
1032 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 14, NO. 7, JULY 2004

Depth Image-Based Representation and Compression
for Static and Animated 3-D Objects

Leonid Levkovich-Maslyuk, Alexey Ignatenko, Alexander Zhirkov, Anton Konushin, In Kyu Park, Member, IEEE,
Mahnjin Han, Member, IEEE, and Yuri Bayakovski

Abstract—This paper describes a new family of three-dimen-
sional (3-D) representations for computer graphics and animation,
called depth image-based representations (DIBR), which have been
adopted into MPEG-4 Part16: Animation Framework eXtension
(AFX). Idea of the approach is to build a compact and photoreal-
istic representation of a 3-D object or scene without using polyg-
onal mesh. Instead, images accompanied by depth values for each
pixel are used. This type of representation allows us to build and
render novel views of objects and scene with an interactive rate.
There are many different methods for the image-based rendering
with depths, and the DIBR format is designed to efficiently rep-
resent the information necessary for such methods. The main for-
mats of the DIBR family are SimpleTexture (an image together with
depth array), PointTexture (an image with multiple pixels along
each line of sight), and OctreeImage (octree-like data structure to-
gether with a set of images containing viewport parameters). In
order to store and transmit the DIBR object, we develop a com-
pression algorithm and bitstream format for OctreeImage repre-
sentation.

Index Terms—Compression, depth image, image-based
rendering, image-based representation, MPEG-4 Animation
Framework eXtension (AFX), octree, photorealistic representa-
tion.

I. INTRODUCTION

THE dominant method of three-dimensional (3-D) objects
representation in computer graphics is currently polygonal

model. It allows us to approximate an arbitrary shape by colored
polygonal mesh. Tremendous progress of software algorithms
and development of graphics hardware made it possible to vi-
sualize highly realistic still and animated polygonal models of
complex objects and scenes in real time.

However, attempts have been made to search for alternative
3-D representations during the last decade. The main reasons
for this include the difficulty in constructing polygonal models
for real-world objects and unsatisfactory quality in producing a
truly photorealistic scene.

Manuscript received July 23, 2003; revised December 10, 2003, and March
17, 2004.

L. Levkovich-Maslyuk is with the Keldysh Institute of Applied Mathematics,
Russian Academy of Sciences, Moscow 125047, Russian Federation (e-mail:
levkovl@spp.keldysh.ru).

A. Ignatenko, A. Zhirkov, A. Konushin, and Y. Bayakovski are with
the Graphics and Media Laboratory, Department of Computer Sci-
ence, Moscow State University, Moscow 119899, Russian Federa-
tion (e-mail: ignatenko@graphics.cs.msu.su; azh@graphics.cs.msu.su;
ktosh@graphics.cs.msu.su; yurib@graphics.cs.msu.su).

I. K. Park is with the School of Information and Communication Engineering,
Inha University, Incheon 402-751, Korea (e-mail: pik@ieee.org)

M. Han is with the Multimedia Laboratory, Samsung Advanced Institute of
Technology, Yongin 449-712, Korea (e-mail: manjini@sait.samsung.co.kr).

Digital Object Identifier 10.1109/TCSVT.2004.830676

Graphics applications require enormous amount of polygons;
for example, a detailed model of a human body contains several
million triangles, which are not easy to handle. Although recent
progress in range-finding techniques, such as the laser range
scanner, allows us to acquire dense range data with tolerable
error, it is still not only very expensive but also very difficult
to obtain a seamlessly complete polygonal model of the whole
object. On the other hand, rendering algorithms to obtain photo-
realistic quality are computationally complex and thus far from
real-time rendering. Furthermore, the achieved photorealism is
rather artificial, making it easy to distinguish even a scene with
global illumination from a real-world photo.

