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Abstract. Boosting methods are known to exhibit noticeable overfitting on 
some datasets, while being immune to overfitting on other ones. In this paper 
we show that standard boosting algorithms are not appropriate in case of over-
lapping classes. This inadequateness is likely to be the major source of boosting 
overfitting while working with real world data. To verify our conclusion we use 
the fact that any overlapping classes’ task can be reduced to a deterministic task 
with the same Bayesian separating surface.  This can be done by removing 
“confusing samples” – samples that are misclassified by a “perfect” Bayesian 
classifier. We propose an algorithm for removing confusing samples and ex-
perimentally study behavior of AdaBoost trained on the resulting data sets. Ex-
periments confirm that removing confusing samples helps boosting to reduce 
the generalization error and to avoid overfitting on both synthetic and real 
world. Process of removing confusing samples also provides an accurate error 
prediction based on the work with the training sets. 

1.  Introduction 

Problem of overfitting is one of the key problems in machine learning. Boosting 
was first believed to be immune to overfitting. It was even reported to eventually 
lower its test error while training after the training error reaches zero. Later, Dietterich 
[4] found that boosting is very sensitive to noise and overfits it greatly. Grove [11] 
and Friedman et al [9] noted that boosting actually overfits on some real-world data-
sets, although much less then one should expect from such general model after consid-
erable amount of iterations. 

The best explanation of boosting generalization capabilities so far is margin theory 
[26]. It was put under serious doubt by Briemans experiments, but was rehabilitated 
recently [22]. Margin theory provides an upper generalization bound independent of 
number of iterations made by boosting. This bound suggests that boosting may not 
overfit even if ran for many rounds. But as stated by authors: “unfortunately, however, 
in their current form, our upper bounds are too pessimistic to be used as actual nu-
merical estimates of the error“. Although margin theory explains why boosting may 
not overfit it does not provide any explanation why boosting actually does overfit in 
practice on real world data even with constant complexity base learner (stump). 
Domingos [5] showed the relation between margin theory explanation of boosting and 
bias-variance explanation. He also made an interesting statement that reducing vari-



ance (increasing margins) is beneficial only for unbiased samples, while for biased 
samples it is preferable to have high variance (lower margin). Biased sample is a sam-
ple, for which the optimal prediction, for a given loss and the family of classifiers, 
differs from its current label. Freund & Schapire [7] in their discussion on Friedmans 
paper suggest that for overlapping classes (when Bayesian error is not zero) 
“AdaBoost is not the optimal method in this case”. It should be noted that in real 
world applications it is a rare case if Bayesian error is zero and classes are perfectly 
separable due to imperfect feature vector representation of objects, limitations of 
measuring equipment and noise.  

2.  Related work 

After the discovery of the fact that boosting does overfit many works were devoted 
to explaining and avoiding this phenomenon. Several authors reported that boosting 
tends to increase the weights of few hard-to-learn samples, which leads to overfitting. 
Several modifications of the reweighting scheme were proposed that make weights 
change more smoothly. Domingo et al. [6] propose a modification of AdaBoost in 
which the weights of the examples are kept bounded by its initial value, however the 
authors admit no significant difference between AdaBoost and its modification in 
experiments on noisy data. Friedman [10] suggests that shrinking the weights of base 
hypothesis would increase boosting generalization capability. 

The property of concentrating on few hard-to-learn patterns can be interpreted in 
terms of margin maximization; this view leads to regularized modifications. Ratsch et 
al. [21] view boosting as minimization of cost functional through an approximate 
gradient descent with respect to a margin. The authors propose regularization methods 
to achieve “soft margins” for AdaBoost which should avoid boosting from concentrat-
ing on misclassified samples with large negative margins. Friedman [10] also consid-
ers regularization methods through introducing proportional shrinkage into gradient 
boosting. 

In contrast to regularization methods and weight shrinking methods, we do not pe-
nalize algorithm’s behavior that can lead to overfitting and concentrate on removing 
samples that we prove to be harmful for boosting (Section 3. ). We consider such 
approach more appropriate because it explicitly and strictly defines samples to be 
ignored, rather then penalize behavior that seems to lead to overfitting, but also may 
be the fitting of hard data. 

