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Abstract  

The multi-scaled model for stochastic texture representation and 
the method providing real-time rendering of textures formalized 
by this model are introduced. Both “abstract” and “natural-like” 
textures can be generated. Being much simpler then existing 
stochastic texture models it satisfies the requirements of real-
time texture mapping: compact data representation, scalability, 
random pixel access. The rendering algorithm is simple enough 
to be implemented in hardware. 

Keywords: stochastic textures, texture-mapping, multi-scaled 
representation, wavelet transform.  

1. INTRODUCTION 

At least two objects are usually referred to as textures. First is an 
ordinary image processed and stored in a way convenient for 
mapping purpose [6], e.g. image of a palace facade to be mapped 
to the corresponding geometry to create realistic 3D model of the 
building. Storing such a texture in explicit form is expensive (as 
hundreds of textures are to be stored in graphical device memory 
simultaneously) so the image is to be compressed. Texture 
compression methods have to satisfy some special requirements. 
In particular, the decompression algorithm is to be as much 
simple and fast as possible and suitable for implementation in 
hardware. Then it must provide random access or local 
reconstruction, i.e. the ability to evaluate an arbitrary pixel of the 
image without reconstruction of the whole object. Moreover, a 
texture is to be represented in a way convenient for mapping on 
different resolution levels. This is usually achieved by mip-
mapping, i.e. storing the sequence of 1:2, 1:4, 1:8, etc., scaled 
copies in addition to the initial image. 

Another object is texture in its initial meaning, i.e. texture of 
material (wood, paper, marble, textile, etc.), texture of sandy, or 
water, or ground surfaces, texture of leather and so on. Also 
different “abstract” patterns can be treated as textures. 

Such textures are usually processed in the following way. Given 
a relatively small sample of a texture, it is to be spreader over 
any desired size. The easiest way is simple tiling of the initial 
sample, but this produces poor result as tiling leads to periodic 
effect that looks unnatural. 

There exist several stochastic models [1][3][4] to represent such 
textures. All of them are based on the hypothesis that textures 
can be formalized as probabilistic distributions. A texture sample 
is a sample from such a distribution. It should be analyzed in 
attempt to capture the distribution. If distribution is found 
properly, then initial sample and image, generated according to 
the distribution, must be perceived as two samples of the same 
texture, though not the same images. 

In [1][2] the iteration method is used for texture synthesis and 
analysis: the inputs are texture and random noise samples, they 
are sequentially converted to the texture image of desired size. 
In [3] the Laplasian pyramid is build to analyze texture sample, 
on the synthesis phase the pyramid is transformed in a  way 
preserving high-resolution features (deterministic component) 
and affecting low-resolution features (probabilistic component). 
In [4] textures are modeled as Markov Random Fields. 

The idea to represent a texture with a small object containing all 
the information necessary for generation looks attractive, as this 
representation is sufficiently compact. Moreover, the size of such 
a representation doesn’t depend on size of the output. 
Unfortunately, generation textures from samples is not suitable 
for real-time applications. All the techniques mentioned above 
require sufficiently complicated and time -consuming 
calculations. Thus if real-time texture-mapping is required, the 
image of the desired size is to be generated before the rendering 
phase and then stored using texture compression techniques 
which do not take into account the special structure of the image. 

Our task was to find a model for texture representation, which is 
probably not so powerful as existing models are, but satisfying 
the requirements of real-time texture mapping, mentioned above.  

First a method for fast creation of new artificial textures was 
developed. The idea was to take some trivial image (base 
element) composed by a user in a minute by means of simple 
graphic editor and to generate new image from randomly 
scattered scaled and rotated copies of base element. 

The next step was to modify a model in a way providing realistic 
approximation of some natural textures. 

On the third step the compact texture data representation and fast 
rendering algorithm was developed. 