All of these have drawn a great deal of attention to the
problem of developing 3-D representations based on images
of an object and corresponding depth maps, which are arrays
of distances from the camera focal plane to the object surface.
Such an image-based representation looks algorithmically at-
tractive since it encodes complete information of a colored 3-D
object as a collection of two-dimensional (2-D) arrays—simple
and regular structures to which popular methods of image
processing and compression are readily applicable. Many of
them can be hardware-supported. Besides, rendering time for
image-based models is proportional to the number of pixels
in the reference and output images, but in general not to the
geometric complexity as in the polygonal case. In addition,
when the image-based representation is applied to real-world
objects and scene, photo-realistic rendering of a natural scene
becomes possible without use of millions of polygons and
expensive computation.

This paper describes a family of data structures, called depth
image-based representation (DIBR), which provides effective
and efficient methods based mostly on images and depth maps,
fully utilizing the advantages described above. Let us briefly
characterize the main DIBR formats: SimpleTexture, PointTex-
ture, and OctreeImage.

The DIBR family has been developed for the new version of
MPEG standard and adopted into MPEG-4 Part16: Animation
Framework eXtension (AFX). AFX provides more enhanced
features for synthetic MPEG-4 environments and includes a col-
lection of interoperable tools that produce static and animated
3-D graphics contents. They are based on a virtual reality mod-
eling language (VRML) scene graph as well as compatible with
existing MPEG-4. Each AFX tool shows the compatibility with
a MPEG-4 binary format for scenes (BIFS) node [1], a synthetic
stream [2], and an audio-visual stream [2], [3].

SimpleTexture is a data structure that consists of an image,
corresponding depth map, and camera description (its position,

1051-8215/04$20.00 © 2004 IEEE

LEVKOVICH-MASLYUK et al.: DEPTH IMAGE-BASED REPRESENTATION AND COMPRESSION FOR STATIC AND ANIMATED 3-D OBJECTS 1033

orientation, and projection type). Representation capability of
a single SimpleTexture is restricted to objects like a facade
of a building: a frontal image with a depth map allows us
to reconstruct facade views at a substantial range of angles.
However, a collection of SimpleTextures produced by properly
positioned cameras makes it possible to represent the whole
building, in case reference images cover all of the potentially
visible parts of the building surface. Of course, the same
applies to trees, human figures, cars, etc. Moreover, the union
of SimpleTextures provides quite natural means for handling
3-D animated data. In this case, reference images are replaced
with reference videostreams. Depth maps for each 3-D frame
can be supplied in the alpha-channel of the videostreams or by
separate grayscale videostreams. In this type of representation,
images can be stored in lossy compressed format like JPEG.
This significantly reduces the volume of the color information,
especially in the animated case. However, geometry informa-
tion (depth maps) should be compressed losslessly, avoiding
unpleasant visual artifacts.

For objects with complex shape, it is sometimes difficult to
cover the whole visible surface with a reasonable number of ref-
erence images. A preferable representation in this case might be
PointTexture. This format also stores reference image and depth
map, but in this case both are multivalued. For each line of sight,
color and distance are stored for every intersection of the line
and the object. The number of intersections might be different
from line to line. The union of several PointTextures provides
a very detailed representation even for complex objects. How-
ever, the format lacks most of the 2-D regularity of SimpleTex-
ture and thus has no natural image-based compressed form. For
the same reason, it is used only for still objects.

OctreeImage format occupies an intermediate position
between “mostly 2-D” SimpleTexture and “mostly 3-D” Point-
Texture: it stores geometry of the object in the octree-structured
volumetric representation (hierarchically organized voxels of
usual octant subdivision of enclosing cube), while the color
component is represented by a set of images. This format also
contains an additional octree-like data structure, which stores,
for each leaf voxel, the index of a reference image containing
its color. In the process of rendering the OctreeImage, the
color of the leaf voxel is determined by orthographically
projecting it onto the corresponding reference image. We
have developed a very efficient compression method for the
geometry part of OctreeImage. It is a variant of adaptive
context-based arithmetic coding in which the contexts are
constructed with the explicit usage of geometric nature of the
data. Usage of the compression together with lossy compressed
reference images makes OctreeImage a very space-efficient
representation. OctreeImage has an animated version, in which
reference videostreams are used instead of reference images,
plus additional stream of octrees representing geometry and
voxel-to-image correspondence for each 3-D frame. A very
useful feature of OctreeImage format is its built-in mipmapping
capability.

