
Hierarchical Approach for Texture Compression

Anton V. Pereberin

M.V. Keldysh Institute of Applied Mathematics RAS

Moscow, Russia

Abstract

We introduce a hierarchical approach for hardware-aided
texture compression. The hierarchical representation is
combined with a block-wise approach that is used in some
existing texture compression techniques. Our method is an
attempt to merge texture compression and mip-mapping.

Keywords: texture compression, mip-mapping, wavelet
transform.

1. INTRODUCTION

1.1 Texture Compre ssion vs. Image
Compression

Though “image compression” and “texture compression”
seem to be similar tasks, different approaches are required
for solving these two problems.

The aim of image compression is the compact
representation of image data. Image qu ality and
compression ratio are the most significant demands. In
order to satisfy them, some rather sophisticated techniques
are used. As a result, the time of compression and
decompression can be sufficiently large. The exact
compression ratio is not known a priori, it depends on
features of the particular image. Then, most of these
algorithms do not allow local decompression, i.e. the
ability to extract a particular area (or even a single pixel)
of an image without unpacking the whole file.

The most significant requirements for texture compression
are high decompression speed and local decompression
ability. Besides, the decompression algorithm must be
simple enough to be implemented in hardware.

Known texture compression approaches are based on
vector quantization, codebooks, palletizing, look-up tables,
etc. They have the following disadvantage: each pixel
reconstruction requires references to two different areas of
memory — the first to take index, the second to get the
corresponding item from the palette or dictionary. The
second memory fetch is dependent upon the first, and this
amounts to a fatal flaw in this approach from the point of
view of efficient HW implementation. Some alternatives
include creating a special cache (usually a look-up table
built into the 3D graphics pipeline) that can store the

elements of the “dictionary” mentioned above. This also
has a fatal flaw, namely that this dictionary becomes part
of the texture state information, meaning that each texture
may have it’s own dictionary. Every time the application
switches from one texture to the next, a new dictionary has
to be installed in the hardware pipeline. As such texture
switching is often very frequent, this technique would
force us to flush the 3D graphics pipeline and install a
potentially large block of data. The alternative is to require
that all textures used in a scene must use the same
dictionary, but this proves to be too restrictive.

One more texture compression approach is an algorithm
proposed by the S3 Corp. called S3 TC (S3 Texture
compression)[3].

1.2 S3TC

The idea of the S3TC algorithm, is to split the initial
image into 4x4 pixel blocks, and to perform compression
for each block separately. Thus, all the information
required for block decompression, is concentrated in one
data structure.

The sixteen color values of each block are first
approximated with only four and, of these, only two (base
colors) are stored explicitly, the other two are derived from
these base colors. Thus, each block is encoded by two color
values in RGB565 format (2x16 bits), and, a matrix of 4x4
2-bit indices (32 bits). The compressed block size is 64
bits. This corresponds to 6-times compression for true-
color images (initial block size 4x4x24 = 384 bits) and to
4-times compression for RGB565 images (initial block size
4x4x16 = 256 bits).

The fixed size of the blocks guarantees fast access to the
particular block. The time of each pixel reconstruction is
fixed. Switching between textures requires no delay.

1.3 Hierarchical Approach

Hierarchical methods such as wavelet decomposition[1]
appeared to be rather effective for image compression. But
they seem to be unsuitable for texture compression.
Wavelet-based methods need tree-walk procedures which
requires multiple accesses to memory. Though wavelet
decomposition allows for local decompression, it still
usually requires tree navigation operations.

On the other hand, some kind of hierarchical
representation is desirable for textures. For texture
mapping purposes the texture samples must be accessed at
different resolution levels. The technique known as mip-
mapping [2], [3], [4] is used to solve the problem. The idea
is to store not only the initial texture image but also its 1:2,
1:4, 1:8, etc., (up to 1x1 pixel image) scaled copies.

We propose a method that combines the block -wise
approach of S3TC with local hierarchical decomposition in
each block. We try to unit e the advantages of both
approaches in our algorithm.

Advantages of Block -wise Approach:

• Each block can be processed separately from other
blocks. This allows for fast local decompression.

• The size of all compressed blocks of a texture is fixed,
so any given block can be found fast.

• External information (which belongs not to single
block but to the whole texture) is minimal, so
switching between textures requires neither much
memory nor much time.

Advantages of Hierarchical Approach:

• Data belonging to a fe w resolution levels can be
stored in each compressed block (in the case of 4x4
pixel blocks these are the 3 resolution levels 1x1, 2x2
and 4x4 pixels). Thus, compression and mip-mapping
can be merged.

1.4 The Paper Structure

The rest of the paper is organized as follows: In Section 2
our method is described in detail, some results are
introduced in Section 3. Section 4 is the conclusion.

2. THE ALGORITHM DESCRI PTION

Just as with the S3TC algorith, the image is first split into
4x4 pixel blocks. All further processing is performed with
each block separately.

