
DEPTH IMAGE-BASED REPRESENTATIONS FOR STATIC AND
ANIMATED 3D OBJECTS

Y. Bayakovski*, L. Levkovich-Maslyuk**, A. Ignatenko*, A. Konushin*, D. Timasov*, A. Zhirkov*,

Mahnjin Han***, In Kyu Park***

* Dept. of Computational Mathematics and
Cybernetics,

Moscow State University,
Moscow, 119899 RUSSIA

{yurib, ignatenko, azh}@graphics.cs.msu.su

** The Keldysh Institute of
Applied Mathematics,

Russian Academy of Sciences,
Moscow, 125047 RUSSIA

levkovl@spp.keldysh.ru

*** Multimedia Lab.,
Samsung Advanced Institute

of Technology,
Yongin, 449-712 KOREA.

{manjini, saitpik}@sait.samsung.co.kr

ABSTRACT

     We describe a novel depth image-based representation
(DIBR) that has been adopted into MPEG-4 Animation
Framework eXtension (AFX). The idea of this approach is
to build a compact representation of a 3D object or scene
without storing the geometry information in traditional
polygonal form. The main formats of the DIBR family are
SimpleTexture (an image together with depth array),
PointTexture (a view of a scene from a single input camera
but with multiple pixels along each line of sight), and
OctreeImage (octree data structure together with a set of
images and their viewport parameters). The designed node
specifications and rendering algorithms are addressed. The
experimental results show the efficacy and fidelity of the
proposed approach.

1. INTRODUCTION

   This paper deals with depth image-based representations
(DIBR) of still and animated 3D objects. Instead of a
complex polygonal mesh, which is hard to construct and
handle for realistic models, image-based methods represent
a 3D object (scene) as a set of reference images completely
covering its visible surface. This data is usually
accompanied by some kind of information about the object
geometry. For the methods we consider here, each
reference image comes with a corresponding depth map,
an array of distances from the pixels in the image plane to
the object surface. One of the advantages of such a
representation is that reference images can provide high
quality visualization of the object without direct usage of
its complex polygonal model. In addition, rendering time is
proportional to the number of pixels in the reference and
output images, but in general, not to the geometric
complexity as in the case of polygonal models.
     Most popular approaches in the field of IBR were
suggested in [4][5]. Relief Textures (RT), introduced in [4]
are single images with depth maps. Layered Depth Images

(LDI) [5] use multi-valued depth maps and images,
corresponding to single projection of 3D object. Colors
and distances are stored for all intersections of each ray of
projection with the object. This allows representing all
parts of the surface, including those invisible from the
single viewpoint.
     In this paper, new representations are proposed so as to
combine advantages of different ideas suggested in the
literature, providing a user with flexible tools best suited
for a particular task. Our SimpleTexture format under
DepthImage provides universal approach to painless usage
of many reference images, adaptively positioned so as to
capture complex shape of still and animated objects.
PointTexture format under DepthImage combines the
information of both visible and invisible parts of the object
in a single data structure that can be efficiently compressed
in either lossless or lossy mode. OctreeImage format is
even more efficient in terms of storage, providing also
progressive mip-mapping capabilities.  The proposed
representation techniques have been adopted into MPEG-4
Animation Framework eXtension (AFX) [3] as a part of
MPEG-4 [1][2].
     The paper is organized as follows. In Section 2  we
describe the depth image-based representations (DIBR),
developed for MPEG-4 AFX. Formal specifications of
MPEG-4 DIBR nodes are given in Section 3. In Section 4
we describe the rendering method briefly. In Section 5 we
demonstrate the rendering results of still and animated 3D
objects in DIBR formats. Finally, we conclude in Section 6.

2. DEPTH IMAGE-BASED REPRESENTATION

     Taking into account the ideas outlined in the previous
section, as well as some of our own developments [7], we
suggested the following set of image-based formats for use
in MPEG-4 AFX: DepthImage with SimpleTexture or
PointTexture and OctreeImage. Note that SimpleTexture
and OctreeImage have animated versions.



Fig. 1. Example of Simple Textures. Six pairs of images
and depth maps are used to render the model as shown in
the center.

2.1 Static Data Representations

2.1.1 DepthImage
     SimpleTexture is a single image with depth, which is
similar to ‘sprite with depth’ and PointTexture is
equivalent to LDI [4].
     With SimpleTexture and PointTexture as building blo-
cks, we can construct a variety of representations using
MPEG-4 constructs. Formal specification will be given in
Section 3, and here we describe the format geometrically.
     DepthImage structure defines either SimpleTexture or
PointTexture together with position in space and some
other information. A set of DepthImages can be unified
under a single structure called Transform node, and this
allows us to construct a variety of useful representations.
Most commonly used are the two of them that do not have
a specific MPEG-4 name, but in our practice we called
them Box Texture (BT), and Generalized Box Texture
(GBT). BT is a union of six SimpleTextures corresponding
to a bounding cube of an object or a scene, while GBT is
an arbitrary union of any number of SimpleTextures that
together provide a consistent 3D representation. Example
of BT is given in Fig. 1, where reference images, depth
maps and the resulting 3D object are shown. BT can be
rendered with the aid of incremental warping algorithm [4],
but we use different approach applicable to GBT as well
(details of this rendering method are given in Section 6).
An example of GBT representation is shown in Fig. 2,
where 21 Simple-Textures are used to represent a complex
object, the palm tree. It should be noted that unification
mechanism allows, for instance, to use several LDIs with
different cameras to represent the same object, or parts of
the same object.