DIBR formats have been designed so as to combine advan-
tages of different approaches developed previously, providing
a user with flexible tools best suited for a particular task. For
example, static SimpleTexture and PointTexture are particular

cases of the known formats (see Section II), while OctreeImage
is an apparently new one. However, in MPEG-4 context, all
three basic DIBR formats can be considered as building blocks,
and their combinations by means of MPEG-4 constructs
not only embrace many of the image-based representations
suggested in the literature, but also give a great potential for
constructing new such formats (for example, the DepthImage
format in both still and animated version in Section III).

The paper is organized as follows. In Section II, we start with
a brief review of the previous work in image-based representa-
tion and rendering of 3-D objects. Section III describes in detail
the DIBRs, developed for MPEG-4 AFX. Formal specifications
of MPEG-4 DIBR nodes are given in Section IV. In Section V,
we concentrate on the compression method developed for Oc-
treeImage DIBR format. In Section VI, we describe the methods
of DIBR rendering. In Section VII, we demonstrate the rendered
images of still and animated 3-D objects in DIBR formats and
present the rendering speed and typical compression results. Fi-
nally, we conclude in Section VIII.

II. BRIEF OVERVIEW OF IMAGE-BASED REPRESENTATIONS

AND COMPRESSION

Image-based representations have been developed in parallel
with corresponding rendering methods. One of the earliest ideas
in this field is the method of generalized sprites [5], [6], oriented
mostly on virtual walkthroughs. Generalized sprite is a view of
a part of a 3-D scene, for which changes caused by camera dis-
placement are computed with the aid of affine transformation of
the original view, instead of using 3-D geometry-based compu-
tation. This amounts to texture mapping for some proper planar
regions in order to imitate actually nonplanar geometry. Distor-
tion introduced by such a simplification is more noticeable when
the camera displacement becomes larger. Also, the greater the
depth (distance from the observer) variation is in the part of the
scene represented by the sprite, the more severe the distortion is.
On the other hand, the more distant the sprites are , the less vis-
ible the distortion is. This allows to obtain satisfactory quality
for distant areas of such scenes as architectural environments.

Sprites with depth was introduced in [8] as an improvement
over the planar sprites. This approach combines an explicit
account for the depth variation in the sprite region with uniform
(i.e., using single matrix) texture mapping. The position of
each pixel is correctly computed by shifting according to its
depth, which helps to achieve correct parallax by warping
the image. When the viewing angle is large enough, direct
rendering of such a model leads to holes in the image. This
hole-filling problem arising in image-based techniques that use
depth maps is commonly solved by a combination of filtering
and splatting. Splatting is a technique of using small flat color
patches (splats) with variable (in general) transparency as
“rendering primitives.”

Relief Texture (RT), introduced in [7], is a method of ren-
dering a single image with a depth map. However, the model
itself is also frequently called relief texture (see Fig. 1). The RT
method features a fast “incremental” warping algorithm, which
computes views of the object through the faces of the enclosing

1034 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 14, NO. 7, JULY 2004

Fig. 1. Relief texture image and depth map.

Fig. 2. Layered depth image (LDI). (a) Projection of the object. (b) Layered
pixels.

cube. However, the RT algorithm substantially relies on the par-
ticular geometry of the cube. On the other hand, there is no way
to render the parts of the object that are invisible from any of
the six faces. This makes it impossible to use the RT together
with fast warping algorithm for rendering noncubic, “adaptive”
configurations of images with a depth that covers the visible sur-
face.

Layered depth image (LDI) [8] was introduced to solve the
problem of invisible parts of the surface. It was designed so as
to use the fast warping algorithm [9], [10]. LDI is a data struc-
ture for multivalued depth map and image, corresponding to a
single projection of a 3-D object (Fig. 2). This structure stores
color and depth for each point of intersection of each projection
ray with the object (a set of rays is properly discretized for either
orthogonal or perspective projection). This allows to represent
all parts of the surface, including those invisible from the par-
ticular viewpoint. A modification of this approach uses several
LDIs constructed for the same object and different cameras [11],
[12]. Rendering algorithms suggested for these representations
provided better visual quality at a cost of slower rendering.