The remainder of the paper is organized as follows. Section 2 
contains the detailed description of the texture representation 
model. Some examples and results are introduced in Section 3. In 
Section 4 the proposed model is compared with wavelet 
transform of images. Section 5 introduces Layer Control Masks, 
the effective rendering tech nique. In Section  6 some 
implementation details and estimation of calculation complexity 
and data size are also discussed. The concluding Section  7 
contains some ideas on model enhancement and the proposal for 
further research. 

2. THE MODEL DESCRIPTION 

As it was mentioned above, the idea behind the model was to 
compose an object from randomly scattered scaled and rotated 
copies of some small and simple trivial image (base element). In 
practice, however, not all the possible scales and rotations of 



base element are used; the place the copy of base element can be 
dropped to is not absolutely random also. 

2.1 Replications  

The replication is one copy (maybe scaled and transformed as 
described below) of base element to be placed to output image. 
The point of output image is called replication point if it has 
non-zero probability to be the origin of one of the replications. 

Assume then that the base element is a square bitmap with side 

size KN 2=  pixels. Then the scaled versions of the element are 

also squared bitmaps with side size Kkk ,1,2 = . Index k is 

called resolution level or resolution. 

Elements can be replicated with shift equals to one half of their 
side size. That means that on the  resolution level k, which 

corresponds to image side size k2 , the replication points are 

( ) Z∈−− jiji kk ,,2,2 11 . 

In each replication point the following events can take place: 

• Base element can be replicated ( positive replication), or 
negative of the base element can be replicated ( negative 
replication), or base element can be not replicated at all (no 
replication). 

• Base element can be rotated to 90 °, 180° and 270°, or not 
rotated, (i.e. rotated to 0°). 

• Base element can be mirrored or not mirrored. 

For the particular model one can specify the probability of each 
of these events.  

2.2 Composing Image from Replications  

We assume that base elements can have pixels with both positive 
and negative intensity. Base element background has zero 
intensity and is considered to be “transparent”. 

At the initial step the output image is the rectangular of desired 
size with zero intensity. 

Then replications of base element are placed to the output image. 
The element can be simply added, but other operations are also 
available. 

Assume that a is the current intensity value of some pixel of 
output image, b is the pixel value of a replication which is to 
update a and a~  is the updated intensity of the pixel. Then the 
following operations are available: 

• simple addition 
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The two latter operations are not linear, and not commutative, 
i.e. their result is depended on the order of replication. This 
feature can be used to control “transparency” of replications. 

The probability of choice of one of these operations for each 
replication can be also specified. 

Replications of equal resolution form layers of output image. 
One weight coefficient can be assigned to each layer. In this case 
all the replications of the layer are to be multiplied by the 
corresponding coefficient. This controls the contrast of the layer 
and consequently the layer significance in output image. Note 
that the terms resolution level and layer are closely connected 
with each other, but the are not equivalent (see Section  2.4 
below). 

The order of replication can be different. One of the easiest ways 
is layer-to-layer order. It is possible to specify whether to move 
from top level to bottom or vice versa. 

The final step of the generation is adding some “background” 
intensity value to each pixel of an image. 

2.3 Model Parameters Specification  
To create a particular model one has to specify number of layers 
and tables of probabilistic distribution of events taking place in 
replication points of each level (event tables). 

In the simplest case event table has only one cell. It means that 
the only distribution is used for all the replication points of a 
layer. The polar situation is when the particular distribution is 
specified for each replication point, but this seems to have no 
sense. Usually event table determines the event probabilities for 
a group of several neighbour replication points. 

As to the base element it can be either included or not included 
in model specification. The latter case means that the model was 
intended to be used with different base elements. 

Such parameters as background intensity of the whole image, 
weight coefficients for each layer and order of generation (top-
bottom or bottom-top) are to be specified also. 

2.4 Scaling  

The proposed model provides the easy way to generate 1:2, 1:4, 
1:8, etc., scaled copies of textures. Indeed, by default the top 
layer (layer 0) corresponds to resolution K of base element, layer 
1 corresponds to resolution )( 1−K , etc. If to shift this 

correspondence (e.g. layer 0 to resolution )( 1−K , layer 1 to 

resolution )( 2−K , etc.) than scaled (reduced) version of the 
texture will be g enerated. It is also possible to magnify the 
texture (e.g. layer 0 corresponds to resolution )( 1+K ), but in 

this case the base element is to be stretched to resolutions higher 
than K. 



