
Fast Multi -Scaled Texture Generation and Rendering

Anton V. Pereberin

Keldysh Institute of Applied Mathematics RAS

Moscow, Russia

Abstract

The multi-scaled model for stochastic texture representation and
the method providing real-time rendering of textures formalized
by this model are introduced. Both “abstract” and “natural-like”
textures can be generated. Being much simpler then existing
stochastic texture models it satisfies the requirements of real-
time texture mapping: compact data representation, scalability,
random pixel access. The rendering algorithm is simple enough
to be implemented in hardware.

Keywords: stochastic textures, texture-mapping, multi-scaled
representation, wavelet transform.

1. INTRODUCTION

At least two objects are usually referred to as textures. First is an
ordinary image processed and stored in a way convenient for
mapping purpose [6], e.g. image of a palace facade to be mapped
to the corresponding geometry to create realistic 3D model of the
building. Storing such a texture in explicit form is expensive (as
hundreds of textures are to be stored in graphical device memory
simultaneously) so the image is to be compressed. Texture
compression methods have to satisfy some special requirements.
In particular, the decompression algorithm is to be as much
simple and fast as possible and suitable for implementation in
hardware. Then it must provide random access or local
reconstruction, i.e. the ability to evaluate an arbitrary pixel of the
image without reconstruction of the whole object. Moreover, a
texture is to be represented in a way convenient for mapping on
different resolution levels. This is usually achieved by mip-
mapping, i.e. storing the sequence of 1:2, 1:4, 1:8, etc., scaled
copies in addition to the initial image.

Another object is texture in its initial meaning, i.e. texture of
material (wood, paper, marble, textile, etc.), texture of sandy, or
water, or ground surfaces, texture of leather and so on. Also
different “abstract” patterns can be treated as textures.

Such textures are usually processed in the following way. Given
a relatively small sample of a texture, it is to be spreader over
any desired size. The easiest way is simple tiling of the initial
sample, but this produces poor result as tiling leads to periodic
effect that looks unnatural.

There exist several stochastic models [1][3][4] to represent such
textures. All of them are based on the hypothesis that textures
can be formalized as probabilistic distributions. A texture sample
is a sample from such a distribution. It should be analyzed in
attempt to capture the distribution. If distribution is found
properly, then initial sample and image, generated according to
the distribution, must be perceived as two samples of the same
texture, though not the same images.

In [1][2] the iteration method is used for texture synthesis and
analysis: the inputs are texture and random noise samples, they
are sequentially converted to the texture image of desired size.
In [3] the Laplasian pyramid is build to analyze texture sample,
on the synthesis phase the pyramid is transformed in a way
preserving high-resolution features (deterministic component)
and affecting low-resolution features (probabilistic component).
In [4] textures are modeled as Markov Random Fields.

The idea to represent a texture with a small object containing all
the information necessary for generation looks attractive, as this
representation is sufficiently compact. Moreover, the size of such
a representation doesn’t depend on size of the output.
Unfortunately, generation textures from samples is not suitable
for real-time applications. All the techniques mentioned above
require sufficiently complicated and time -consuming
calculations. Thus if real-time texture-mapping is required, the
image of the desired size is to be generated before the rendering
phase and then stored using texture compression techniques
which do not take into account the special structure of the image.

Our task was to find a model for texture representation, which is
probably not so powerful as existing models are, but satisfying
the requirements of real-time texture mapping, mentioned above.

First a method for fast creation of new artificial textures was
developed. The idea was to take some trivial image (base
element) composed by a user in a minute by means of simple
graphic editor and to generate new image from randomly
scattered scaled and rotated copies of base element.

The next step was to modify a model in a way providing realistic
approximation of some natural textures.

On the third step the compact texture data representation and fast
rendering algorithm was developed.

The remainder of the paper is organized as follows. Section 2
contains the detailed description of the texture representation
model. Some examples and results are introduced in Section 3. In
Section 4 the proposed model is compared with wavelet
transform of images. Section 5 introduces Layer Control Masks,
the effective rendering tech nique. In Section 6 some
implementation details and estimation of calculation complexity
and data size are also discussed. The concluding Section 7
contains some ideas on model enhancement and the proposal for
further research.