Depth image-based representations are closely connected
with volumetric and point-based representations. An important
example is LDI tree [13], which is an octree with an LDI
attached to each cell (bounding box for the part of the scene
(object) represented by this particular LDI). This representation
is more like a hierarchical point structure than the original
LDI format. Another important example of structures of this
kind is Qsplat [14], a multiresolution point system based on
hierarchical structure of spheres of variable size. An even
more complex model is based on surfels [15], a hierarchically
structured representation of a 3-D object with the aid of local
surface elements whose attributes include color, normal vectors,
and depth. The spatial cell of the corresponding tree structure
contains projections of the object surface structured as three
LDIs with the same bounding box. One of the main properties
of the method is a sophisticated filtering algorithm applied to
nonuniformly distributed screen samples.

To complete this brief review, we must mention the important
class of image-based representations that use very little or no
information on geometry. Such approaches as Lumigraph [16]
and light field rendering [17] employ a large amount of refer-
ence views from many viewpoints, unified in a huge collection
of rays. Views of the scene from arbitrary viewpoints are com-
puted by interpolation of necessary rays from nearby rays be-
longing to the collection. A coarse depth structure is used to
optimize nonuniform sampling of reference views.

It should be noted that few image-based methods have been
suggested for 3-D animation so far, and most of them are for
restricted classes of 3-D objects. For example, in [18], the idea
of facial image modification for 3-D face geometry was devel-
oped. In [19], architectural scenes were animated with the aid
of view-dependent texture mapping.

Compression of image-based representations has been given
rather little attention in the literature. Compression is an essen-
tial part of such formats as Lumigraph and light fields. In order
to reduce the huge size of necessary data, adaptive sampling
and interpolation have been used in [16] and [17]. In [14], the
point-based Qsplat model is itself considered a compressed rep-
resentation with respect to the (hypothetical) polygonal model
of the same object. A direct application of the most simple com-
pression techniques like run-length coding and Huffman coding
to the Qsplat model is mentioned as an option in [14], but is not
investigated in detail. On the contrary, in this paper we give a
great deal of attention to compression issues. We present a novel
technique for efficient lossless compression of a linkless octree
data structure.

A noticeable piece of work on voxel model compression is
that by Kim and Lee [26], in which an efficient lossless method
for surface voxel models compression has been developed. It
uses a library of several hundred standard patterns of black
voxels in 3 3 3 subcubes and employs strong correlation of
the neighbor patterns in voxel surfaces. It is more efficient on
binary (black/white) surface voxel models than our approaches
are. However, our representations are oriented on arbitrary
objects (not only surfaces), allowing it to handle the color, and
(in case of OctreeImage) possess additional multiresolution
structure for 3-D mipmapping.

III. DEPTH IMAGE-BASED REPRESENTATION

Considering the ideas outlined in the previous section as well
as our previous development [20], we suggest the following set
of image-based formats for use in MPEG-4 AFX: SimpleTex-
ture, PointTexture, and OctreeImage. Note that SimpleTexture
and OctreeImage have animated versions.

A. SimpleTexture and PointTexture

SimpleTexture is a single image combined with a depth
image. It is equivalent to RT, while PointTexture is equivalent
to LDI. Based on SimpleTexture and PointTexture as building
blocks, we can construct a variety of representations using
MPEG-4 constructs. Formal specification will be given in
Section IV, and here we describe the result geometrically.

