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Abstract  

We introduce a hierarchical approach for hardware-aided 
texture compression. The hierarchical representation is 
combined with a block-wise approach that is used in some 
existing texture compression techniques. Our method is an 
attempt to merge texture compression and mip-mapping. 

Keywords: texture compression, mip-mapping, wavelet 
transform. 

1. INTRODUCTION 

1.1 Texture Compre ssion vs. Image 
Compression  

Though “image compression” and “texture compression” 
seem to be similar tasks, different approaches are required 
for solving these two problems. 

The aim of image compression is the compact 
representation of image data. Image qu ality and 
compression ratio are the most significant demands. In 
order to satisfy them, some rather sophisticated techniques 
are used. As a result, the time of compression and 
decompression can be sufficiently large. The exact 
compression ratio is not known a priori, it depends on 
features of the particular image. Then, most of these 
algorithms do not allow local decompression, i.e. the 
ability to extract a particular area (or even a single pixel) 
of an image without unpacking the whole file. 

The most significant requirements for texture compression 
are high decompression speed and local decompression 
ability. Besides, the decompression algorithm must be 
simple enough to be implemented in hardware. 

Known texture compression approaches are based on 
vector quantization, codebooks, palletizing, look-up tables, 
etc. They have the following disadvantage: each pixel 
reconstruction requires references to two different areas of 
memory — the first to take index, the second to get the 
corresponding item from the palette or dictionary.  The 
second memory fetch is dependent upon the first, and this 
amounts to a fatal flaw in this approach from the point of 
view of efficient HW implementation. Some alternatives 
include creating a special cache (usually a look-up table 
built into the 3D graphics pipeline) that can store the 

elements of the “dictionary” mentioned above. This also 
has a fatal flaw, namely that this dictionary becomes part 
of the texture state information, meaning that each texture 
may have it’s own dictionary. Every time the application 
switches from one texture to the next, a new dictionary has 
to be installed in the hardware pipeline. As such texture 
switching is often very frequent, this technique would 
force us to flush the 3D graphics pipeline and install a 
potentially large block of data. The alternative is to require 
that all textures used in a scene must use the same 
dictionary, but this proves to be too restrictive. 

One more texture compression approach is an algorithm 
proposed by the S3 Corp. called S3 TC (S3 Texture 
compression)[3]. 

1.2 S3TC 

The idea of the S3TC algorithm, is to split the initial 
image into 4x4 pixel blocks, and to perform compression 
for each block separately. Thus, all the information 
required for block decompression, is concentrated in one 
data structure. 

The sixteen color values of each block are first 
approximated with only four and, of these, only two (base 
colors) are stored explicitly, the other two are derived from 
these base colors. Thus, each block is encoded by two color 
values in RGB565 format (2x16 bits), and, a matrix of 4x4 
2-bit indices (32 bits). The compressed block size is 64 
bits. This corresponds to 6-times compression for true-
color images (initial block size 4x4x24 = 384 bits) and to 
4-times compression for RGB565 images (initial block size 
4x4x16 = 256 bits). 

The fixed size of the blocks guarantees fast access to the 
particular block. The time of each pixel reconstruction is 
fixed. Switching between textures requires no delay. 

1.3 Hierarchical Approach  

Hierarchical methods such as wavelet decomposition[1] 
appeared to be rather effective for image compression. But 
they seem to be unsuitable for texture compression. 
Wavelet-based methods need tree-walk procedures which 
requires multiple accesses to memory. Though wavelet 
decomposition allows for local decompression, it still 
usually requires tree navigation operations.  



On the other hand, some kind of hierarchical 
representation is desirable for textures. For texture 
mapping purposes the texture samples must be accessed at 
different resolution levels. The technique known as mip-
mapping [2], [3], [4] is used to solve the problem. The idea 
is to store not only the initial texture image but also its 1:2, 
1:4, 1:8, etc., (up to 1x1 pixel image) scaled copies. 

We propose a method that combines the block -wise 
approach of S3TC with local hierarchical decomposition in 
each block. We try to unit e the advantages of both 
approaches in our algorithm. 

Advantages of Block -wise Approach:  

• Each block can be processed separately from other 
blocks. This allows for fast local decompression. 

• The size of all compressed blocks of a texture is fixed, 
so any given block can be found fast. 

• External information (which belongs not to single 
block but to the whole texture) is minimal, so 
switching between textures requires neither much 
memory nor much time. 