Other authors see unboundness of loss function as the major source of overfitting. 
Viewing boosting as a gradient descent search for a good fit in function space allows 
modifying loss functions. Mason et al. [15] views boosting as gradient descent on an 
appropriate cost functional in a suitable inner product space. Proposed modification of 
boosting algorithm with normalized sigmoid cost function was reported to outperform 
AdaBoost when boosting decision stumps, particularly in the presence of label noise. 
Friedman [10] considers Huber loss function.  

Rosset [23] proposes an approach of weight decay for observation weights which is 
equivalent to "robustifying" the underlying loss function. However the author admits 
that in experiments on real-world data there is no consistent winner between the non-
decayed and the decayed versions of boosting algorithm. 



In contrast to referenced methods, we see the main source of boosting overfitting 
not in an inappropriateness of particular loss function, but in general concept of aver-
age loss minimization (Section 3. ). We show that this procedure is not adequate for 
tasks with overlapping classes’. 

A large body of research addresses learning in the presence of noise. Robust statis-
tics emerged in the 1960s in the statistical community [12]. However in classification 
tasks we cannot use the usual definition of robustness from statistics. In random classi-
fication noise model, the binary label of each example which the learner receives is 
independently inverted from the true label with fixed probability, which is referred to 
as the noise rate.  

Krause & Singer [14] suggest employing EM algorithm and changing loss function 
to make boosting tolerant to known level of noise. Takenouchi & Eguchi [27] develop 
a modification of AdaBoost for classification noise case. The authors modify loss 
function and show that proposed method moderates the overweighting for outliers 
using a uniform weight distribution. 

 In contrast to the works described above we do not assume presence of classifica-
tion noise and do not request any prior knowledge about data such as noise level. It 
should be noted that our method provides performance gain on real world data without 
adding artificial noise, while most methods show performance gain only if noise is 
present, and several even note degraded performance if no artificial noise added. 

Previous research demonstrates that removing hard examples is worthwhile 
[17][16][1]. The main goal of these approaches is to enhance the classification accu-
racy by improving the quality of training data. These methods have various mecha-
nisms to identify examples “suspicious, surprising or close to the boundary” [1]. In 
most works the decision as to which of the examples should be excluded is based on 
observations of algorithm behavior. In [17] analysis of dynamical evolution of 
AdaBoost weights is performed for estimating ‘hardness’ of every training example. 
Then the points with hardness above certain threshold, which is a parameter of the 
algorithm, are removed from the training set. In contrast to referenced works we ex-
plicitly and strictly define samples to be removed and propose non-parametric algo-
rithm for removing these samples. 

Our underlying concept resembles comments provided by Domingos [5] who states 
that increasing margin (lowering variance) for some samples can actually be harmful 
for the learner.  

In this paper we study the reasons of overfitting of boosting in case of noiseless 
data with overlapping classes. In this case both samples ( , 1)x +  and ( , 1)x −  (consid-
ering binary classification task) can occur with positive probabilities. We show that 
minimization of average loss over the training set, which is used by all boosting-like 
algorithms, is not adequate in case of overlapping classes. We call training samples 
that have conditional probability of their own label lower than of the opposite “confus-
ing samples”. Forcing classifier to fit confusing samples by minimizing average loss 
over the training set can lead to non-optimal solutions. We view this as one of the 
main reasons of boosting overfitting on real-world data. 

Removing confusing samples from the dataset leads to a deterministic task with the 
same Bayesian separating surface. This finding suggests that by removing these sam-
ples from training set we can enhance boosting capabilities and avoid overfitting.  



Described below is the algorithm for removing confusing samples, which requires 
no prior information about data. We also show how generalization error can be pre-
dicted from the training set only, by estimating the amount of confusing samples. In 
order to support our conclusions we perform experiments on both synthetic and real 
world data from UCI-repository. Experiments confirm that removing confusing sam-
ples helps avoiding overfitting and increasing the accuracy of classification. The error 
prediction is also experimentally confirmed to be quite accurate. 

Other sections of this paper are organized as follows. In section 3. we present rea-
soning explaining boosting inadequateness in case of overlapping classes. In section 4.  
we describe an algorithm for removing confusing samples from training set. Section 5 
describes our experiments and section 6.  is left for conclusion. 

3.  Average loss and confusing samples 

Let ( ), , 1, ...,
i i

T x y i n= =  be the training set, where 
i

x X∈ is the vector of attrib-
utes and { 1, 1}

i
y ∈ − + is the class label (for simplicity we consider binary classifica-

tion task). We take the assumption, that the pairs (x,y) are random variables distrib-
uted according to an unknown distribution( ),P x y .  