(a) (b)

Fig. 2. Generalized Box Texture (GBT). (a) Camera
locations for ‘Palm’ model. (b)  Reference image planes for
the same model (21 SimpleTextures are used).

     Hence, data structures like image-based objects, cells of
LDI tree, cells of surfels-based tree structure [8]-[10], are
all particular cases of this format, which obviously offers
much greater flexibility in adapting location and resolution
of SimpleTextures and PointTextures to the structure of
the scene.

2.1.2 OctreeImage
     The last of our formats is OctreeImage. This
representation consists of the two main components –
Binary Volumetric Octree (BVO), that represents
geometry, and a set of reference images. Geometric
information in BVO form is a set of binary
(occupied/empty) regularly spaced voxels combined  in
larger cells in usual octree manner. This representation can
be easily obtained from DepthImage data through the
intermediate ‘point cloud’ form, since each pixel with
depth defines a unique point in 3D space. Conversion of
the point cloud to BVO is illustrated in Fig. 3. An
analogous process allows to convert polygonal model to
BVO (see [7] for details). Only the orthographic
DepthImage models can be used for building OctreeImage
(SimpleTextures and PointTextures can be built for both
perspective and orthographic projections). Color is proces-
sed as follows. Each point in the cloud inherits its color
from the corresponding SimpleTexture or PointTexture.
Number of tree levels of BVO should be chosen so that
voxel size would roughly correspond to a pixel on the
rendered image. Then the color of each voxel is set to
average color of all the points within it. Note that coarser
levels of detail (mip-mapping) can be obtained from this
model by simply discarding several finest subdivision lev-



 

Fig. 3. Octree representation and mip-mapping for a ‘point
cloud’ (illustrated in 2D).

els, while setting colors of octree cells at coarser level to
the average color of their subcells (‘children’).
     Object representation as an octree with colors attributed
to nodes is very convenient for rendering with the aid of
splats, because splat size is easily computed from voxel
size. But this is a memory-inefficient format. For
storage/transmission it is transformed to much more
compact form, as follows:
     Octree structure is first converted to breadth-first
traversal linkless form, where each node is represented by
a single byte whose bits indicate if the corresponding
subcube is further subdivided. Color information is stored
as a set of reference images that are obtained by projecting
the colored voxel representation onto the predefined image
planes. This type of separation of color and geometry
makes OctreeImage suitable for animation purposes.

2.1.3 Animated Versions of the Formats
     Animated versions were defined for two of the DIBR
formats: DepthImage containing only SimpleTextures, and
OctreeImage. Data volume is one of the crucial issues with
3D animation. We have chosen these particular formats
because video streams can be naturally incorporated in the
animated versions, providing substantial data reduction
(somewhat analogous ideas were developed in [6]).
     For DepthImage, animation is performed by replacing
reference images by MovieTextures. Lossy video
compression does not seriously affect appearance of the
resulting 3D objects.
  

3. MPEG-4 NODE SPECIFICATION

     The DIBR formats are described in detail in MPEG-4
AFX node specification [3]. The definition of DIBR nodes
is shown in Fig. 4. DepthImage contains fields determin-
ing position and orientation of either SimpleTexture or
PointTexture. Scene-dependent information is stored in
special fields of the DIBR data structures, allowing the
correct interaction of DIBR objects with the rest of the
scene. Note that the DepthImage node defines a single
DIBR texture. When multiple DepthImage nodes are
related to each other, they are processed as a group, and
thus, should be placed under the same Transform node.
The diTexture field specifies the texture with depth

DepthImage {
field   SFVec3f position 0 0 10
field   SFRotation orientation 0 0 1 0
field   SFVec2f fieldOfView 0.785398 0.785398
field   SFFloat nearPlane 10
field   SFFloat farPlane        100
field   SFBool orthographic  TRUE
field   SFNode diTexture  NULL

}

SimpleTexture {
field   SFNode texture NULL
field   SFNode depth NULL

}

PointTexture {
field     SFInt32    width           256
field     SFInt32    height           256

       field     SFInt32       depthNbBits  7
field      MFInt32    depth           []
field      MFColor    color           []

}

OctreeImage {
field     SFInt32   octreeresolution     256
field     MFInt32   octree                    “”
field     MFNode   octreeimages      []

}
Fig. 4.  The specification of the DIBR nodes.