Advantages of Hierarchical Approach:  

• Data belonging to a  fe w resolution levels can be 
stored in each compressed block (in the case of 4x4 
pixel blocks these are the 3 resolution levels 1x1, 2x2 
and 4x4 pixels). Thus, compression and mip-mapping 
can be merged. 

1.4 The Paper Structure  

The rest of the paper is organized as follows: In Section 2 
our method is described in detail, some results are 
introduced in Section 3. Section 4 is the conclusion.  

2. THE ALGORITHM DESCRI PTION 

Just as with the S3TC algorith, the image is first split into 
4x4 pixel blocks. All further processing is performed with 
each block separately. 

It is possible to build three resolution levels in each block: 
1x1 pixels (low resolution), 2x2 pixels (medium 
resolution) and 4x4 pixels (high resolution). Thus three 
mip-maps can be coded in one file (see Fig. 1). 

We chose the YC bCr color space for processing. The 
advantage of this color space is well known: even rather 
coarse approximation of chrominance (Cb and Cr) channels 
leads to good approximation of the whole image, this 
feature helps to increase compression ratio. Luminance (Y) 
and chrominance (Cb and C r) channels are compressed 
separately. 

On the other hand, such a choice requires additional  
operation while decompressing — conversion from YCbCr 
to RGB.  

We experimented with a few different variants of 
compression of the channels. The experiments are not 
finished yet. So, here we describe the results of the 
experiments with one of these variants, we expect similar 
results from the others. 

 

Fig. 1. 3 resolution levels of image. 

2.1 Luminance Analysis and 
Compression  

First, two levels of 2D Haar wavelet decomposition are 
applied to intensity data. Thus, 16 luminance values are 
represented by:  

• 1 mean luminance value,  

• 3 wavelet coefficients of medium resolution level and,  

• 12 wavelet coefficients of high-resolution level. 

Then, the most significant wavelet coefficients are 
selected, namely, all 3 coefficients of the medium level and 
the 5 high -level coefficients with the largest absolute 
values. 

The selected coefficients are encoded in the following way:  
The maximum absolute value is stored in an explicit form. 
Each coefficient is replaced by a 4-bit code, the first bit 
represents a sign, the others express the quotient of the 
maximum value required to represent the coefficient. 
Three bits allows coding of 8 levels from 1/8 to 8/8 of this 
maximum value. 

As any wavelet coefficient of the high resolution level can 
be recognized as a significant one, a 12 -bit mask is 
required to mark the places where coefficients were 
selected. Actually only 11 bits are enough for the mask as 



the 12 th bit value is determined uniquely if the total 
amount of selected coefficients is known. 

Thus the luminance of the block is encoded by 8 bits of 
mean luminance value, 7 bits of maximum coefficient 
absolute value (as it is at most half as large as the 
maximum possible low-resolution coefficient), (3+5)x4 
bits for wavelet coefficient codes and 11 bits for the mask, 
7+8+32+11=58 bits total. 

2.2 Chominance Compression  

Only two resolution levels (low level and medium level) 
are used for chrominance representation. The medium 
resolution level is enough for satisfactory high-resolution 
image representation. (This ef fect is used by JPEG 
compression algorithm). 

The low resolution level is represented by 1 mean value 
per  chrominance channel. The medium resolution level is 
approximated by 1 detailed coefficient multiplied by one of 
the 8 refining matrices and added to the mean value the 
low level. Fig. 2 demonstrates the set of refining matrices. 
Three bits for such a matrix index are required. 

So, each channel has 8 bits for mean value, 8 bits for 
detailed coefficient and 3 bits for the matrix index 
required, 2x(8+8+3)=38 bits total. 
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Fig. 2. The 8 refining matrices. 

Thus, one block can be encoded by 58+38=96 bits or 12 
bytes which corresponds to 4-times compression. 

2.3 Compressed Block Format  

The  structure of a compressed block can be organized as 
shown on Fig. 3. 

The first 3 items represent the low resolution level of the 
block. They are followed by the values used for wavelet 
coefficient reconstruction. The next 3 items ( WYm,1 …  
WYm,3) are the codes of the medium level wavelet 
coefficients. All this information is enough to reconstruct 
the medium level of the block. 

Items Wb, I b, W r, and I r, are detail coefficients and indices 
determining the medium level for Cb and Cr channels. 
WY,1 …  W Y5 are the codes for the high -level wavelet 
coefficients. The last item is a bit mask.  

2.4 Decompression  

As mentioned above, the first three items of each block 
determine the singe pixel of the low frequency level. 

To reconstruct the chrominance information, 1 step of 
reconstruction using a refining matrix is required for both 
color channels. 