We consider the general case of overlapping classes, which means that for some in-
stances x  the probability of both labels is positive. 

: ( , 1) 0, ( , 1) 0x p x p x∃ + > − >  

Definintion 1. Let us call }{( , ) : ( | ) 0.5 ( | )
i i i ii ix y T P y x P y x∈ − > >  “confusing 

samples”. Samples }{( , ) : ( | ) 0.5 ( | )
i i i ii ix y T P y x P y x∈ − < <  will be called “regular 

samples”. 

Lemma 1. The fraction of confusing samples in the training set converges (in 
probability) to Bayesian rate with training set size increasing indefinitely. 
Proof.  Let us denote Bayesian rule by( )B x . The exposition immediately follows 
from classical Bernoulli theorem and the fact that confusing samples are those sam-
ples, which are misclassified by the perfect Bayesian classifier: 

( | ) 0.5 ( | )
i i i i

P y x P y x− > > ⇔ ( )
i iB x y= − . 

Lemma 1 says that in case of overlapping classes training set ( ), , 1, ...,
i i

T x y i n= =  
contains a mixture of regular and confusing samples; the fraction of confusing samples 
in the training set is governed by the value of Bayesian rate. This lemma provides us 
with error prediction algorithm, which will be described in section 4.1 . 

Lemma 2. Removing all confusing samples from the training set reduces overlapping 
classes’ task to a deterministic classification task with the same Bayesian separating 
surface. 
Proof.  Removing confusing samples leads to a deterministic classification task with 
conditional class distribution  

( )
( | ) 0.5 ( | )

|
( | ) 0.5 ( | )

1,      

0,       

P y x P y x
P y x

P y x P y x

− < <

− ≥ ≥


= 


ɶ . 



One can see that Bayesian rule for this derived task and original task are the same, 
which proves the lemma. 

In standard boosting algorithms, training set is sequentially reweighed and fitted by 
weak learner in order to minimize average loss :C × →ℝ ℝ ℝ on the training set:  

1

1
( , ( )) min

n

i i
F

i

C y F x
n =

→∑ , 

where )(xF  is the current classifiers ensemble. In case of probabilistic setup, one 
seeks to minimize the conditional expectation of loss for all instances x [9] 

( )( ) ( ) ( )(1 | ) ( 1| ), ( ) | 1, ( ) 1, ( )E C x P x P xy F x C F x C F x= + −−  

Consider overlapping classes’ task. Let n stand for a number of samples with feature 
vector x in a given training set 
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where 
, 1 , 1

,
x x

n n+ −  respectively denote amount of samples ( , 1)x +  and ( , 1)x − . 

Consider the score of a fixed instancex  from T  in average loss: 

( ) ( ), 1 , 1( ) 1, ( ) 1, ( )x x

x x

n n
Score x C F x C F x

n n
+ −= ⋅ + + ⋅ − . 

One can see that the score of every instance x from T in average loss converges to 
the conditional loss expectation with indefinitely increasing number of copies of in-
stance x in training set. Training set can contain several copies of an instance only in 
case of very large and dense training set, that almost never holds in practice. 

Usually 1xn = , and ( )( ) , ( )iScore x C y F x= . In this case minimizing the score of a 
confusing sample actually increases the true expectation of loss for the fixed instance. 
Broadly speaking, minimizing average loss means forcing classifier to fit all training 
samples, including the confusing samples, while correct classification of confusing 
samples is undesirable. Removing confusing samples reduces classification task with 
overlapping classes to deterministic, which makes PAC learning framework (in which 
boosting is formulated) directly applicable. 

In this paper we rely on Lemma 2 and reduce task with overlapping classes’ to a 
deterministic one with the same Bayesian separating surface. We propose an algorithm 
that removes confusing samples and experimentally study the performance of boosted 
stumps being trained on reduces training set.  

4.  Algorithm 

Our goal is to roughly estimate the conditional probabilities of training set samples 
labels and to exclude those samples, for which 



( | ) 0.5 ( | )
i i i i

P y x P y x− > > . 