2. THE MODEL DESCRIPTION

As it was mentioned above, the idea behind the model was to
compose an object from randomly scattered scaled and rotated
copies of some small and simple trivial image (base element). In
practice, however, not all the possible scales and rotations of

base element are used; the place the copy of base element can be
dropped to is not absolutely random also.

2.1 Replications

The replication is one copy (maybe scaled and transformed as
described below) of base element to be placed to output image.
The point of output image is called replication point if it has
non-zero probability to be the origin of one of the replications.

Assume then that the base element is a square bitmap with side

size KN 2= pixels. Then the scaled versions of the element are

also squared bitmaps with side size Kkk ,1,2 = . Index k is

called resolution level or resolution.

Elements can be replicated with shift equals to one half of their
side size. That means that on the resolution level k, which

corresponds to image side size k2 , the replication points are

() Z∈−− jiji kk ,,2,2 11 .

In each replication point the following events can take place:

• Base element can be replicated (positive replication), or
negative of the base element can be replicated (negative
replication), or base element can be not replicated at all (no
replication).

• Base element can be rotated to 90 °, 180° and 270°, or not
rotated, (i.e. rotated to 0°).

• Base element can be mirrored or not mirrored.

For the particular model one can specify the probability of each
of these events.

2.2 Composing Image from Replications

We assume that base elements can have pixels with both positive
and negative intensity. Base element background has zero
intensity and is considered to be “transparent”.

At the initial step the output image is the rectangular of desired
size with zero intensity.

Then replications of base element are placed to the output image.
The element can be simply added, but other operations are also
available.

Assume that a is the current intensity value of some pixel of
output image, b is the pixel value of a replication which is to
update a and a~ is the updated intensity of the pixel. Then the
following operations are available:

• simple addition

.~ baa +=

• non-zero application

�
�

≠
=

=
0

0

bb

ba
a

,

,~ .

• “maximum” application

�
�

<
≥

=
bab

baa
a

,

,~ .

The two latter operations are not linear, and not commutative,
i.e. their result is depended on the order of replication. This
feature can be used to control “transparency” of replications.

The probability of choice of one of these operations for each
replication can be also specified.

Replications of equal resolution form layers of output image.
One weight coefficient can be assigned to each layer. In this case
all the replications of the layer are to be multiplied by the
corresponding coefficient. This controls the contrast of the layer
and consequently the layer significance in output image. Note
that the terms resolution level and layer are closely connected
with each other, but the are not equivalent (see Section 2.4
below).

The order of replication can be different. One of the easiest ways
is layer-to-layer order. It is possible to specify whether to move
from top level to bottom or vice versa.

The final step of the generation is adding some “background”
intensity value to each pixel of an image.

2.3 Model Parameters Specification
To create a particular model one has to specify number of layers
and tables of probabilistic distribution of events taking place in
replication points of each level (event tables).

In the simplest case event table has only one cell. It means that
the only distribution is used for all the replication points of a
layer. The polar situation is when the particular distribution is
specified for each replication point, but this seems to have no
sense. Usually event table determines the event probabilities for
a group of several neighbour replication points.

As to the base element it can be either included or not included
in model specification. The latter case means that the model was
intended to be used with different base elements.

Such parameters as background intensity of the whole image,
weight coefficients for each layer and order of generation (top-
bottom or bottom-top) are to be specified also.

2.4 Scaling

The proposed model provides the easy way to generate 1:2, 1:4,
1:8, etc., scaled copies of textures. Indeed, by default the top
layer (layer 0) corresponds to resolution K of base element, layer
1 corresponds to resolution)(1−K , etc. If to shift this

correspondence (e.g. layer 0 to resolution)(1−K , layer 1 to

resolution)(2−K , etc.) than scaled (reduced) version of the
texture will be g enerated. It is also possible to magnify the
texture (e.g. layer 0 corresponds to resolution)(1+K), but in

this case the base element is to be stretched to resolutions higher
than K.

3. EXAMPLES

Random Rotation Model

The simplest model is called “random rotation”. The 22× event
table consists of two staggered zero entries (which corresponds to
“no replication” with probability 1), the two remained entries are
the same and specify the uniform distribution of rotation angle
(Tab. 1). The table is the same for any layer. The number of
layers can be different but usually is 3 or 4. Weight coefficients
can be different also but in the simplest case they all are equal to
1.