3. EXAMPLES 

Random Rotation Model  

The simplest model is called “random rotation”. The 22×  event 
table consists of two staggered zero entries (which corresponds to 
“no replication” with probability 1), the two remained entries are 
the same and specify the uniform distribution of rotation angle 
(Tab. 1). The table is the same for any layer. The number of 
layers can be different but usually is 3 or 4. Weight coefficients 
can be different also but in the simplest case they all are equal to 
1. 

The base element is not specified. Originally this very model was 
used to generate new textures. So the model except the base 
element was pre-defined for a user could compose new base 
elements for it. 

Instead of “negative application” the following pre-processing of 
base elements was used for this model: the base element was 
summarized with its mirrored and inverted copy. The mean of 
such a pre-processed element is always 0. 

Examples of textures, generated by “random rotation” model are 
shown on Fig. 1 (corresponding base elements are placed to top-
left corner of each image, the leftmost texture is presented in two 
scales). 

Cheese 

The “cheese” is a simple example of natural texture 
approximation. The more or less realistic model of cheese is just 
a number of holes sc attered along a plane. Holes can be of 
different size, their shape and orientation are arbitrary. There 
must not be too many holes, so the probability of a hole 
replication must not be very high. We simplified this model by 
using the only shape for all the holes (Fig. 2, left) and only two 
scales. Nevertheless, the result looks like a piece of cheese (Fig. 
2, right). 

Brick Wall  

The brick wall appeared to be an interesting example. The 
“ideal” brick wall is  a regular structure, and can be represented 
easily. The task was to add some sort of irregularity to make the 
result look more natural. The “half a brick” image was used as 
the base element ( Fig. 3, left). In the ideal case each two 
elements in any row are to be 180° rotated copies of each other, 
and two neighbour rows are to be shifted copies of each other. 
We affected this order by adding a small probability for the 
element to be oriented not in the proper way. One of the possible 
distributions is introduced in Tab. 3. The result is shown on Fig. 
3, center. The “realism” of the image can be increased by adding 
some sort of a noise (Fig. 3, right). This noise is just the very 
base element replicated with a low weight coefficient (0.2) on 
layers 2 and 3 according to some uniform distribution (Tab. 2).  

4. CONNECTION WITH WAVELET 
THEORY 

One can notice that the introduced model looks similar to image 
wavelet synthesis [7] (i.e. inverse wavelet transform) and so -
called random wavelet expansion, introduced in [5]. 

Here is the well -known formula of 2D dyadic wavelet 
reconstruction: 
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Suppose now that base element is a mother wavelet ),( ••ψ  (as it 

was mentioned above, in some experiments base elements were 
pre-processed to satisfy at least one attribute of the real wavelet, 

i.e. to have zero mean). Ins tead of wavelet coefficient )(k
ijw , 

weight coefficient )(kw , which is one per resolution k, is used. 
Each scaled and shifted copy of ),( ••ψ  is transformed (rotated, 

inverted, etc., or simply vanished) by the functional [ ]ξ,W • . 

The functional is controlled by random variable ξ  which 

distribution depends, in general, on layer k and space disposition. 
The “low -resolution” part is expressed by the mean intensity v. 
Thus we get the following formula: 
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Symbols ⊕  are used instead of �  to show that operations 

similar but not identical to addition can be used. (Note that in 
general the choice of the operation is also controlled by random 
variable). 

The main common feature of both formulas is that they represent 
an object ),( ••I  as a collection of scaled and shifted copies of 

some element ),( ••ψ . And, consequently, both expressions 

provides good scalability. 

