing dlceuracy of classification. The error
prediction is also experimentally confirmed to lste accurate.

Other sections of this paper are organized asvislldn section 3. we present rea-
soning explaining boosting inadequateness in chgeaslapping classes. In section 4.
we describe an algorithm for removing confusing gas from training set. Section 5
describes our experiments and section 6. isdeftdnclusion.

3. Average loss and confusing samples

Let T =(x,y,),i =1,...n be the training set, where 0 X is the vector of attrib-
utes andy O{-1, +1} is the class label (for simplicity we consider binalassifica-
tion task). We take the assumption, that the p@is§ are random variables distrib-
uted according to an unknown distributie(x, y) .

We consider the general case of overlapping claggesh means that for some in-
stancesX the probability of both labels is positive.

Ox: p(x,+1)>0,p(x,—1)> C
Definintion 1. Let us call{(xi,yi)DT ‘P(-y |x)>05>P(y |x } “confusing
samples”. Sample%og,yi)DT (P(-y, [X)<0.5<P(y, Ix } will be called “regular
samples”.

Lemma 1. The fraction of confusing samples in the trainirgf sonverges (in
probability) to Bayesian rate with training setesimcreasing indefinitely.
Proof. Let us denote Bayesian rule B{X). The exposition immediately follows
from classical Bernoulli theorem and the fact tbanfusing samples are those sam-
ples, which are misclassified by the perfect Bamesiassifier:

P(-y [x)>05>P(y [x )= B(x)=-V.

Lemma 1 says that in case of overlapping classasng setT = (>g Y ) Jd=1..n
contains a mixture of regular and confusing samplesfraction of confusing samples
in the training set is governed by the value of &agn rate. This lemma provides us
with error prediction algorithm, which will be demed in section 4.1 .

Lemma 2. Removing all confusing samples from the trainingreduces overlapping

classes’ task to a deterministic classificatiork tath the same Bayesian separating

surface.

Proof. Removing confusing samples leads to a determinédéissification task with

conditional class distribution
b1

1, P(-y|x)<05<P(y |x).
0, P(-y|x)2052P(y |x)



One can see that Bayesian rule for this deriveld dasdl original task are the same,
which proves the lemma.
In standard boosting algorithms, training set gusatially reweighed and fitted by

weak learner in order to minimize average 165$R xR — R on the training set:
13 .

=Y C(y,,F(x)) — min,

[ ey F

where F(x) is the current classifiers ensemble. In case obailistic setup, one

seeks to minimize the conditional expectation slfor all instances[9]

E(C(y.F(x)[x)=C(LF x))P@A|x)+C(-1F &)P(-1|x)
Consider overlapping classes’ task. hettand for a number of samples with feature
vectorx in a given training set

=3 CO3,F(x) =Z[”—r;xi2c(yif(x))} :

x X=X

:Z&x(im > c(+1,F(x))+iD > C(_l’F(X))j:

xar n X %=Xy, =+ X=X,y =-1

= Z&x(h[@(ﬂf (x)) + Mo [C(—l,F (x))j,
n

xT n n><

X

wheren _,n  respectively denote amount of samp{es+1) and (x,-1).

x,+17 " X,

Consider the score of a fixed instancérom T in average loss:

Score(X) =hm:(+1,|: (x))+hBD(—l,F x)) -
nX nX

One can see that the score of every instarfcem T in average loss converges to
the conditional loss expectation with indefinitéhcreasing number of copies of in-
stancex in training set. Training set can contain seveggies of an instance only in
case of very large and dense training set, thabtstlmever holds in practice.

Usuallyn, =1, andScore(x) = C(y;, F(X)). In this case minimizing the score of a
confusing sample actually increases the true eafientof loss for the fixed instance.
Broadly speaking, minimizing average loss meansirigr classifier to fit all training
samples, including the confusing samples, whileemirclassification of confusing
samples is undesirable. Removing confusing sampldsces classification task with
overlapping classes to deterministic, which mak&€ [Rearning framework (in which
boosting is formulated) directly applicable.

In this paper we rely on Lemma 2 and reduce task awerlapping classes’ to a
deterministic one with the same Bayesian separatinigce. We propose an algorithm
that removes confusing samples and experimentaitlyshe performance of boosted
stumps being trained on reduces training set.