A DepthImage structure defines either SimpleTexture or
PointTexture together with bounding box, position in space,

LEVKOVICH-MASLYUK et al.: DEPTH IMAGE-BASED REPRESENTATION AND COMPRESSION FOR STATIC AND ANIMATED 3-D OBJECTS 1035

Fig. 3. Example of box texture. Six SimpleTextures (pairs of image and depth map) are used to render the model shown in the center.

and some other information. A set of DepthImages can be
unified under a single structure called the Transform node, and
this allows us to construct a variety of useful representations.
Most commonly used are two that do not have a specific
MPEG-4 name, but in our practice we called them Box Texture
(BT) and Generalized Box Texture (GBT). BT is a union of
six SimpleTextures corresponding to a bounding cube of an
object or a scene, while GBT is an arbitrary union of any
number of SimpleTextures that together provide a consistent
3-D representation. An example of BT is given in Fig. 3, where
reference images, depth maps, and the resulting 3-D object are
shown. BT can be rendered with the aid of incremental warping
algorithm [6], but we use a different approach applicable to
GBT as well (details of this rendering method are given in
Section VI). An example of GBT representation is shown in
Fig. 4, where 21 SimpleTextures are used to represent the
complex object.

It should be noted that unification mechanism allows, for in-
stance, to use several LDIs with different cameras to represent
the same object or parts of the same object. Hence, data struc-
tures like image-based objects, cells of LDI tree, and cells of
surfels-based tree structure are all particular cases of this format,
which obviously offers much greater flexibility in adapting lo-

Fig. 4. Generalized box texture (GBT). (a) Camera locations. (b) Reference
image planes for the same model (21 SimpleTextures are used).

cation and resolution of SimpleTextures and PointTextures to
the structure of the scene.

1036 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 14, NO. 7, JULY 2004

Fig. 5. Octree representation illustrated in 2-D. (a) Point Cloud. (b) Mipmaps.

B. OctreeImage: Textured Binary Volumetric Octree

In order to utilize multiresolution geometry and texture with
more flexible representation and fast rendering, we develop Oc-
treeImage representation, which is based on textured binary vol-
umetric octree (TBVO). The objective of TBVO is to contrive a
flexible representation/compression format with fast and high-
quality visualization. TBVO consists of three main components:
binary volumetric octree (BVO) which represents geometry, a
set of reference images, and data structure of image indices cor-
responding to the octree nodes.

Geometric information in BVO form is a set of binary (occu-
pied or empty) regularly spaced voxels combined in larger cells
in usual octree manner. This representation can be easily ob-
tained from DepthImage data through the intermediate “point
cloud” form, since each pixel with depth defines a unique point
in 3-D space. Conversion of the point cloud to BVO is illustrated
in Fig. 5. An analogous process allows converting the polygonal
model to BVO [20]. Texture information of the BVO can be re-
trieved from reference images. A reference image is texture of
voxels at a given camera position and orientation. Hence, BVO
itself, together with reference images, does already provide the
model representation [20]. However, it turned out that the addi-
tional structure storing the reference image index for each BVO
allows much faster visualization with better quality.

The main BVO visualization problem is that we must deter-
mine the corresponding camera index of each voxel during ren-
dering. To this end, we must at least determine the existence
of a camera, from which the voxel is visible. This procedure is
very slow if we use a brute-force approach. In addition to this
problem, there are still some troubles for voxels that are not vis-
ible from any camera, yielding undesirable artifacts in the ren-
dered image.

A possible solution could be storing explicit color to each
voxel. However, in this case, we have experienced some prob-
lems in compressing color information. That is, if we group
voxel colors as an image format and compress it, the color cor-
relation of neighboring voxels is destroyed such that the com-
pression ratio would be unsatisfactory.

In TBVO, the problem is solved by storing a camera (image)
index for every voxel. The index enables to determine the voxel
color quickly at the rendering stage. Suppose the camera index
of a voxel equals ; then, in order to find the voxel color, we just
project the voxel orthographically on the th reference image.
The pixel it hits contains the necessary color.

Usually, the camera index is identical for relatively large
groups of voxels, since many neighboring voxels are often
visible from the same reference image. This allows the use
of an octree structure for economic storage of the additional

Fig. 6. Pseudocode for writing the TBVO bitstream.