5. LAYER CONTROL MASK  

For texture mapping purpose it is desirable not to generate a 
texture as the whole image, but to calculate small patches or 
even single pixels of the texture ( local generation ). The 
generation scheme described above is badly suitable for local 
generation as it uses random-number generator. Indeed, all the 
instances of a texture generated according to some model are 
samples from the same probabilistic distribution, but they are not 
the same image. In case of local generation different patches or 
pixels belong to different samples, i.e. they do not belong to the 
same images. Even two attempts to calculate one particular pixel 
can give two different results. 

So the problem is to find a technique that guarantees that all the 
locally generated patches or pixels belong to the same image. 

One of the possible solutions is to calculate the events in each 
replication point before the generation phase started and to store 
the results in special data structures. 

Since in the proposed model the layers are generated 
independently from each other, the structure storing pre -
calculated events is actually a set of 2-dimentional arrays. Each 
array corresponds to one layer. Each entry of an array 
corresponds to one replication point and contains a code 
describing replication event in this point. Such an array is called 
layer control mask (LCM). 



Note that only one byte is enough to code all the possible events. 
Indeed, 2 bits are necessary to code positive/negative/none 
replication, 2 bits for the four possible rotation angles, 1 bit for 
mirroring and 2 bits to code the replication operation. Seven bits 
total. 

LCMs provides both global and local generation. Global 
generation is performed in nearly the same way as described 
above, the only difference is that the generator uses prepared 
event codes instead of computing them. For local generation not 
all the entries of LCMs are used but only those corresponded to 
specified spatial area. 

One can see that the use of LCMs not only solves the problem of 
local generation but also splits the generation process into two 
phases: (a) LCM generation and (b) texture rendering using 
prepared LCMs. Note that only the second phase is essential to 
be real-time. The LCM generation contains the main part of 
necessary calculations. Actually these calculations are not very 
complicated in existing model, but if the model is enhanced (see 
Section 7.1) the calculations will become more sophisticated and 
time-consuming. Moreover, the description of the model (and 
hence the input data representation) can be more complicated 
also. Nevertheless the increase of the complexity of the LCD 
generation it is not critical as this phase is performed 
independently from rendering and cannot affect the speed of the 
latter. The rendering phase uses simple non -intelligence 
algorithm and primitive input data format (2D arrays of bytes). 
So it can be implemented in hardware and performed very fast. 

The disadvantage of LCMs is that they are of finite size. If not to 
use LCMs than it is possible to generate the texture of any 
desired size avoiding periodic effect. Besides, the size of input 
data (the distribution description) doesn’t depend on output 
image size. If LCMs are used, the output image can be of any 
size also. But if size of LCMs is not enough to cover the size of 
the output image they are to be tiled and this sooner or later will 
lead to periodic effect. The larger the LCMs are the less 
appreciable the periodic effect is. But the large LCMs affect the 
compactness of texture representation. Some compromise 
between output image quality and data size is to be found. 

First note that even not very large LCMs can guarantee 
sufficiently large output image without periodic effect. Indeed, if 
the model consists of the only layer and the base element size is 

3232× pixels than the LCM of 6464× entries provides the 
generation of an image of size 10241024×  pixels without tiling 
(remind that the distance between two replication points is one 
half of base element side size, hence ( ) 102423264 = ). 

It seems that the smaller the size of base element is the larger the 
size of LCM must be. E.g., if the base element size is only 

1616×  pixels then to generate 10241024×  output ima ge 
without tiling the size of LCM must be 128128× . However, if 
the model consists of at least two layers there is usually no 
necessity to make all the LCMs cover the output image size. E.g., 
the model consists of 2 layers (0 and 1), the base element size 
corresponded to layer 0 is 3232× . Then the base element size 
on layer 1 is 1616×  pixels. Now assume that the size of both 
LCMs is 6464×  and the desired size of the output is 

10241024×  pixels. Though tiling presents in layer 1 but when 
united with layer 0, which is free of tiling, then periodic effect is 

hardly perceptible. Sometimes even better results can be 
achieved if LCMs sizes are not multiplies of each other, are not 
multiplies of power of two and maybe not square at all. E.g., size 
of layer 0 LCM is 6050× , size of layer 1 LCM is 4575× . It is 
obvious that the period of the output is much larger than the 
period of any of the separate layers. 