It is possible to build three resolution levels in each block:
1x1 pixels (low resolution), 2x2 pixels (medium
resolution) and 4x4 pixels (high resolution). Thus three
mip-maps can be coded in one file (see Fig. 1).

We chose the YC bCr color space for processing. The
advantage of this color space is well known: even rather
coarse approximation of chrominance (Cb and Cr) channels
leads to good approximation of the whole image, this
feature helps to increase compression ratio. Luminance (Y)
and chrominance (Cb and C r) channels are compressed
separately.

On the other hand, such a choice requires additional
operation while decompressing — conversion from YCbCr
to RGB.

We experimented with a few different variants of
compression of the channels. The experiments are not
finished yet. So, here we describe the results of the
experiments with one of these variants, we expect similar
results from the others.

Fig. 1. 3 resolution levels of image.

2.1 Luminance Analysis and
Compression

First, two levels of 2D Haar wavelet decomposition are
applied to intensity data. Thus, 16 luminance values are
represented by:

• 1 mean luminance value,

• 3 wavelet coefficients of medium resolution level and,

• 12 wavelet coefficients of high-resolution level.

Then, the most significant wavelet coefficients are
selected, namely, all 3 coefficients of the medium level and
the 5 high -level coefficients with the largest absolute
values.

The selected coefficients are encoded in the following way:
The maximum absolute value is stored in an explicit form.
Each coefficient is replaced by a 4-bit code, the first bit
represents a sign, the others express the quotient of the
maximum value required to represent the coefficient.
Three bits allows coding of 8 levels from 1/8 to 8/8 of this
maximum value.

As any wavelet coefficient of the high resolution level can
be recognized as a significant one, a 12 -bit mask is
required to mark the places where coefficients were
selected. Actually only 11 bits are enough for the mask as

the 12 th bit value is determined uniquely if the total
amount of selected coefficients is known.

Thus the luminance of the block is encoded by 8 bits of
mean luminance value, 7 bits of maximum coefficient
absolute value (as it is at most half as large as the
maximum possible low-resolution coefficient), (3+5)x4
bits for wavelet coefficient codes and 11 bits for the mask,
7+8+32+11=58 bits total.

2.2 Chominance Compression

Only two resolution levels (low level and medium level)
are used for chrominance representation. The medium
resolution level is enough for satisfactory high-resolution
image representation. (This ef fect is used by JPEG
compression algorithm).

The low resolution level is represented by 1 mean value
per chrominance channel. The medium resolution level is
approximated by 1 detailed coefficient multiplied by one of
the 8 refining matrices and added to the mean value the
low level. Fig. 2 demonstrates the set of refining matrices.
Three bits for such a matrix index are required.

So, each channel has 8 bits for mean value, 8 bits for
detailed coefficient and 3 bits for the matrix index
required, 2x(8+8+3)=38 bits total.

�
����

−
+�

����
−+

�
����

−
+�

���� −+

�
����

−
+�

����
−

+�
����

−+
−+�

����
−−
++

01

01

11

00

10

10

00

11
01

10

10

01

11

11

11

11

Fig. 2. The 8 refining matrices.

Thus, one block can be encoded by 58+38=96 bits or 12
bytes which corresponds to 4-times compression.

2.3 Compressed Block Format

The structure of a compressed block can be organized as
shown on Fig. 3.

The first 3 items represent the low resolution level of the
block. They are followed by the values used for wavelet
coefficient reconstruction. The next 3 items (WYm,1 …
WYm,3) are the codes of the medium level wavelet
coefficients. All this information is enough to reconstruct
the medium level of the block.

Items Wb, I b, W r, and I r, are detail coefficients and indices
determining the medium level for Cb and Cr channels.
WY,1 … W Y5 are the codes for the high -level wavelet
coefficients. The last item is a bit mask.

2.4 Decompression

As mentioned above, the first three items of each block
determine the singe pixel of the low frequency level.

To reconstruct the chrominance information, 1 step of
reconstruction using a refining matrix is required for both
color channels.

To reconstruct the luminance information of the medium
resolution level, the corresponding wavelet coefficients
must be decoded and one step of inverse wavelet transform
is required.

To reconstruct a single pixel of the high-resolution level,
the medium level should be reconstructed first. Then the
corresponding wavelet coefficients must be decoded, and
one additional step of inverse wavelet transform is
required in the sub-block that the pixel belongs to. Four
additional transforms are required to restore the whole
level.

Mean Y

Mean Cb

Mean Cr

Wb

WYm,3

Ib

Wr Ir

WYm,1

WYh,1

WYh,5

Mask

Max Abs W Y

Fig. 3. Compressed block format

Thus, we used two kinds of operations: inverse Haar
transform and reconstruction using a matrix. Let us
estimate the complexity of both operations.