The base element is not specified. Originally this very model was
used to generate new textures. So the model except the base
element was pre-defined for a user could compose new base
elements for it.

Instead of “negative application” the following pre-processing of
base elements was used for this model: the base element was
summarized with its mirrored and inverted copy. The mean of
such a pre-processed element is always 0.

Examples of textures, generated by “random rotation” model are
shown on Fig. 1 (corresponding base elements are placed to top-
left corner of each image, the leftmost texture is presented in two
scales).

Cheese

The “cheese” is a simple example of natural texture
approximation. The more or less realistic model of cheese is just
a number of holes sc attered along a plane. Holes can be of
different size, their shape and orientation are arbitrary. There
must not be too many holes, so the probability of a hole
replication must not be very high. We simplified this model by
using the only shape for all the holes (Fig. 2, left) and only two
scales. Nevertheless, the result looks like a piece of cheese (Fig.
2, right).

Brick Wall

The brick wall appeared to be an interesting example. The
“ideal” brick wall is a regular structure, and can be represented
easily. The task was to add some sort of irregularity to make the
result look more natural. The “half a brick” image was used as
the base element (Fig. 3, left). In the ideal case each two
elements in any row are to be 180° rotated copies of each other,
and two neighbour rows are to be shifted copies of each other.
We affected this order by adding a small probability for the
element to be oriented not in the proper way. One of the possible
distributions is introduced in Tab. 3. The result is shown on Fig.
3, center. The “realism” of the image can be increased by adding
some sort of a noise (Fig. 3, right). This noise is just the very
base element replicated with a low weight coefficient (0.2) on
layers 2 and 3 according to some uniform distribution (Tab. 2).

4. CONNECTION WITH WAVELET
THEORY

One can notice that the introduced model looks similar to image
wavelet synthesis [7] (i.e. inverse wavelet transform) and so -
called random wavelet expansion, introduced in [5].

Here is the well -known formula of 2D dyadic wavelet
reconstruction:

� �
=

+∞

−∞=

−−+=
K

k ji

kkk
ij jyixwyxvyxI

0

22
,

)(),(),(),(ψϕ

Suppose now that base element is a mother wavelet),(••ψ (as it

was mentioned above, in some experiments base elements were
pre-processed to satisfy at least one attribute of the real wavelet,

i.e. to have zero mean). Ins tead of wavelet coefficient)(k
ijw ,

weight coefficient)(kw , which is one per resolution k, is used.
Each scaled and shifted copy of),(••ψ is transformed (rotated,

inverted, etc., or simply vanished) by the functional []ξ,W • .

The functional is controlled by random variable ξ which

distribution depends, in general, on layer k and space disposition.
The “low -resolution” part is expressed by the mean intensity v.
Thus we get the following formula:

[])()(

,
),,(W),(k

ij
kkk

ji

K

k
jyixwvyxI ξψ −−+=

+∞

−∞==
⊕⊕ 22

0
.

Symbols ⊕ are used instead of � to show that operations

similar but not identical to addition can be used. (Note that in
general the choice of the operation is also controlled by random
variable).

The main common feature of both formulas is that they represent
an object),(••I as a collection of scaled and shifted copies of

some element),(••ψ . And, consequently, both expressions

provides good scalability.

5. LAYER CONTROL MASK

For texture mapping purpose it is desirable not to generate a
texture as the whole image, but to calculate small patches or
even single pixels of the texture (local generation). The
generation scheme described above is badly suitable for local
generation as it uses random-number generator. Indeed, all the
instances of a texture generated according to some model are
samples from the same probabilistic distribution, but they are not
the same image. In case of local generation different patches or
pixels belong to different samples, i.e. they do not belong to the
same images. Even two attempts to calculate one particular pixel
can give two different results.

So the problem is to find a technique that guarantees that all the
locally generated patches or pixels belong to the same image.

One of the possible solutions is to calculate the events in each
replication point before the generation phase started and to store
the results in special data structures.