4. Algorithm

Our goal is to roughly estimate the conditionallqaoilities of training set samples
labels and to exclude those samples, for which



P(-y, [x)>05>P(y [ ).

In [19] Platt scaling is suggested to obtain calibd probabilities from boosting.

Platt’s scaling approximates posterior as:

1
1+expALF(X) + B)

Py[x) =

We noticed that Platt scaling may be unstable seaaf unbalanced data, in this
case simple logistic transform can be used [9]. i an iterative process. During
iterations we randomly divide data into 3 parts. ifén a boosted committee on the
first part, calibrate probabilities on the secomdl a&stimate posterior for samples
labels in the third part (using the built classifend estimated calibration parameters).
We repeat this procedure several times. At eaghweacquire an estimate of class
probabilities for training instances. Posterioiraates for every sample are averaged.

Algorithm: Removing “confusing samples”

Input: A training setT ={(x,y )} _,; number of epochs K;

1.

2.

for k=1 to K

3 3
Divide a training set into three subs@Tk' =T and ﬂTk' =0
i=1 i=1

3. Train boosted weak learners E)Tfi and obtain classifieF “(x)

Estimate calibration parametefsandB for posterior output oer2 using Platt
scaling (or logistic transform)

Estimate posterior probability of labels for san:f,p'kieTk3 ,

1
1+ exp( ACF* )+ B)

P (ylx)=

end for

Calculate the average of posterior probability:
p(y %) =mean(p*(y %))
k:x‘DTk
Construct reduced training s&t from those samples, for which

argma p g b ) =

returnT'

Those samples that have average posterior profyadsiimate of their label lower
than of its opposite are considered to be “confusamples”. After removing “con-
fusing samples” the reduced training set can bméshby boosted committee.



Averaging of estimates was extensively studiedointext of regression tasks [28].
Perrone [20] proved that averaging estimates alwgayerates improved estimate in
the sense of any convex optimization measure evout independence assumption
on the estimates. Brieman [3] experimented withrayiag class probability estimates
obtained by learning decision trees on bootstragicaes of the training set. He
showed that averaging decreases error of classbpild estimation.

Proposed algorithm is in relation with data editaqgproach [13] [24] [17]. Data
editing methods are developed for improving the resiaNeighbor classification
accuracy by removing (or relabelling) outliers frane training set. In [13] [24] en-
sembles of neural networks, built by bagging, amleyed to identify outliers. In
contrast, we use calibrated boosted trees, whiokige better posterior estimation
[19].

4.1 Error estimation

Since we are reducing classification task with aming classes to deterministic
task, then the percent of detected confusing sangbleuld, according to Lemma 1, be
the prediction of error. Our experiments, describelbw, confirm this.

5. Experiments

In order to study the behavior of Boosting incogied with removing of confusing
samples we have conducted a set of experimentsthrsinthetic and real world data.
We compare the performance of boosted stumps ttaimefull training set with
boosted stumps trained on reduced dataset. We as&tiBg algorithm described by
Schapire, R., & Singer, Y. [25]. Stumps were choagrmase learners to avoid possi-
ble issues with base learner complexity [22]. WeduBlatt scaling for posterior ap-
proximation if data is balanced and logistic transf otherwise. Size of i§k1 15% of
overall training data.

5.1 Synthetic data

We used two overlapping Gaussians to check ourlasinos. Each Gaussian has
standard deviatiom=1 and centers df.,0) and(-1,0).A perfect, Bayesian classifier
would be a straight line coinciding with the secaodrdinate axis (a stump). We take
10000 random samples drawn from these Gaussiaastes set and randomly con-
struct a training set of 200, 500 and 1000 samphesach experiment the test set was
fixed and the training set was randomly drawn fidigtribution. This was repeated for
100 times and the results were averaged. We mehsueequality of pruning as the
precision of detecting confusing and regular sampiehe training set. We could do
it explicitly since the Bayesian classifier is kmawPrecision is defined as

T
Pn = P ,

Tp+Fp
whereTp is the number of correct detections (of confusingegular samples) and

the Fp is the number of false positive detections. Ithis tatio of correctly detected
confusing or regular samples in the full set.




Figure 1 illustrates performance on our toy exampi@aBoost applied to full set
overfitts greatly and produces cluttered separatimface. Removing confusing sam-
ples allows AdaBoost to produce smooth boundany; elese to Bayesian.