Fig. 7. Example of writing a TBVO stream. (a) TBVO tree structure. Uniform
gray color is “undefined” texture symbol. Each color denotes the camera
index. (b) Octree traversal order in a BVO node and camera indices. (c) TBVO
stream. Filled cubes and octree cube denote the texture-bytes and BVO-bytes,
respectively.

information, i.e., a set of camera indices. The representation we
use is explained in detail in Section III-C. Note that it has been
observed in the experiments that the amount of data increases
only 15% on the average, compared with the representation
using only BVO and reference images. Process of construction
of a TBVO model of an object is a bit more complex in
comparison with producing a BVO model, but the resulting
model is visualized much faster, and it has better visual quality
for the objects of complex geometry.

C. Streaming of TBVO

We suppose that 255 cameras are sufficient and assign up
to 1 byte for the camera index. The TBVO stream is a stream
of symbols. Every TBVO symbol is either a BVO-symbol or
texture-symbol. Texture-symbol denotes camera index, which
can be a specific number or an “undefined”code.

Let “undefined” code be “?” in any further description. The
TBVO stream is traversed in breadth first order. Let us describe
how to write a TBVO stream if we have BVO and every leaf
voxel has an image index (the indices are assigned in process
of the model creation). We should traverse all BVO nodes in-
cluding leaf nodes (which do not have BVO-symbol) in breadth
first order. In Fig. 6, the pseudocode which completes writing
the stream is shown.

An example of writing the TBVO bitstream is shown in Fig. 7.
For the TBVO tree shown in Fig. 7(a), a stream of symbols can
be obtained as shown in Fig. 7(c), according to the procedure.
In this example, the texture-symbols are represented in 1 byte.
However, in the actual stream, each texture-symbol would only
need 2 bits because we only need to represent three values (two
cameras and the undefined code).

LEVKOVICH-MASLYUK et al.: DEPTH IMAGE-BASED REPRESENTATION AND COMPRESSION FOR STATIC AND ANIMATED 3-D OBJECTS 1037

Fig. 8. Specification of the DIBR nodes.

D. DIBR Animation

Animated versions are defined for two of the DIBR formats:
DepthImage containing only SimpleTextures, and OctreeImage.
Data volume is one of the crucial issues with 3-D animation. We
have chosen these particular formats since video streams can
be naturally incorporated in the animated versions, providing
substantial data reduction.

For DepthImage, animation is performed by replacing ref-
erence images by MPEG-4 MovieTextures. High-quality lossy
video compression does not seriously affect appearance of the
resulting 3-D objects. Depth maps can be stored (in near lossless
mode) in the alpha channels of reference video streams. Lossless
or near-lossless compression for depth maps is used because dis-
tortions in geometry due to lossy compression are usually much
more noticeable than distortions in reference images are when
the model is viewed in three dimensions. At the rendering stage,
a 3-D frame is rendered after all the reference images and depth
frames are received and decompressed.

Animation of OctreeImage is similar—reference images are
replaced by MPEG-4 MovieTextures, and a new stream of oc-
tree appears.

IV. MPEG-4 NODE SPECIFICATION

The DIBR formats are described in detail in MPEG-4 AFX
nodes specifications [4]. DepthImage contains the fields deter-
mining the parameters of view frustum for either SimpleTexture
or PointTexture. OctreeImage node represents an object in the
form of TBVO-defined geometry and a set of reference images

Fig. 9. View volume model for DepthImage. (a) Perspective view. (b)
Orthographic view.

format. Scene-dependent information is stored in special fields
of the DIBR data structures, allowing the correct interaction of
DIBR objects with the rest of the scene. The definition of DIBR
nodes is shown in Fig. 8.

Fig. 9 illustrates spatial layout of the DepthImage, in which
the meaning of each field is shown. Note that the DepthImage
node defines a single DIBR object. When multiple DepthImage
nodes are related to each other, they are processed as a group,
and thus, should be placed under the same Transform node. The
diTexture field specifies the texture with depth (SimpleTexture
or PointTexture), which shall be mapped into the region defined
in the DepthImage node.

