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ABSTRACT 

Filter banks with fixed time-frequency resolution, such as the Short-Time Fourier Transform (STFT), are a common 
tool for many audio analysis and processing applications allowing effective implementation via the Fast Fourier 
Transform (FFT). The fixed time-frequency resolution of the STFT can lead to the undesirable smearing of events in 
both time and frequency. In this paper, we suggest adaptively varying STFT time-frequency resolution in order to 
reduce filter bank-specific artifacts while retaining adequate frequency resolution. Several strategies for systematic 
adaptation of time-frequency resolution are proposed. The introduced approach is demonstrated as applied to 
spectrogram displays, noise reduction, and spectral effects processing. 

 

1. INTRODUCTION 

It is well known that signal processing algorithms 
dealing with multimedia information should account for 
properties of human perception in order to achieve 
better processing quality. There exist multiple studies of 
human auditory and visual perception which are 
extensively employed in image and audio compression 
algorithms. In this paper, we consider the time-
frequency resolution of filter banks commonly used in 
audio analysis and processing, and we propose a 
multiresolution approach that improves several existing 
algorithms. 

2. SHORTCOMINGS OF STFT 

The Short Time Fourier Transform (STFT) is a filter 
bank which is widely used in audio analysis and 
processing. The STFT can also be plotted on a 2D graph 
as a function of both time and frequency, with color 
representing magnitude, to form a spectrogram display. 
Spectrograms are becoming a popular tool among audio 
engineers as they are much more perceptually-oriented 
than a traditional waveform display. Filter banks based 
on the STFT are used in algorithms for noise reduction 
and various spectral effects such as multiband delays, 
vocoders, and center channel extraction. 
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It is known from psychoacoustics that the frequency 
resolution of human hearing is not uniform. Instead, it 
follows a mel-scale which is approximately linear below 
500 Hz and logarithmic above it [1]. The fixed time-
frequency resolution of the STFT is purely linear, so it 
is not ideal from a perceptual standpoint. The artifacts 
specific to STFT-based processing are pre-echoes (time 
smearing of transient events) and insufficient frequency 
resolution at stationary parts (especially at low 
frequencies), leading to perceptually inadequate 
modeling of audio. 

Pre-echoes are artifacts resulting from the fact that any 
modification of time-frequency coefficients of a signal 
spreads its effect along the entire window length of the 
filter bank in the time domain. For example, processing 
of transformed coefficients that capture an onset of a 
transient event will result in smearing of transient 
energy in time within the filter bank window, both in 
the forward and backward directions. The backward 
spreading (pre-echo) is typically much more audible due 
to properties of temporal masking of human hearing and 
the fact that ongoing transient energy will probably 
mask the post-echo. Audibly this results in “swishy”, 
“non-focused” sounding of transients which include 
drums, percussion and other instruments with sharp 
attacks. 

Insufficient frequency resolution manifests itself 
differently in different processing algorithms. 
Generally, it prevents algorithms from separating 
closely spaced tones. For example, in noise reduction 
this may lead to weaker suppression of noise. In center 
channel extraction or time stretching of audio this may 
lead to unwanted modulations in low frequencies. 

In this paper, we will propose a method for reducing 
these artifacts simultaneously. 

3. ADAPTIVE TIME-FREQUENCY 
RESOLUTION 

There have been many attempts to build filter banks 
with variable time-frequency resolution for audio 
compression purposes [2]. However such attempts are 
limited by the fact that compression requires the critical 
sampling property of filter banks, to keep the amount of 
data in the signal at a minimum. This significantly 
restricts the freedom to vary time-frequency resolution. 
On the other hand, image and audio processing methods 
allow redundancy in oversampled filter banks which 

leads to the multiresolution framework for signal 
processing algorithms depicted in Fig. 1. 
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Figure 1. General scheme for signal processing with 
adaptive time-frequency resolution. 

The same processing algorithm is running several 
instances (only two are depicted, but the framework can 
be generalized to any number of instances), labeled A 
and B above, with different fixed time-frequency 
resolutions that work in parallel on the same input data 
stream. The resulting signals x1[t] and x2[t] are 
processed signals which were processed with different 
time-frequency resolutions. Our goal is to combine them 
in order to achieve the desired resolution in every area 
of the time-frequency plane. This combination is 
performed by additional filter banks D and E, both with 
a single fixed time-frequency resolution that transforms 
these resulting signals into time-frequency coefficients 
on the same time-frequency grid. The resulting time-
frequency coefficients can be adaptively mixed by the 
mixer F to select desired coefficients in each area of the 
time-frequency plane. The process of mixing can be 
controlled by some prior strategy (reflecting properties 
of human perception) and/or depending on local signal 
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features (e.g. on its stationarity) determined by analysis 
at C of the original input signal. Finally, the inverse 
filter bank G returns the processed signal to the time 
domain, forming the output y[t]. 