 (Simple Texture or PointTexture), which shall be mapped
into the region defined in the DepthImage node.
     The OctreeImage node defines an octree structure and
the projected textures. The octreeresolution field specifies
maximum number of octree leaves along a side of the
enclosing cube. The octree field specifies a set of octree
internal nodes. Each internal node is represented by a byte.
1 in ith bit of this byte means that the children nodes exist
for the ith child of that internal node, while 0 means that it
does not. The order of the octree internal nodes shall be
the order of breadth first traversal of the octree. The
octreeimages field specifies a set of DepthImage nodes
with SimpleTexture for diTexture field.

4. RENDERING

     Rendering methods for DIBR formats are not part of
AFX, but it is necessary to briefly explain the ideas used to
achieve simplicity, speed and quality of DIBR objects
rendering. Our rendering methods are based on splats,
small flat color patches used as ‘rendering primitives’.
Splats are positioned in space according to the depth
information for all the diTextures describing the object.
Splat sizes are computed so that their projections constitu-
te the object view without rendering-induced ‘holes’. Then
the obtained set of splats is rendered with the aid of
standard OpenGL functions. For the OctreeImage, colors
of the octree nodes (voxels) are reconstructed from the



reference images by rather complicated but fast algorithm.
Then voxel sizes are computed, and the same OpenGL-
based procedure completes the rendering.

5. EXPERIMENTAL RESULTS

     DIBR formats were implemented and tested on various
3D models, both artificially constructed and obtained by
scanning the physical objects. Quality of rendering,
simplicity and convenience of the formats made them
attractive for usage in the MPEG-4 AFX.
     In Table I, we present storage requirements, which is
needed for several 3D static and animated objects in DIBR
formats: ‘Dragon’ is an animated model from the 3DS-
MAX demo package; ‘Morton512’ is a DIBR versions of
the same polygonal model (number in the model name
indicates dimension of the reference image). ‘Palm’ is a
complex model of a tree, illustrating the great flexibility of
DepthImage format; 21 SimpleTextures where used to
provide high-quality representation.
     In Fig. 5, the results of rendering are shown. The
quality of rendering is quite good for various types of
object shape. The rendering frame rate is given in the
Table I. Tests were performed on INTEL Pentium III
500MHz machine with OpenGL accelerator.

6. CONCLUSION

     Set of image-based formats for representation of 3D
static and animated objects was developed. Effective
rendering methods, providing visualization at interactive
rates with good quality, were described. Great flexibility of
the developed formats and their ability to easily adapt to
complex object shapes was demonstrated on test examples.
Additional useful properties, such as easy mip-mapping,
are also provided. Several efficient compression methods
were developed and tested. The formats were adopted into
MPEG-4 AFX (Animation Framework eXtension) as an
alternative to usual polygonal representations.

REFERENCES
 
[1] ISO/IEC JTC1/SC29/WG11 14496-1, Coding of
Audio-Visual Objects: Systems.
[2] ISO/IEC JTC1/SC29/WG11 14496-2, Coding of
Audio-Visual Objects: Visual.
[3] ISO/IEC JTC1/SC29/WG11 N4415: PDAM of
ISO/IEC 14496-1 / AMD4, Pattaya, December 2001.
[4] M. Oliveira, G. Bishop, D. McAllister. “Relief textures
mapping,” Proc. of SIGGRAPH’00, pp. 359-368, July
2000.
[5] J. Shade, S. Gortler, L. He, R. Szeliski, “Layered depth
images,” Proc. of SIGGRAPH’98, pp. 231-242, July 1998.
[6] C. Bregler, “Video based animation techniques for hu-

man motion,” SIGGRAPH’00 Course 39 : Image-based
modeling and rendering, July 2000.
[7] A. Zhirkov. “Binary volumetric octree representation
for image based rendering,” Proc. of GRAPHICON’01,
2001.
[8] M. Oliveira and G. Bishop, “Image-based objects,”
Proc. of ACM Symposium on Interactive 3D Graphics, pp.
191-198, April 1999.
[9] C. Chang, G. Bishop, and A. Lastra, “LDI Tree: A
hierarchical representation for image-based rendering,”
Proc. of SIGGRAPH’99, pp. 291-298, August 1999.
[10] H. Pfister, M. Zwicker, J. Baar, and M. Gross,
“Surfels: Surface elements as rendering primitives,” Proc.
of  SIGGRAPH’00,  pp. 335-342, July 2000.

Table I.  Storage requirement and rendering time.

Dragon Morton Palm
Format OctreeImage OctreeImage DepthImage

Size 375 KB 173 KB 1.78 MB
Rendering

Speed 24 fps 3.2 fps 1.1 fps

Number of
Texture 6 (per frame) 6 21

Image
Resolution 256 x 256 512 x 512 256 x 256

(a) (b)

(c)
Fig. 5. Screenshots of rendered objects. (a) Dragon. (b)
Palm (c) Morton.