In [19] Platt scaling is suggested to obtain calibrated probabilities from boosting. 
Platt’s scaling approximates posterior as:  

( )BxFA
xyP

+⋅+
≈

)(exp1

1
)|(  

We noticed that Platt scaling may be unstable in case of unbalanced data, in this 
case simple logistic transform can be used [9]. We build an iterative process. During 
iterations we randomly divide data into 3 parts. We train a boosted committee on the 
first part, calibrate probabilities on the second and estimate posterior for samples 
labels in the third part (using the built classifier and estimated calibration parameters).  
We repeat this procedure several times. At each step we acquire an estimate of class 
probabilities for training instances. Posterior estimates for every sample are averaged. 
____________________________________________________________________ 
Algorithm:  Removing “confusing samples” 
____________________________________________________________________ 
Input : A training set ( ){ }

1
,

n

i i i
T x y

=
= ; number of epochs K; 

1. for k=1 to K 

2. Divide a training set into three subsets 
3

1

i
k

i

T T
=

=∪  and 
3

1

i
k

i

T
=

= ∅∩  

3. Train boosted weak learners on 1
kT  and obtain classifier ( )kF x  

4. Estimate calibration parameters A and B for posterior output on 2
kT  using Platt 

scaling (or logistic transform) 

5. Estimate posterior probability of labels for samples in 3
kT ,  

( )
1

( | )
1 exp ( )

k

i k

i

p y x
A F x B

≈
+ ⋅ +

 

6. end for  

7. Calculate the average of posterior probability: 

( )
:

3
( | ) ( | )

i

k

i i
k x Tk

p y x mean p y x
∈

=  

8. Construct reduced training set 'T  from those samples, for which  

{ }arg max ( | )
i i

y

p y x y=  

9. return 'T    

____________________________________________________________________ 
 
Those samples that have average posterior probability estimate of their label lower 

than of its opposite are considered to be “confusing samples”. After removing “con-
fusing samples” the reduced training set can be learned by boosted committee.  



Averaging of estimates was extensively studied in context of regression tasks [28]. 
Perrone [20] proved that averaging estimates always generates improved estimate in 
the sense of any convex optimization measure even without independence assumption 
on the estimates. Brieman [3] experimented with averaging class probability estimates 
obtained by learning decision trees on bootstrap replicates of the training set. He 
showed that averaging decreases error of class probability estimation.  

Proposed algorithm is in relation with data editing approach [13] [24] [17]. Data 
editing methods are developed for improving the Nearest Neighbor classification 
accuracy by removing (or relabelling) outliers from the training set. In [13] [24] en-
sembles of neural networks, built by bagging, are employed to identify outliers. In 
contrast, we use calibrated boosted trees, which provide better posterior estimation 
[19]. 

4.1  Error estimation 

Since we are reducing classification task with overlapping classes to deterministic 
task, then the percent of detected confusing samples should, according to Lemma 1, be 
the prediction of error. Our experiments, described below, confirm this.  

5.  Experiments 

In order to study the behavior of Boosting incorporated with removing of confusing 
samples we have conducted a set of experiments on both synthetic and real world data. 
We compare the performance of boosted stumps trained on full training set with 
boosted stumps trained on reduced dataset. We use Boosting algorithm described by 
Schapire, R., & Singer, Y. [25]. Stumps were chosen as base learners to avoid possi-
ble issues with base learner complexity [22]. We used Platt scaling for posterior ap-
proximation if data is balanced and logistic transform otherwise. Size of is 1kT  15% of 
overall training data. 

5.1  Synthetic data 

We used two overlapping Gaussians to check our conclusions. Each Gaussian has 
standard deviation σ=1 and centers at (1,0) and (-1,0).A perfect, Bayesian classifier 
would be a straight line coinciding with the second coordinate axis (a stump). We take 
10000 random samples drawn from these Gaussians as a test set and randomly con-
struct a training set of 200, 500 and 1000 samples. In each experiment the test set was 
fixed and the training set was randomly drawn from distribution. This was repeated for 
100 times and the results were averaged. We measured the quality of pruning as the 
precision of detecting confusing and regular samples in the training set. We could do 
it explicitly since the Bayesian classifier is known. Precision is defined as  

Tp
Pn

Tp Fp
=

+
, 

where Tp is the number of correct detections (of confusing or regular samples) and 
the Fp is the number of false positive detections. It is the ratio of correctly detected 
confusing or regular samples in the full set. 