Since mixing of processed signals x1[t] and x2[t] is 
performed in the transform domain, the proposed 
framework allows arbitrary time-frequency resolution in 
arbitrary areas of the time-frequency plane. The number 
of individual processors operating at different time-
frequency resolutions controls the smoothness of 
variation of resolution in the combined signal. Also, by 
mixing together coefficients from several resolutions, 
we can interpolate between given discrete resolutions. 

The proposed framework can also be modified to 
perform signal analysis with arbitrary time-frequency 
resolution. As shown in Fig. 2, the input signal x[t] is 
fed directly to filter banks H and I operating with 
different fixed time-frequency resolutions. To simplify 
the mixer K, filter banks H and I should produce outputs 

1,,tfa  and 2,,tfa  at the same grid of time-frequency 
locations. This can be accomplished in the case of the 
STFT by using different time-domain window lengths 
in H and I but using the same analysis hop and FFT size 
(zero-padding windowed data as necessary). The mixer 
K combines the outputs of the filter banks according to 
analysis performed in J, producing outputs tfa ,  in the 
transform domain. 
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Figure 2. General scheme for signal analysis with 
adaptive time-frequency resolution. 

4. ADAPTATION STRATEGIES 

In this section, we describe two strategies for varying 
the time-frequency resolution of an STFT filter bank. 
Both of them incorporate prior knowledge about the 
frequency resolution of our hearing and adapt to the 
time-varying properties of a signal. 

The first strategy is based on a signal transience 
estimator. We describe the estimator based on analysis 
of energy evolution in critical bands. Then we describe 
the strategy of varying time-frequency resolution in 
order to reduce pre-echoes in transient regions of the 
time-frequency plane and increase the frequency 
resolution in stationary regions. 

The second strategy is based on the principle of minimal 
description length (MDL) [3]. It estimates the 
“optimality” of different time-frequency resolutions and 
selects the one that is locally optimal. Optimality is 
defined as minimal possible energy smearing both in 
time and frequency directions. This method is analogous 
to the general MDL paradigm of finding the transform 
with the most compact support for transformed energy. 

4.1. Transience adaptation 

One approach to adaptive time-frequency resolution of a 
filter bank is to explicitly account for signal stationarity. 
Stationarity means preservation of signal properties 
across time, including power and spectral shape. We 
define transience as the opposite of stationarity: 
variance of signal properties in time. 

To reduce the time smearing of transients we will 
increase the temporal resolution of the filter bank at 
transient signal segments. During stationary segments, 
we will use higher frequency resolution. 

Some simple detectors of transience are described in 
[4]; they estimate the variance of a short-time spectrum 
in adjacent time frames. Such a spectral similarity 
measure is susceptible to false detections of transients at 
stationary noisy parts of a signal resulting from 
statistical variance of short time spectral estimates of 
noise. In this work, we are using an algorithm which 
integrates signal energy in critical bands [2] and detects 
fast energy onsets on a per-band basis. 

The signal is transformed into the STFT domain with a 
window size of 12 ms and an analysis hop of 6 ms. For 
each frame the signal power is integrated inside 24 
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critical bands covering the entire audible spectrum. The 
integrated energy is raised to the power of 1/8 to 
provide better sensitivity to relatively high energy 
onsets at small absolute levels. Then we detect variation 
of energy in time within each critical band by cross-
correlating energies e[b, t] with a filter h[t] = {-1, -1, -1, 
0, 1, 1, 1} (here b is the critical band number, t is the 
index of the STFT frame): 

][],[],[ thtbetbv −∗=  

The transience T[b,t] of the signal in each critical band 
is estimated as 
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This provides 10 times better sensitivity to energy 
onsets than to energy decays. 

When the transience of a signal in each critical band is 
estimated, we can use it to control the time-frequency 
resolution of a filter bank by reducing frequency 
resolution around transients. This reduces the smearing 
of transients in time while keeping good frequency 
resolution at stationary parts of the signal. 

The default behavior of the mixer of coefficients can 
reflect the perceptual property of better low-frequency 
resolution. At the same time, the suggested transience 
detector can alter the default mixing strategy towards 
better time resolution around transients (see section 6.1 
for details). 