Since in the proposed model the layers are generated
independently from each other, the structure storing pre -
calculated events is actually a set of 2-dimentional arrays. Each
array corresponds to one layer. Each entry of an array
corresponds to one replication point and contains a code
describing replication event in this point. Such an array is called
layer control mask (LCM).

Note that only one byte is enough to code all the possible events.
Indeed, 2 bits are necessary to code positive/negative/none
replication, 2 bits for the four possible rotation angles, 1 bit for
mirroring and 2 bits to code the replication operation. Seven bits
total.

LCMs provides both global and local generation. Global
generation is performed in nearly the same way as described
above, the only difference is that the generator uses prepared
event codes instead of computing them. For local generation not
all the entries of LCMs are used but only those corresponded to
specified spatial area.

One can see that the use of LCMs not only solves the problem of
local generation but also splits the generation process into two
phases: (a) LCM generation and (b) texture rendering using
prepared LCMs. Note that only the second phase is essential to
be real-time. The LCM generation contains the main part of
necessary calculations. Actually these calculations are not very
complicated in existing model, but if the model is enhanced (see
Section 7.1) the calculations will become more sophisticated and
time-consuming. Moreover, the description of the model (and
hence the input data representation) can be more complicated
also. Nevertheless the increase of the complexity of the LCD
generation it is not critical as this phase is performed
independently from rendering and cannot affect the speed of the
latter. The rendering phase uses simple non -intelligence
algorithm and primitive input data format (2D arrays of bytes).
So it can be implemented in hardware and performed very fast.

The disadvantage of LCMs is that they are of finite size. If not to
use LCMs than it is possible to generate the texture of any
desired size avoiding periodic effect. Besides, the size of input
data (the distribution description) doesn’t depend on output
image size. If LCMs are used, the output image can be of any
size also. But if size of LCMs is not enough to cover the size of
the output image they are to be tiled and this sooner or later will
lead to periodic effect. The larger the LCMs are the less
appreciable the periodic effect is. But the large LCMs affect the
compactness of texture representation. Some compromise
between output image quality and data size is to be found.

First note that even not very large LCMs can guarantee
sufficiently large output image without periodic effect. Indeed, if
the model consists of the only layer and the base element size is

3232× pixels than the LCM of 6464× entries provides the
generation of an image of size 10241024× pixels without tiling
(remind that the distance between two replication points is one
half of base element side size, hence () 102423264 =).

It seems that the smaller the size of base element is the larger the
size of LCM must be. E.g., if the base element size is only

1616× pixels then to generate 10241024× output ima ge
without tiling the size of LCM must be 128128× . However, if
the model consists of at least two layers there is usually no
necessity to make all the LCMs cover the output image size. E.g.,
the model consists of 2 layers (0 and 1), the base element size
corresponded to layer 0 is 3232× . Then the base element size
on layer 1 is 1616× pixels. Now assume that the size of both
LCMs is 6464× and the desired size of the output is

10241024× pixels. Though tiling presents in layer 1 but when
united with layer 0, which is free of tiling, then periodic effect is

hardly perceptible. Sometimes even better results can be
achieved if LCMs sizes are not multiplies of each other, are not
multiplies of power of two and maybe not square at all. E.g., size
of layer 0 LCM is 6050× , size of layer 1 LCM is 4575× . It is
obvious that the period of the output is much larger than the
period of any of the separate layers.

Other ways of p eriodic effect decay without considerable
increase of representation data size are also available.

6. DATA REPRESENTATION AND
IMPLEMENTATION NOTES

As it was mentioned above, the use of LCMs permits to divide
the generation process into two phases.

The impleme ntation details of the first phase, the LCM
generation, are not discussed here. The only thing can be
mentioned is that since the probabilistic distribution is specified
independently for each layer, the calculation of LCMs can be
parallelized easily.

Now consider the texture representation after LCM generation.
Obviously it must be both compact and easily interpreted.

A base element is represented as 8-bit bitmap of specified size
(in our experiments it was usually 128128× , 6464× or

3232× pixels). Not only the base element itself but also its
copies of lower resolutions are to be represented. We used two
representations in our experiments. The first one is Haar
transformed image [7], which has exactly the same size as initial
image but allows to reconstruct it with any dyadic resolution
relatively fast. The second way is storing all the scaled copies in
explicit form (this approach is similar to mip -mapping). This
requires more space for the representation but provides more
effective rendering (see below).