Fig. 1. Artificial data points and separating surfacegnirteft to right: full dataset; dataset
reduced by proposed algorithm.

Table 1 lists the results. It is clear that AdaBadses overfit on confusing sam-
ples, especially in case of modest training ses.slhe estimated error comes to be
quite consistent with actual error on the teswdele is somewhat higher then error of
the Bayesian classifier. Accuracy of error predictis also confirmed by experiments
on real world data presented in the next secti@oklng at precision of pruning we
can see that confusing samples precision is stgmifiy lower then the precision of
regular samples detection. This means that someepge (10-15%) of removed
samples is actually regular, while most (~98%) afnples marked as regular are
marked correctly. It seems that losing some regsdanples does not really degrade
the performance of boosting, while removing the aritj of confusing ones helps
noticeably.

Table 1. Test error (%) of AdaBoost trained on raw and oedudata, error estimation and
pruning precision on synthetic data.

Estimated 10 iterations 100 iterations Bayesian classifieorer Regular Confusing

Set Size error samples samples
Full Reduced Full Reduced Train Test - .

precision precision

200 16.48 17.38 16.45 19.72 16.55 15.49 16.07 97.93 89.26

500 16.39 16.13 15.98 17.38 16.01 15.70 15.66 98.05 86.04

1000 16.39 16.14 16.33 16.89 16.37 15.89 15.95 97.67 85.34

The more data we have, the closer is average doiss e€xpectation. Also, the less
iterations boosting does, the smaller is the efi¢ctverfitting. Thus, with a lot of data
and after only few iterations AdaBoost should naticeably overfit, while AdaBoost
trained on reduced data may start suffering forohediitting, because of smaller train-
ing set. This happened in an experiment with trgjriet containing 1000 samples and
10 iterations of boosting.



5.2 Measuring the quality of pruning on real world data

In case of synthetic data one can explicitly meashe error of confusing samples
detection, but in case of real world data thisripassible. The important issue here is
how to devise an appropriate metric for the quatftpruning algorithm for real world
data. Consider dividing dataset into two parts seiarately pruning both of them. If
pruning is done correctly, a classifier trainedfiost reduced part is expected to mis-
classify samples marked as confusing in the other gnd vice-versa. Thus, we pro-
pose to measure the precision of detecting reguidrconfusing samples by the clas-
sifier trained on the separate, reduced part oféme set.

The precision of regular samples detection is #tie 10f samples that were marked
as regular samples by pruning algorithm that weneectly classified by classifier
trained on the separate, reduced subset. Analogqureicision of confusing samples
detection is the ratio of samples marked as comfusi the set of samples that were
misclassified by classifier trained on another safga reduced subset.

Table 2. Test error (%) of AdaBoost trained on raw and rediudata; test error of MadaBoost
and error estimation and pruning precision on veridata sets.

. 100 iterations 1000 iterations Regular Conf.
Dataset Est samples samples
mated  Full Reduced Mada Full Reduced Mada . -
precision precision
BREAST 3.73 4.620.08 3.65+0.09 4.010.09 4.77:0.1 3.67+0.09 4.15$0.22 98.83 72.91
AUSTRALIAN  13.06 15.240.17  13.8£0.17 14.93£0.23 17.68£0.17 13.88:0.16  16.23:0.64 96.78 74.43
GERMAN 24.66 25.720.16 2535:0.14 23.4:0.38 28.4£0.18 25.05£0.16  24.9+0.03 91.22 71.54
HABERMAN 25.96 29.67:0.29  26.33:0.31  27.78£0.31 34.50£0.36  26.37#0.32  34.97:0.1 92.14 77.14
HEART 18.34 21.410.36 18.36:0.30 16.66:0.58 | 23.13:0.36  18.07¢0.30  20.37#0.35 92.60 68.26
PIMA 24.03 25.580.20  23.99:0.16  25.26:0.17 28.020.20  24.10:0.17  28.26:0.12 93.38 79.29
SPAM 5.79 6.120.04 6.02£0.04  5.59:0.03 6.35:0.04 5.97+0.04 6.26:0.03 98.83 78.01
TIC-TAC-TOE  6.49 8.4710.20 13.58:0.29 12.840.03 2.04%0.05 2.10.08 1.6740.07 97.83 35.70
VOTE 451 4.730.13 4.610.1 5.51£0.43 5.900.14  4.63:0.10 7.35£0.29 99.51 88.84