4.2. Maximal energy compaction principle 

When plotting spectrograms, the main problem with 
fixed time-frequency resolutions is the smearing of 
signal energy. Smearing in frequency causes harmonics 
to appear as thick lines and can prevent distinguishing 
closely spaced harmonics. Smearing in time means loss 
of time resolution and can negatively affect estimation 
of positions and durations of transient events in the 
signal. It would be desirable to jointly reduce smearing 
of energy in both directions. However this is not 
possible due to the uncertainty principle. 

What we propose in this section is to estimate the 
amount of energy smearing for different fixed time-
frequency resolutions and select the resolution that 

minimizes such smearing in both temporal and 
frequency directions. 

Let’s consider a small rectangular area Ω of the time-
frequency plane and short-time Fourier transforms with 
different time-frequency resolutions of the same signal 
in this area. STFT coefficients for different resolutions 
can be obtained by calculating the STFT with time-
domain windows of varying length. Analysis hops of 
windows and frequency grids should be equal for all 
STFT resolutions, just as they are in the general analysis 
framework depicted in Fig. 2. This ensures that squared 
STFT magnitudes rtfa ,,  at different resolutions are 
calculated in the same grid of time-frequency locations. 
Here t and f are time and frequency indices of STFT 
coefficients, and r indexes available STFT resolutions. 
Our task is to select the r that minimizes energy 
smearing in the area Ω. 

To achieve this, we sort the rtfa ,,  inside Ω by their 
magnitudes, in descending order, for each resolution r. 
We name the sorted results ria , . Next we define energy 
smearing of every particular STFT resolution as: 
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The numerator of the fraction evaluates the first moment 
of the statistical distribution of squared magnitudes. The 
denominator normalizes the numerator by the total 
energy of the signal in area Ω. The square root in the 
denominator assigns higher smearing to resolutions with 
higher overall energy in the area Ω. Since the energy in 
Ω varies only due to differences in amount of leakage 
(smearing) from adjacent regions at various resolutions, 
this penalizes resolutions where excessive smeared 
energy comes from surrounding areas of the time-
frequency plane. The small constant ε prevents division 
by zero. 

When energy smearing measures Sr are calculated for 
every resolution, we select the resolution r0 which 
minimizes energy smearing: 

rr
Sr minarg0 =  
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This resolution is selected as “optimal” in the area Ω 
and is used to build a spectrogram or process the audio 
signal. 

5. APPLICATION TO DISPLAY OF 
SPECTROGRAMS 

The audio spectrogram has become an important tool in 
audio engineering. Many common operations, such as 
content analysis, removal of artifacts, and basic editing 
operations are supported by spectrograms in popular 
sound editors. The main factors limiting the usefulness 
of a typical STFT-based spectrogram view are a linear 
frequency scale obscuring many low-frequency details, 
and the fixed time-frequency resolution of the STFT 
leading to time or frequency smearing of audio events. 

If a typical STFT spectrogram with fixed time-
frequency resolution is displayed with a perceptually 
meaningful frequency scale (e.g. the mel-scale) the lack 
of low-frequency resolution becomes obvious (Fig. 3). 
However increasing the frequency resolution of the 
STFT will produce time smearing of transients (Fig. 4). 
It is possible to combine spectrograms taking low-
frequency spectrogram data from the STFT with high 
frequency resolution and high-frequency data from the 
STFT with better temporal resolution (Fig. 5). 

 

Figure 3. STFT spectrogram, window size is 12 ms. 

 

Figure 4. STFT spectrogram, window size is 93 ms. 

 

Figure 5. Spectrogram with combined STFT resolutions. 

 

Figure 6. Spectrogram with adaptive resolution. 
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In section 5.1 we introduce an adaptive spectrogram that 
provides further improvements in the adaptation of 
time-frequency resolution (Fig. 6). 

5.1. Resolution selection algorithm 

To further reduce smearing of energy in spectrograms, 
we apply the resolution selection strategy described in 
section 4.2. We calculate the STFT with 4 different 
window sizes: 12, 24, 48, and 96 ms. Time-frequency 
magnitudes are calculated on the same grid by zero 
padding windowed signals and using equal STFT 
analysis hops for every resolution. 

To obtain the optimal resolution at every point (f, t) of 
the time-frequency plane we consider a rectangular area 
Ω around this point that is 1 critical band wide and 48 
ms long. The tradeoff here is that small Ωs will not 
allow us to form a robust estimate of energy smearing as 
there will be too few STFT coefficients inside, and large 
Ωs will not be local enough for fine control of 
resolution. We select critical bands because they have 
some perceptual meaningfulness, and also because they 
project to equal-height areas on our mel-scale 
spectrogram. Our 48 ms width is chosen after 
experimental evaluation of the look and meaningfulness 
of spectrograms with various widths for Ω. 