Figure 1 illustrates performance on our toy example. AdaBoost applied to full set 
overfitts greatly and produces cluttered separating surface. Removing confusing sam-
ples allows AdaBoost to produce smooth boundary, very close to Bayesian. 

 

Fig. 1. Artificial data points and separating surfaces. From left to right: full dataset; dataset 
reduced by proposed algorithm. 

Table 1 lists the results. It is clear that AdaBoost does overfit on confusing sam-
ples, especially in case of modest training set size. The estimated error comes to be 
quite consistent with actual error on the test set while is somewhat higher then error of 
the Bayesian classifier. Accuracy of error prediction is also confirmed by experiments 
on real world data presented in the next section. Looking at precision of pruning we 
can see that confusing samples precision is significantly lower then the precision of 
regular samples detection. This means that some percentage (10-15%) of removed 
samples is actually regular, while most (~98%) of samples marked as regular are 
marked correctly. It seems that losing some regular samples does not really degrade 
the performance of boosting, while removing the majority of confusing ones helps 
noticeably.  

Table 1. Test error (%) of AdaBoost trained on raw and reduced data, error estimation and 
pruning precision on synthetic data. 

10 iterations 100 iterations Bayesian classifier error 

Set Size 

Estimated 

error 
Full Reduced Full Reduced Train Test 

Regular 

samples 

precision 

Confusing 

samples 

precision 

200 16.48 17.38 16.45 19.72 16.55 15.49 16.07 97.93 89.26 

500 16.39 16.13 15.98 17.38 16.01 15.70 15.66 98.05 86.04 

1000 16.39 16.14 16.33 16.89 16.37 15.89 15.95 97.67 85.34 

 
The more data we have, the closer is average loss to its expectation. Also, the less 

iterations boosting does, the smaller is the effect of overfitting. Thus, with a lot of data 
and after only few iterations AdaBoost should not noticeably overfit, while AdaBoost 
trained on reduced data may start suffering form underfitting, because of smaller train-
ing set. This happened in an experiment with training set containing 1000 samples and 
10 iterations of boosting. 



5.2  Measuring the quality of pruning on real world data 

In case of synthetic data one can explicitly measure the error of confusing samples 
detection, but in case of real world data this is impossible. The important issue here is 
how to devise an appropriate metric for the quality of pruning algorithm for real world 
data. Consider dividing dataset into two parts and separately pruning both of them. If 
pruning is done correctly, a classifier trained on first reduced part is expected to mis-
classify samples marked as confusing in the other part and vice-versa. Thus, we pro-
pose to measure the precision of detecting regular and confusing samples by the clas-
sifier trained on the separate, reduced part of the same set.  

The precision of regular samples detection is the ratio of samples that were marked 
as regular samples by pruning algorithm that were correctly classified by classifier 
trained on the separate, reduced subset. Analogously, precision of confusing samples 
detection is the ratio of samples marked as confusing in the set of samples that were 
misclassified by classifier trained on another separate, reduced subset. 

Table 2. Test error (%) of AdaBoost trained on raw and reduced data; test error of MadaBoost 
and error estimation and pruning precision on various data sets. 

100 iterations 1000 iterations 

Dataset 
Esti-

mated Full Reduced Mada Full Reduced Mada 

Regular 

samples 

precision 

Conf. 

samples 

precision 

BREAST 3.73 4.6±0.08 3.65±0.09 4.01±0.09 4.77±0.1 3.67±0.09 4.15±0.22 98.83    72.91 

AUSTRALIAN 13.06 15.2±0.17 13.8±0.17 14.93±0.23 17.68±0.17 13.88±0.16 16.23±0.64 96.78    74.43 

GERMAN 24.66 25.72±0.16 25.35±0.14 23.4±0.38 28.4±0.18 25.05±0.16 24.9±0.03 91.22    71.54 

HABERMAN 25.96 29.67±0.29 26.33±0.31 27.78±0.31 34.50±0.36 26.37±0.32 34.97±0.1 92.14    77.14 

HEART 18.34 21.41±0.36 18.36±0.30 16.66±0.58 23.13±0.36 18.07±0.30 20.37±0.35 92.60    68.26 

PIMA  24.03 25.58±0.20 23.99±0.16 25.26±0.17 28.07±0.20 24.10±0.17 28.26±0.12 93.38    79.29 

SPAM 5.79 6.19±0.04 6.02±0.04 5.59±0.03 6.35±0.04 5.97±0.04 6.26±0.03 98.83    78.01 

TIC-TAC-TOE 6.49 8.47±0.20 13.59±0.29 12.84±0.03 2.04±0.05 2.12±0.08 1.67±0.07 97.83    35.70 

VOTE 4.51 4.75±0.13 4.61±0.1 5.51±0.43 5.90±0.14 4.63±0.10 7.35±0.29 99.51    88.84 

 