5.3 UCI-repository data

In order to measure the performance of our algoritm real world data we have
selected 9 datasets from UCI-repository [2]. In expperiments we split the dataset in
two subsets of equal size and use one subsetafoing and the other for testing and
vice-versa. We measured the test error, pruniegigion (as described above) and
the error prediction from the training set (as diégd in section 2.3). This procedure
was repeated 50 times for a total of 100 runs (58®2s-validation). We had to use
equally sized training and test set to be able ¢asure the quality of pruning. We



also compared our approuch with one of the regddriboosting methods, namely
MadaBoost [6].

Table 2 presents the results of our experimengs|aivest error is shown in bold.
AdaBoost trained on reduced dataset has lowesetest on 5 of 9 datasets if ran for
100 iterations and is best on 7 of 9 if ran for Q@@rations. It performs better than
AdaBoost trained on full set on all, but Tic-Taceldataset. The failure on Tic-tac-
toe dataset is actually anticipated, because the idaperfectly separable and the
Bayesian error is zero. As the number of learnitggation increases, AdaBoost
trained on full dataset tends to overfit on mogasdets, while AdaBoost trained on
reduced data has almost non-increasing error viesedo the predicted estimate.
Moreover, MadaBoost is also prone to overfittingewhran for 1000 iterations despite
regularization. This confirms our conclusions ttie¢ source of boosting overfitting
are the confusing samples, and that for most realdwlata class overlapping is pre-
sent.

Figure 2 provides test curves for two datasetsB@mast dataset AdaBoost does not
have any significant gain in error with the increa$ training iterations, what was also
noted before [22], but it still benefits from progi

German dataset Breast dataset
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Fig. 2. Test and training error curves. From top left ddtdm right: test error on German data-
set; test error on Breast dataset.

5.4 Margins

It is common to interpret the performance of Bawgin terms of margins maximi-
zation. Figure 3 shows the cumulative margin foraBdost trained on full and re-
duced Breast and Tic-Tac-Toe datasets after 10@dsoaf training. On Breast dataset
AdaBoost trained on reduced dataset has lower rainmargin but has uniformly
higher margin for the margins higher than a sntm#ghold (0.03). Low minimal mar-
gin is a direct consequence of pruning — it is retio expect negative margins for the
removed samples. Pruning makes the data simplealéois AdaBoost to maximize
the margins of regular samples more efficientlye Dehavior of margins on Tic-Tac-
Toe is the same, but in case of Tic-Tac-Toe, gaimargins on lower cumulative
frequencies is insignificant. Thus sacrificing mmail margin does not actually give
any benefit and only worsens the performance.



As pointed out by Reyzin & Schapire [22], margiedhy would suggest sacrificing
minimal margin for the higher margin at low cumidatfrequencies. Removing con-
fusing samples seems to make AdaBoost performdn swanner.

Breast dataset Tic-Tac-Toe dataset

1 —— = Pruned
08 ‘! Ful ]

Cumulative frequenc

0 . . . L n . . .
4 08 06 -04 -02 0 02 04 06 08 1 4 08 06 04 02 0 02 04 06 08 1
WMargin Margin

Fig. 3. Cumulative margins for AdaBoost trained on full aretluced dataset after 100
rounds. From left to right: Breast dataset; Tic-Tae dataset.

6. Conclusion

We described the problem of overfitting in boostingase of overlapping classes.
In this case, it is likely that overfitting is inded by fitting so called “confusing sam-
ples”, that are samples misclassified by “perfdg8#iyesian classifier. Overfitting in
boosting seems to occur only when target distrdmstioverlap or the noise is present,
thus boosting could show no overfitting on someaslats and overfit greatly on oth-
ers. An algorithm for removing the confusing sarepke described, which is experi-
mentally confirmed to help boosting get lower testor and avoid overfitting. We
also show that by pruning confusing samples oneeffactively predict the generali-
zation error of the classifier by analyzing onlg tinaining set. We prove our conclu-
sion by the experiments on both synthetic dataramel UCI-repository datasets.
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