The OctreeImage node defines an octree structure and the
projected textures. The octreeResolution field specifies max-
imum number of octree leaves along a side of the enclosing
cube. The octree field specifies a set of octree internal nodes.
Each internal node is represented by a byte. A “1” in th bit of
this byte means that the children nodes exist for the th child of
that internal node, while “0” means that they do not. The order
of the octree internal nodes shall be the order of breadth first
traversal of the octree. The order of eight children of an internal
node is shown in Fig. 7(b). The voxelImageIndex field contains
an array of image indices assigned to voxel. At the rendering
stage, color attributed to an octree leaf is determined by ortho-
graphically projecting the leaf onto one of the images with a par-
ticular index. The indices are stored in an octree-like fashion: if
a particular image can be used for all of the leaves contained

1038 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 14, NO. 7, JULY 2004

Fig. 10. Orthogonal invariance of node occurrence probability. (a) Original current and parent node. (b) Current and parent nodes, rotated around y axis by 90 .

in a specific voxel, the voxel containing index of the image is
issued into the stream; otherwise, the voxel containing a fixed
“further subdivision” code is issued, which means that the image
index will be specified separately for each child of the current
voxel (in the same recursive fashion). If the voxelImageIndex
is empty, then the image indices are determined during the ren-
dering stage. The images field specifies a set of DepthImage
nodes with SimpleTexture in the diTexture field. In this case,
the nearPlane and farPlane fields of the DepthImage node and
the depth field in the SimpleTexture node are not used.

V. COMPRESSION OF OCTREEIMAGE FORMAT

In this section, we consider a compression method for Oc-
treeImage. Typical test results are presented and discussed in
Section VII. Please note that the compression of PointTexture
is not supported yet, and will be implemented in the next ver-
sion of AFX.

The fields octreeimages and octree in OctreeImage are com-
pressed separately. The proposed methods have been developed
based on the notion that octree field must be compressed loss-
lessly while some degree of visually acceptable distortion can
be allowed for octreeimages.

A. OctreeImages Field Compression

The OctreeImages field is compressed by means of image
compression (for static model) or video compression tools
(for animated model) supported by MPEG-4. In our approach,
we used the JPEG format for OctreeImages. Additional
preprocessing of images by discarding irrelevant pixels and
suppressing compression artifacts at the object/background
boundary (see Section VII for details) increases both the
compression rate and rendering quality simultaneously.

B. Octree Field Compression

Octree compression is the most important part of the Oc-
treeImage compression, since it deals with compression of link-
less binary tree representation which is already very compact. In
our approach, the method explained below reduces the volume
of this structure to about half of the original. In the animated Oc-
treeImage version, Octree field is compressed separately frame
by frame.

1) Context Model: Compression is performed by a variant
of context-based adaptive arithmetic coding that makes explicit
use of the geometric nature of the data. The Octree is a stream
of bytes. Each byte represents a node (i.e., subcube) of the tree,
in which its bits indicate the occupancy of the subcube after
internal subdivision. The bit pattern is called filling pattern of
the node. The proposed compression algorithm processes bytes
one by one, in the following manner.

— a context for the current byte is determined
— “probability” (normalized frequency) of occurrence of the

current byte in this context is retrieved from the “proba-
bility table” (PT) corresponding to the context.

— the probability value is fed to the arithmetic coder.
— current PT is updated by adding a specified step to the fre-

quency of the current byte occurrence in the current con-
text (and, if necessary, renormalized afterwards, see details
below).

Thus, coding is the process of constructing and updating the
PTs according to the context model. In the context-based adap-
tive arithmetic coding schemes (such as “Prediction with Partial
Matching” [23], [24]), context of a symbol is usually a string
of several preceding symbols. However, in our case, compres-
sion efficiency is increased by exploiting the octree structure and
geometric nature of the data. The proposed approach is based on
the two ideas that are apparently new in the problem of octree
compression.

1) For the current node, the context is either its parent node,
or the pair {parent node, current node position in the parent
node};

2) It is assumed that the “probability” of the given node occur-
rence at the particular geometric location in the particular
parent node is invariant with respect to a certain set of or-
thogonal (such as rotations or symmetries) transforms.