The representation of LCMs was discussed in Section 5.

Let us consider the “brick wall” representation for example. The
model consists of 3 layers: 0, 2 and 3. The size of layer 0 LCM is

4040× , size of the other (it is the same for both remained
layers) is 2020× . The size of the base element is 3232×
pixels, its 88× and 44× pixels copies are to be stored also (the
explicit representation is considered). Hence the result is

310448322040 22222 =++++ bytes plus at most 20 bytes for
additional information (including weight coefficients, generation
order flag, etc.). This data is enough to g enerate texture with
period 640640× pixels. The 8 -bit bitmap of the same size
occupies 409600 bytes which is approximately 130 times larger
than the proposed representation. Even if to add missed
resolution levels of the base element (1616× and 22× pixels)
and to use different LCMs for layers 2 and 3 than the size of the
representation will not exceed 3800 bytes which is
approximately 107 times smaller than the whole image size.

The representation can be even mo re compact if some
compression methods are applied to it. One of the possible
approach is to code the regular structure of zeros (“no
replication” events) in LCMs. E.g., LCMs generated according to
event tables Tab. 1 or Tab. 3. have many regularly structured
zero entries, thus they can be coded in a way which can reduce

the size of LCM representation approximately twice or even
more. Moreover, such kind a compression can hardly affect the
rendering speed. Some techniques of fast compression and
decompression can be applied to base elements also.

Now let us pay attention to rendering phase and discuss the
evaluation of one separate pixel of a texture.

Since almost all the data is stored in 2D arrays of bytes, access to
any entry of any LCM and any pixel of any resolution level of
base element is trivial. (However, if the base element is
represented by its Haar transform, then additional calculations
are required to get its pixels). Given point coordinates, t he
rendering module can easily find entries of LCMs corresponded
to specified point. Then, according to event codes, for each
replication covering the point it has to evaluate corresponding
pixel value. For almost all the events this evaluation consists just
in finding necessary pixel in one of the scaled copies of base
element, and only for “negative replication” the sign of the value
is to be changed then.

For the sake of simplicity assume now that simple addition only
is used for generation. According to the model definition, in any
point at most four replication of the same layer can meet. So, at
most 3 additions per layer are to be performed. Then obtained
result is to be multiplied by weight coefficient (1 multiplication).
Then values of all the N layers are to be summarized ()(1−N

additions) and mean intensity is to be added also (1 addition).
Thus the number of operations (excluding the search of
replications pixels) to render one pixel of N-layered texture
doesn’t exceed 4N additions (or similar operations) and N
multiplication.

As well as for the LCM generation sufficient portion of
calculations are performed independently for each layer, so it can
be parallelized. Note, however, that for parallel computations
scaled copies of base element are to be stored in explicit form
rather than evaluated from transformed representation.

7. CONCLUSION. FURTHER WORK

The model for representation of both “abstract” and some
“natural-like” scalable textures has been introduced. It was
supplied with effective generation and rendering technique. By
means of this technique the most complicated calculations were
encapsulated into the pre-processing phase. This permits to
perform rendering phase very fast and even to implement it in
hardware. The algorithm provides pixel-wise rendering, which is
very important for texture-mapping purposes. The representation
of texture is sufficiently compact (3-10 Kb), thus a large number
of textures can be stored in graphical device memory.

Obviously, the model is not free of limitations. Sufficiently large
class of objects can hardly be represented by existing variant. So
the one of the tasks for further research is enhancement of the
model which will enlarge the class of textures can be
represented.

Another direction of f urther work is development of texture
analysis module and is actually a new research project.

7.1 Model Enhancement

Some trivial enhancements of the model can make it more
flexible. The “power of two” restrictions on base element size,
resolution level constru ction and replication shifts can be
weakened. On the other hand this may demand additional data
for model representation and also may affect the scalability of the
output.

In existing model the probabilistic distribution of events is
specified independently for each layer. The opportunity to specify
the distribution for neighbour replications on different layers can
be added. But this can require synchronization between layers,
which can make the LCM structures more complicated.