Other ways of p eriodic effect decay without considerable 
increase of representation data size are also available. 

6. DATA REPRESENTATION AND 
IMPLEMENTATION NOTES 

As it was mentioned above, the use of LCMs permits to divide 
the generation process into two phases. 

The impleme ntation details of the first phase, the LCM 
generation, are not discussed here. The only thing can be 
mentioned is that since the probabilistic distribution is specified 
independently for each layer, the calculation of LCMs can be 
parallelized easily. 

Now consider the texture representation after LCM generation. 
Obviously it must be both compact and easily interpreted. 

A base element is represented as 8-bit bitmap of specified size 
(in our experiments it was usually 128128× , 6464×  or 

3232×  pixels). Not only the base element itself but also its 
copies of lower resolutions are to be represented. We used two 
representations in our experiments. The first one is Haar 
transformed image [7], which has exactly the same size as initial 
image but allows to reconstruct it with any dyadic resolution 
relatively fast. The second way is storing all the scaled copies in 
explicit form (this approach is similar to mip -mapping). This 
requires more space for the representation but provides more 
effective rendering (see below). 

The representation of LCMs was discussed in Section 5. 

Let us consider the “brick wall” representation for example. The 
model consists of 3 layers: 0, 2 and 3. The size of layer 0 LCM is 

4040× , size of the other (it is the same for both remained 
layers) is 2020× . The size of the base element is 3232×  
pixels, its 88×  and 44×  pixels copies are to be stored also (the 
explicit representation is considered). Hence the result is 

310448322040 22222 =++++  bytes plus at most 20 bytes for 
additional information (including weight coefficients, generation 
order flag, etc.). This data is enough to g enerate texture with 
period 640640×  pixels. The 8 -bit bitmap of the same size 
occupies 409600 bytes which is approximately 130 times larger 
than the proposed representation. Even if to add missed 
resolution levels of the base element ( 1616×  and 22×  pixels) 
and to use different LCMs for layers 2 and 3 than the size of the 
representation will not exceed 3800 bytes which is 
approximately 107 times smaller than the whole image size.  

The representation can be even mo re compact if some 
compression methods are applied to it. One of the possible 
approach is to code the regular structure of zeros (“no 
replication” events) in LCMs. E.g., LCMs generated according to 
event tables Tab. 1 or Tab. 3. have many regularly structured 
zero entries, thus they can be coded in a way which can reduce 



the size of LCM representation approximately twice or even 
more. Moreover, such kind a compression can hardly affect the 
rendering speed. Some techniques of fast compression and 
decompression can be applied to base elements also. 

Now let us pay attention to rendering phase and discuss the 
evaluation of one separate pixel of a texture. 

Since almost all the data is stored in 2D arrays of bytes, access to 
any entry of any LCM and any pixel of any resolution level of 
base element is trivial. (However, if the base element is 
represented by its Haar transform, then additional calculations 
are required to get its pixels). Given point coordinates, t he 
rendering module can easily find entries of LCMs corresponded 
to specified point. Then, according to event codes, for each 
replication covering the point it has to evaluate corresponding 
pixel value. For almost all the events this evaluation consists just 
in finding necessary pixel in one of the scaled copies of base 
element, and only for “negative replication” the sign of the value 
is to be changed then. 

For the sake of simplicity assume now that simple addition only 
is used for generation. According to the model definition, in any 
point at most four replication of the same layer can meet. So, at 
most 3 additions per layer are to be performed. Then obtained 
result is to be multiplied by weight coefficient (1 multiplication). 
Then values of all the N layers are to be summarized ( )( 1−N  

additions) and mean intensity is to be added also (1 addition). 
Thus the number of operations (excluding the search of 
replications pixels) to render one pixel of N-layered texture 
doesn’t exceed 4N additions (or similar operations) and N 
multiplication. 

As well as for the LCM generation sufficient portion of 
calculations are performed independently for each layer, so it can 
be parallelized. Note, however, that for parallel computations 
scaled copies of base element are to be stored in explicit form 
rather than evaluated from transformed representation. 