Here is a code fragment demonstrating the inverse Haar
transform:

// c – coarse level value
// d1, d2, d3 – wavelet coefficients
// c1, c2, c3, c4 – fine level valu es

c1 = c + d1 + d2 + d3; c2 = c – d1 + d2 – d3;
c3 = c + d1 – d2 + d3; c4 = c – d1 – d2 + d2;

Reconstruction using matrices depends on the matrix type.
Here is the case of the top-left matrix shown in Fig. 2. All
other variants are similar.

// c – coarse level value
// d – detailed coefficient
// c1, c2, c3, c4 – fine level values

c1 = c + d; c2 = c1;
c3 = c – d; c4 = c3;

You can see that the operations are trivial, and can be
easily implemented in hardware.

3. RESULTS

Our algorithm was tested on a sequence of images. The
results were compared with those achieved using the S3TC
algorithm. Some formal metrics (MSE, PSNR and LUV)
were used to compare the reconstructed images with the
original ones.

Fig. 4 displays three pictures and images demonstrating
the difference between the originals and results of high
resolution decompression using ours and the S3TC
techniques. The difference was measured using the LUV
metric. Areas of invisible differences are white, areas of
nearly invisible difference are gray, and the areas of visible
difference are black.

There seems to be no reason to demonstrate the
compressed images themselves here, because when scaled
and converted to gray-scale to fit into the paper text they
look nearly the same as the originals.

Tab. 1 represents some numerical results of the
comparison. The top figures are our algorithm results, the
bottom figures are S3TC results. The last 3 columns are
the results of the LUV m etric. Diff 0, Diff 1 and Diff 2 are
percentages of white, gray and black areas in the
corresponding difference images.

4. CONCLUSION. FURTHER RESEARCH

We have developed a method performing texture
compression with local hierarchical decomposition. It
yields 4X compression of true-color images. This is the
compression ratio for a file containing 3 mip -maps
(original size, 1/4 and 1/16 resolution). (The compression
ratio of S3TC is 6 times, but only for a single map. The
compression ratio for a file containing 3 mip-maps is (1 +
1/4 + 1/16)/6 = 0.21875 or 4.57 times for S3TC).

As with the S3TC algorithm, all the data required for
block decompression is concentrated into a single
structure, so the method allows for local decompression
and doesn’t require any texture switching operations.

Some parameters, such as the amount of bits for wavelet
coefficient representation and the amount of significant
coefficients can be varied. This can increase the
compression ratio, but unfortunately affects image quality.

Our experiments are not finished yet. We are sure that we
can successfully increase either the compression ratio or
the quality. One possible refinement, is to classify blocks
somehow, and to use different methods to compress each
class of blocks. Some experiments of this kind were
already performed.

Although the fixed compression ratio and fixed block size
relieve the decompression process of many complexities,
this cannot guarantee both good compression ratio and
high quality. It is obvious, that areas containing less high-
frequency information can be compressed better and vice
versa. Is it possible to code efficiently, areas with different
frequency characteristics without increasing
decompression time significantly? This is a task for further
research.

5. ACKNOWLED GEMENTS

This work was made as a part of research program
performed in accordance with the Research Agreement
between Moscow State University and Intel Technologies,
Inc.

Thanks to Jim Hurley (Intel Technologies, Inc.) for help
with composing the paper. Thanks to Sergey Titov (CMC
dept., MSU), for image distortion metrics program.

6. REFERENCES

[1] E.J. Stollnitz, T.D.Derose, D.H.Salesin. Wavelets for
Computer Graphics. Theory and Applications .
Morgan Kaufmann Publishers, Inc., San Francisco,
California, 1996.

[2] A. W att, M. Watt. Advanced Animation and
Rendering Techniques. Theory and Practice. ACM
Press, New York, 1992.

[3] S3TC DirectX 6.0 Standard Texture compression.
White paper, S3 Corp.
http://www.s3.com/savage3d/s3tc.htm,
http://www.s3.com/savage3d/s3tc.pdf

[4] Trilinear filtering: A Better way to Texture 3D
Objects. White paper, S3 Corp.
http://www.s3.com/savage3d/3linear.htm,
http://www.s3.com/savage3d/3linear.pdf.

Author:

Anton V. Pereberin is the postgraduate student of M.V.
Keldysh Institute of Applied Mathematics. Interested in

multiresolution methods of graphical information
representation.

E-mail: avpereb@cs.msu.su

Tab. 1

 MSE PSNR Diff 0 Diff 1 Diff 2

Lena 1.35
1.4

38.7
38.5

21
20

60
58

19
22

Peter I 1.1
0.66

39.5
41.8

43
32

50
59

7
9

Water 8.7
6.4

30.6
31.9

9
7

43
39

48
54

 Lena (512x512 pels) Peter I (345x512 pels) Water (353x512 pels)

In
iti

al
 im

ag
e

H
T

C

S
3T

C

Fig. 4. Some results.