Some other modifications of this kind can be made also.

The more serious enhancement is implementation of more
sophisticated stochastic models, models using conditional
distribution, e.g., Random Markov Fields [4].

Note that the more sophisticated model i s used, the more
complex calculations are required. But this will concern only the
phase of LCM calculation, and this phase is not hardware -
implemented and must not be real -time. As to the rendering
phase, it will work with the same (or may be slight diffe rent)
LCM structures, and thus will be as simple and fast as it is now.

7.2 Analysis Module

We assume that the structure of wide range of textures can be
approximately represented in a way similar to one proposed in
this paper, i.e. as on or maybe more “base elements” and simple
data structures controlling their replication.

One of the possible approaches is to use different modifications
of wavelet transform to capture such a structure. Wavelet
transform is a powerful tool for space-frequency analysis and the
use of hierarchical, multiresolution or wavelet-based methods for
texture analysis is not new [1][3][5]. Moreover, the existing
model has many features common with dyadi c 2D wavelet
transform, and the use of similar methods for both synthesis and
analysis seems to be promising.

8. ACKNOWLEDGEMENTS

This work was made as a part of research program performed in
accordance with the Research Agreement between Moscow State
University and Intel Technologies, Inc.

9. REFERENCES

[1] D. J. Heeger and J. R. Bergen. Pyramid-Based Texture
Analysis/Synthesis. Proceedings of SIGGRAPH’95, pp. 229-
238, 1995.

[2] T. F. El-Maraghi. An implementation of Heeger and
Bergen’s Texture Analysis/Synthesis Algorithm, 1997.
http://www.cs.toronto.edu/~tem/2522/texture.html

[3] J. S. De Bonet. Multiresolution Sampling Procedure for
Analysis and Synthesis of Texture Images. Proceedings of
SIGGRAPH’97, pp. 362-368, 1997.
http://www.ai.mit.edu/~jsd/Research/TextureSynthesis/

[4] A. A. Efros and T. K. Leung. Texture Synthesis by Non-
Parametric Sampling. IEEE International Conference on
Computer Vision, Corfu, Greece, Sept. 1999.

[5] D. Mumford and B. Gidas. Stochastic Models for Generic
Images, 2000.
http://www.dam.brown.edu/people/mumford/Papers/Generic5.pdf

[6] A.V. Pereberin. Hierarchical Approach for Texture
Compression. Proceedings of GraphiCon’99, pp. 195-199,
1999.

[7] E. J. Stollnitz, T. D. Derose and D. H. Salesin. Wavelets for
Computer Graphics. Theory and Applications. Morgan
Kaufmann Publishers, Inc., San Francisco, California, 1996.

About the author:

Anton V. Pereberin is the postgraduate student of Keldysh
Institute of Applied Mathematics. Interested in multiresolution
methods of graphical information representation.

E-mail: avpereb@newmail.ru

Tab. 1. The “random rotation” model

Pos. repl. 1.0
Neg. repl. 0.0
No repl. 0.0

Rot. 0° 0.25
Rot. 90° 0.25
Rot. 180° 0.25
Rot. 270° 0.25

Mirroring 0.0

Addition 1.0
Non-zero 0.0
Maxinium 0.0

Tab. 2. The “simple noise” model.

Pos. repl. 0.33
Neg. repl. 0.33

No repl. 0.34

Rot. 0° 0.25
Rot. 90° 0.25
Rot. 180° 0.25
Rot. 270° 0.25

Mirroring 0.5

Addition 1.0

Tab. 3. The “brick wall” model.

Pos. 1.0
0° 0.8
90° 0.05
180° 0.15
Non-z. 1.0

0
Pos. 1.0
0° 0.2

180° 0.8
Non-z. 1.0

0

0 0 0 0

0
Pos. 1.0
0° 0.75
90° 0.05
180° 0.2
Non-z. 1.0

0
Pos. 1.0
0° 0.1
90° 0.02
180° 0.88
Non-z. 1.0

0 0 0 0

Fig. 1. Examples of “random rotation” model.

Fig. 2. “Cheese”: base element
and output image.

Fig. 3. “Brick wall”: base element, simple output image
and advanced output image.

0

0