Next, according to section 4.2, we calculate the best 
resolution choice r0 of the 4 available resolutions. The 
STFT magnitude coefficient 

0,, rtfa  is used to form the 
spectrogram view at point (f, t). 

In order to prevent hard switching from one resolution 
to another we have updated the algorithm to mix 
magnitude coefficients instead of switching between 
them. In this manner we are able to “interpolate” 
between 4 available frequency resolutions. The mixing 
is performed according to respective energy smearing 
measures of each resolution: 

∑
=

⋅=
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1
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Mixing weights wr are calculated as follows: 

ε+
= 8

r
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kw  

Here k is the normalization constant selected so that the 
sum of all wr is 1, and ε is a small constant preventing 
division by 0. 

5.2. Simulation results 

We have conducted simulations to compare the look and 
usefulness of conventional STFT spectrograms and 
adaptive-resolution spectrograms. The first test signal 
consisted of an artificially generated 1 kHz tone with a 
sharp fade-in lasting 2 ms and a smooth decay lasting 
600 ms (Fig. 7). Since the tone onset is abrupt, it 
contains a transient energy burst spreading outside of 
the 1 kHz band, as shown by the conventional 
spectrogram (Fig. 8). By varying the resolution of the 
spectrogram, we can make either the horizontal line (the 
decaying tone) or the vertical line (the transient attack) 
thinner, but not both at once. However our adaptive 
spectrogram is able to locally select the time-frequency 
resolution which minimizes smear both in time and 
frequency (Fig. 9) leading to less frequency spreading 
of the slow tone decay and better time localization of 
the tone onset. 

 

Figure 7. Waveform of a tone onset. 
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Figure 8. STFT spectrogram of a tone onset, window 
size is 46 ms. 

 

Figure 9. Adaptive resolution spectrogram of a tone 
onset. 

Our next example is a piece of folk music with flute, 
cello, guitar and percussive drums. The conventional 
STFT spectrogram (Fig. 10) lacks low-frequency 
resolution and is unable to separate bass notes of the 
cello and guitar. At the same time the temporal 
resolution at high frequencies is not enough to sharply 
localize onsets of the drums. Our adaptive spectrogram 
(Fig. 11) fixes both of these problems: the low-
frequency resolution is increased, and drum onsets are 
displayed more sharply due to better local time 
resolution. The adaptiveness of the time-frequency 
resolution also enables us to use better frequency 
resolution at high frequencies to resolve closely spaced 
guitar overtones above 3 kHz. 

 

Figure 10. STFT spectrogram of folk music, window 
size is 46 ms. 

 

Figure 11. Adaptive resolution spectrogram of folk 
music. 

Another example of our adaptive spectrograms is given 
in Fig. 6 displaying a piece of rock music with vocal, 
bass, drums, guitars, flute and violin. Again, the 
adaptive spectrogram is able to resolve low-frequency 
harmonics, and it avoids the smearing of bass drum hits 
(at 0.3 and 1.0 seconds). In the high-frequency area we 
are able to preserve the sharpness of drum onsets and 
resolve closely spaced guitar harmonics. 

These tests show that the proposed adaptive approach to 
the calculation of spectrograms allows a spectrogram to 
display more useful details and musical events with 
better precision. 
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6. APPLICATION TO AUDIO PROCESSING 

In this section, we show how filter banks with adaptive 
time-frequency resolution can be applied to improve the 
quality of several audio processing algorithms: the 
spectral subtraction algorithm for noise reduction [5] 
and the center channel extraction algorithm. We run 
several instances of single-resolution processors and 
adaptively combine their results in the time-frequency 
plane using one of the suggested strategies. The 
resulting audio signal shows significant reduction of 
time smearing of transients and at the same time good 
frequency resolution allowing effective suppression of 
tonal noise or extraction of the center channel. 

In spite of the increased computational complexity 
compared to a single-resolution STFT, both algorithms 
allow real-time implementation. 

6.1. Noise reduction 

Most noise reduction methods for additive stationary 
noises in audio are based upon the spectral subtraction 
algorithm [5, 6]. This algorithm transforms the noisy 
signal with a filter bank and attenuates coefficients that 
are supposedly part of the noise, using a-priori 
knowledge of the noise spectrum. Then the inverse filter 
bank reconstructs the cleaned signal. In this paper, we 
will not discuss details of spectral subtraction methods, 
but rather show how modification of a filter bank can 
improve the quality of the result by reducing artifacts 
specific to filter banks. 