5.3  UCI-repository data 

In order to measure the performance of our algorithm on real world data we have 
selected 9 datasets from UCI-repository [2]. In our experiments we split the dataset in 
two subsets of equal size and use one subset for training and the other for testing and 
vice-versa. We  measured the test error, pruning precision (as described above) and 
the error prediction from the training set (as described in section 2.3). This procedure 
was repeated 50 times for a total of 100 runs (50x2 cross-validation). We had to use 
equally sized training and test set to be able to measure the quality of pruning. We 



also compared our approuch with one of the regularized boosting methods, namely 
MadaBoost [6]. 

Table 2 presents the results of our experiments, the lowest error is shown in bold. 
AdaBoost trained on reduced dataset has lowest test error on 5 of 9 datasets if ran for 
100 iterations and is best on 7 of 9 if ran for 1000 iterations. It performs better than 
AdaBoost trained on full set on all, but Tic-Tac-Toe dataset. The failure on Tic-tac-
toe dataset is actually anticipated, because the data is perfectly separable and the 
Bayesian error is zero. As the number of learning iteration increases, AdaBoost 
trained on full dataset tends to overfit on most datasets, while AdaBoost trained on 
reduced data has almost non-increasing error very close to the predicted estimate. 
Moreover, MadaBoost is also prone to overfitting when ran for 1000 iterations despite 
regularization. This confirms our conclusions that the source of boosting overfitting 
are the confusing samples, and that for most real world data class overlapping is pre-
sent.  

Figure 2 provides test curves for two datasets. On Breast dataset AdaBoost does not 
have any significant gain in error with the increase of training iterations, what was also 
noted before [22], but it still benefits from pruning. 

 

 

Fig. 2. Test and training error curves. From top left to bottom right: test error on German data-
set; test error on Breast dataset. 

5.4  Margins  

It is common to interpret the performance of Boosting in terms of margins maximi-
zation. Figure 3 shows the cumulative margin for AdaBoost trained on full and re-
duced Breast and Tic-Tac-Toe datasets after 100 rounds of training. On Breast dataset 
AdaBoost trained on reduced dataset has lower minimal margin but has uniformly 
higher margin for the margins higher than a small threshold (0.03). Low minimal mar-
gin is a direct consequence of pruning – it is natural to expect negative margins for the 
removed samples. Pruning makes the data simpler and allows AdaBoost to maximize 
the margins of regular samples more efficiently. The behavior of margins on Tic-Tac-
Toe is the same, but in case of Tic-Tac-Toe, gain in margins on lower cumulative 
frequencies is insignificant. Thus sacrificing minimal margin does not actually give 
any benefit and only worsens the performance.  



As pointed out by Reyzin & Schapire [22], margin theory would suggest sacrificing 
minimal margin for the higher margin at low cumulative frequencies. Removing con-
fusing samples seems to make AdaBoost perform in such manner. 

 
Fig. 3. Cumulative margins for AdaBoost trained on full and reduced dataset after 100 

rounds. From left to right: Breast dataset; Tic-Tac-Toe dataset. 

6.  Conclusion 

We described the problem of overfitting in boosting in case of overlapping classes. 
In this case, it is likely that overfitting is induced by fitting so called “confusing sam-
ples”, that are samples misclassified by “perfect” Bayesian classifier. Overfitting in 
boosting seems to occur only when target distributions overlap or the noise is present, 
thus boosting could show no overfitting on some datasets and overfit greatly on oth-
ers. An algorithm for removing the confusing samples is described, which is experi-
mentally confirmed to help boosting get lower test error and avoid overfitting. We 
also show that by pruning confusing samples one can effectively predict the generali-
zation error of the classifier by analyzing only the training set. We prove our conclu-
sion by the experiments on both synthetic data and nine UCI-repository datasets.  
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