To reconstruct the luminance information of the medium 
resolution level, the corresponding wavelet coefficients 
must be decoded and one step of inverse wavelet transform 
is required.  

To reconstruct a single pixel of the high-resolution level, 
the medium level should be reconstructed first. Then the 
corresponding wavelet coefficients must be decoded, and 
one additional step of inverse wavelet transform is 
required in the sub-block that the pixel belongs to. Four 
additional transforms are required to restore the whole 
level. 

Mean Y
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Mean Cr
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Wr Ir

WYm,1

WYh,1

WYh,5

Mask

Max Abs W Y

 

Fig. 3. Compressed block format 

Thus, we used two kinds of operations: inverse Haar 
transform and reconstruction using a matrix. Let us 
estimate the complexity of both operations. 

Here is a code fragment demonstrating the inverse Haar 
transform: 
 
// c – coarse level value  
// d1, d2, d3 – wavelet coefficients  
// c1, c2, c3, c4 – fine level valu es  
 
c1 = c + d1 + d2 + d3; c2 = c – d1 + d2 – d3;  
c3 = c + d1 – d2 + d3; c4 = c – d1 – d2 + d2;  
 



Reconstruction using matrices depends on the matrix type. 
Here is the case of the top-left matrix shown in Fig. 2. All 
other variants are similar. 
 
// c – coarse level value  
// d – detailed coefficient  
// c1, c2, c3, c4 – fine level values  
 
c1 = c + d; c2 = c1;  
c3 = c – d; c4 = c3;  
 

You can see that the operations are trivial, and can be 
easily implemented in hardware. 

3. RESULTS 

Our algorithm was tested on a sequence of images. The 
results were compared with those achieved using the S3TC 
algorithm. Some formal metrics (MSE, PSNR and LUV) 
were used to compare the reconstructed images with the 
original ones.  

Fig. 4 displays three pictures and images demonstrating 
the difference between the originals and results of high 
resolution decompression using ours and the S3TC 
techniques. The difference was measured using the LUV 
metric. Areas of invisible differences are white, areas of 
nearly invisible difference are gray, and the areas of visible 
difference are black. 

There seems to be no reason to demonstrate the 
compressed images themselves here, because when scaled 
and converted to gray-scale to fit into the paper text they 
look nearly the same as the originals. 

Tab. 1 represents some numerical results of the 
comparison. The top figures are our algorithm results, the 
bottom figures are S3TC results. The last 3 columns are 
the results of the LUV m etric. Diff 0, Diff 1 and Diff 2 are 
percentages of white, gray and black areas in the 
corresponding difference images. 

4. CONCLUSION. FURTHER RESEARCH 

We have developed a method performing texture 
compression with local hierarchical decomposition. It 
yields 4X compression of true-color images. This is the 
compression ratio for a file containing 3 mip -maps 
(original size, 1/4 and 1/16 resolution). (The compression 
ratio of S3TC is 6 times, but only for a single map. The 
compression ratio for a file containing 3 mip-maps is (1 + 
1/4 + 1/16)/6 = 0.21875 or 4.57 times for S3TC). 

As with the S3TC algorithm, all the data required for 
block decompression is concentrated into a single 
structure, so the method allows for local decompression 
and doesn’t require any texture switching operations. 

Some parameters, such as the amount of bits for wavelet 
coefficient representation and the amount of significant 
coefficients can be varied. This can increase  the 
compression ratio, but unfortunately affects image quality. 

Our experiments are not finished yet. We are sure that we 
can successfully increase either the compression ratio or 
the quality. One possible refinement, is to classify blocks 
somehow, and to use different methods to compress each 
class of blocks. Some experiments of this kind were 
already performed. 

Although the fixed compression ratio and fixed block size 
relieve the decompression process of many complexities, 
this cannot guarantee both good compression ratio and 
high quality. It is obvious, that areas containing less high-
frequency information can be compressed better and vice 
versa. Is it possible to code efficiently, areas with different 
frequency characteristics without increasing 
decompression time significantly? This is a task for further 
research.  
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Tab. 1 

 MSE PSNR Diff 0 Diff 1 Diff 2 

Lena 1.35 
1.4 

38.7 
38.5 

21 
20 

60 
58 

19 
22 

Peter I 1.1 
0.66 

39.5 
41.8 

43 
32 

50 
59 

7 
9 

Water 8.7 
6.4 

30.6 
31.9 

9 
7 

43 
39 

48 
54 
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Fig. 4. Some results. 