7. CONCLUSION. FURTHER WORK 

The model for representation of both “abstract” and some 
“natural-like” scalable textures has been introduced. It was 
supplied with effective generation and rendering technique. By 
means of this technique the most complicated calculations were 
encapsulated into the pre-processing phase. This permits to 
perform rendering phase very fast and even to implement it in 
hardware. The algorithm provides pixel-wise rendering, which is 
very important for texture-mapping purposes. The representation 
of texture is sufficiently compact (3-10 Kb), thus a large number 
of textures can be stored in graphical device memory. 

Obviously, the model is not free of limitations. Sufficiently large 
class of objects can hardly be represented by existing variant. So 
the one of the tasks for further research is enhancement of the 
model which will enlarge the class of textures can be 
represented. 

Another direction of f urther work is development of texture 
analysis module and is actually a new research project. 

7.1 Model Enhancement  

Some trivial enhancements of the model can make it more 
flexible. The “power of two” restrictions on base element size, 
resolution level constru ction and replication shifts can be 
weakened. On the other hand this may demand additional data 
for model representation and also may affect the scalability of the 
output. 

In existing model the probabilistic distribution of events is 
specified independently for each layer. The opportunity to specify 
the distribution for neighbour replications on different layers can 
be added. But this can require synchronization between layers, 
which can make the LCM structures more complicated. 

Some other modifications of this kind can be made also. 

The more serious enhancement is implementation of more 
sophisticated stochastic models, models using conditional 
distribution, e.g., Random Markov Fields [4]. 

Note that the more sophisticated model i s used, the more 
complex calculations are required. But this will concern only the 
phase of LCM calculation, and this phase is not hardware -
implemented and must not be real -time. As to the rendering 
phase, it will work with the same (or may be slight diffe rent) 
LCM structures, and thus will be as simple and fast as it is now. 

7.2 Analysis Module  

We assume that the structure of wide range of textures can be 
approximately represented in a way similar to one proposed in 
this paper, i.e. as on or maybe more “base elements” and simple 
data structures controlling their replication. 

One of the possible approaches is to use different modifications 
of wavelet transform to capture such a structure. Wavelet 
transform is a powerful tool for space-frequency analysis and the 
use of hierarchical, multiresolution or wavelet-based methods for 
texture analysis is not new [1][3][5]. Moreover, the existing 
model has many features common with dyadi c 2D wavelet 
transform, and the use of similar methods for both synthesis and 
analysis seems to be promising. 
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Tab. 1. The “random rotation” model 

Pos. repl.  1.0 
Neg. repl. 0.0 
No repl.  0.0 

Rot. 0°  0.25 
Rot. 90°  0.25 
Rot. 180°  0.25 
Rot. 270°  0.25 

Mirroring 0.0 

Addition  1.0 
Non-zero  0.0 
Maxinium 0.0 

Tab. 2. The “simple noise” model. 

Pos. repl.  0.33 
Neg. repl. 0.33 

No repl.  0.34 

Rot. 0°  0.25 
Rot. 90°  0.25 
Rot. 180°  0.25 
Rot. 270°  0.25 

Mirroring 0.5 

Addition  1.0 

Tab. 3. The “brick wall” model. 

Pos. 1.0 
0° 0.8 
90° 0.05 
180° 0.15 
Non-z. 1.0 

0 
Pos. 1.0 
0° 0.2 
 
180° 0.8 
Non-z. 1.0 

0 

0 0 0 0 

0 
Pos. 1.0 
0° 0.75 
90° 0.05 
180° 0.2 
Non-z. 1.0 

0 
Pos. 1.0 
0° 0.1 
90° 0.02 
180° 0.88 
Non-z. 1.0 

0 0 0 0 
 

     

Fig. 1. Examples of “random rotation” model. 

 

 

Fig. 2. “Cheese”: base element 
and output image. 

 

 

  

Fig. 3. “Brick wall”: base element, simple output image 
and advanced output image. 
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