A typical filter bank for spectral subtraction is based on 
the STFT. Good frequency resolution of the STFT filter 
bank allows separation of closely spaced noise and 
signal harmonics. Good frequency resolution also leads 
to stronger possible noise attenuation due to lower noise 
power per STFT bin. However good frequency 
resolution requires long STFT windows leading to poor 
time resolution. Spectral subtraction with poor time 
resolution is not able to suppress noise before transient 
onsets since the part of the transient falls into the 
window and raises the coefficient magnitude preventing 
attenuation (Figs. 12, 13). Another problem is general 
pre-echo associated with the modification of STFT 
coefficients at poor time resolution. 

 

Figure 12. Noisy sample of guitar and castanets. 

 

Figure 13. Result of noise reduction with a 46 ms STFT 
window. 

 

Figure 14. Result of noise reduction with adaptive time-
frequency resolution. 
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We suggest using one of the strategies described in 
section 4 to adapt the time-frequency resolution of the 
filter bank. Proper selection of time-frequency 
resolution will result in better energy compaction in the 
transform domain, which is always desirable for noise 
reduction. Adaptive resolution will also allow good 
frequency resolution in stationary signal parts and good 
time resolution around transients leading to less time 
smearing artifacts. 

To test our approach, we selected the transient detection 
strategy described in section 4.1. We used spectral 
subtraction with 3 STFT filter banks with window sizes 
of 24, 48, and 96 ms and combined their results using 
another STFT filter bank with a window size of 12 ms 
(we require good time resolution when combining 
results, but the frequency resolution is not as important 
since all of the noise reduction processing has already 
been done). The transience detector also operates with a 
window size of 12 ms. 

The combination of results is performed according to 
the following formula: 

⎩
⎨
⎧

>−+
≤−+

=
HzfXX
HzfXX

X
tftf

tftf
tf 4000,)1(

4000,)1(

2,,1,,

3,,2,,
, αα

αα
 

Here α depends on transience for a given bin of the 
STFT: 
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Here T1 and T2 are user-defined thresholds, and we have 
selected T2 = 2T1. 

Such a mixing strategy uses 2 times better frequency 
resolution below 4 kHz (approximating the property of 
better low-frequency resolution of our hearing) and 
adapts the resolution to the local transience of the signal 
inside each critical band. 

As a result of such adaptation of resolution (Fig. 14), we 
have achieved reduction of time-smearing artifacts 
without compromise in depth of noise reduction. The 
conclusions of our informal listening tests were also 
confirmed by an increase of S/N ratio for recordings 

restored with adaptive time-frequency resolution (Table 
1). 

 

Filter bank algorithm S/N ratio, dB 

Noisy recording 48.17 

STFT, window 12 ms 50.87 

STFT, window 25 ms 50.90 

STFT, window 50 ms 50.74 

Adaptive resolution 51.14 

Table 1. S/N ratios after noise reduction of “guitar and 
castanets” sample. 

6.2. Center channel extraction 

A multiband center channel extraction algorithm is an 
improvement upon a widely used “karaoke” feature that 
subtracts left and right stereo channels to cancel the in-
phase signals comprising the center of a stereo field. 
Some sound editors adopt an STFT-based algorithm for 
this task that attenuates those STFT coefficients whose 
magnitudes and phases are close in the left and right 
channels. This allows for a stereo result, which is 
impossible with a single-band algorithm. 

Again, without going into details of the attenuation of 
STFT coefficients, we will describe the effects of STFT 
resolution on the resulting sound and propose an 
improvement with adaptive time-frequency resolution. 

Good frequency resolution allows deeper suppression of 
harmonic signals (such as vocals) in the center channel. 
However poor time resolution results in smearing of 
transients in the reconstructed waveform after 
modification of STFT coefficients. 

We propose that the time-frequency resolution is 
adapted according to transience of the signal as 
described in section 6.1. We use 3 parallel STFT-based 
center channel extractors and combine their results 
using a local transience estimate in critical bands. 

As a result, we are able to get good frequency resolution 
on harmonic parts of a signal (which are typically to be 
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suppressed in the center channel) and good time 
resolution around transients (which prevents time-
smearing). Our informal listening experiments verify 
the reduction of these artifacts. 

7. CONCLUSION 

We have demonstrated a general framework for 
effective multiresolution signal processing and analysis. 
This framework avoids several undesirable side effects 
of the STFT's fixed time-frequency resolution such as 
the smearing of events in both time and frequency. It 
allows signal processing and analysis to adapt its 
resolution according to a predetermined strategy or the 
analysis of local signal features. We have shown how 
this framework can be applied to the display of 
spectrograms, spectral subtraction algorithms for noise 
reduction and center channel extraction algorithms. 

For more examples of these algorithms and applications, 
please see the demo web page established for this paper 
[7]. 
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