Assumption 1) is illustrated in Fig. 10 for the transform ,
which is the rotation by on the – plane. The basic notion
behind 2) is the observation that probability of occurrence of a
particular type of child node in a particular type of parent node
should depend only on their relative position. This assumption
is confirmed in our experiments by analysis of probability ta-
bles. It allows us to use more complex context without having
too many probability tables. This, in turn, helps to achieve quite
good results in terms of data size and speed. Note that the more

LEVKOVICH-MASLYUK et al.: DEPTH IMAGE-BASED REPRESENTATION AND COMPRESSION FOR STATIC AND ANIMATED 3-D OBJECTS 1039

TABLE I
ENUMERATION OF PROBABILITY TABLES

complex contexts are used, the sharper the estimated probability
is, and thus the more compact the code is. A heuristic explana-
tion of “transition probabilities” invariance lies in the fact that
image-based representations deal with visible surfaces of the
3-D objects, i.e., with more or less smooth 2-D data. Suppose
that a small 2-D patch is represented by a certain small sub-
tree of fine level voxels (note that fine level voxels determine
the overall statistics). Then one can expect that a version of this
patch rotated by one of the orthogonal transforms defined below
occurs elsewhere in the model surface. In this case, it will be rep-
resented by the rotated version of the same small subtree.

Let us introduce the set of transforms for which we will
assume the invariance of probability distributions. In order to
apply in our situation, such transforms should preserve the
enclosing cube.

Consider a set of the orthogonal transforms in Euclidean
space, which are obtained by all compositions in any number
and order of the three basis transforms (generators) , ,
and , given by

(1)

In (1), and are reflections to the planes and
, respectively, and is reflection to the plane .

One of the classical results of the theory of groups generated
by reflections [25] states that contains 48 distinct orthogonal
transforms and is, in a sense, the maximal group of orthogonal
transforms that take the cube into itself (so-called Coxeter group
[25]). For example, rotation in Fig. 10 is expressed through
the generators as

(2)

where “ ” is matrix multiplication.
Transform from , applied to an octree node, produces a node

with a different filling pattern of subcubes. This allows to cat-
egorize the nodes according to the filling pattern of their sub-
cubes. Using the group theory language [25], we say that acts
on the set of all filling patterns of the octree nodes. Computa-
tions show that there exist 22 distinct classes (also called orbits
in group theory), in which, by definition, two nodes belong to
the same class, if and only if they are connected by a transform
from . The number of elements in a class varies from 1 to 24
(and is always, in accordance with group theory, a divisor of 48).

The practical consequence of assumption 2) is that the prob-
ability table depends not on the parent node itself, but only
on the class to which the parent node belongs. Note that there
would be 256 tables for a parent-based context and additional

for parent-and-child position-based
context in the former case, while we need only 22 tables for
parent-class-based context plus in the latter
case. Therefore, it is possible to use equivalently complex con-
text with a relatively small number of probability tables. The
constructed PT would have the form as shown in Table I.

2) Encoding Process: To make the statistics for probability
tables more accurate, they are collected in different ways at three
stages of encoding process.

At the first stage, we do not use contexts at all, accepting
the “0-context model” and keep a single probability table with
256 entries, starting from the uniform distribution;

As soon as the first 512 nodes (it is an empirically found
number) are encoded, we switch to the “1-context model” using
parent node as a context. At the switching moment, the 0-con-
text PT is copied to the PTs for all 22 contexts.

After 2048 nodes (another heuristic value) are encoded, we
switch to “2-context model.” At this moment, the 1-context PTs
of the parent patterns are copied to the PTs for each position in
the same parent pattern.

Key point of the algorithm is the determination of context and
probability for the current byte. This is implemented as follows.
In each class, we fix a single element, which is called “standard
element.” We store a class map table (CMT) indicating the class
to which each of the possible 256 nodes belongs and the pre-
computed transform from that takes this particular node into
the standard element of its class. Thus, in order to determine
the probability of the current node , we perform the following
steps.

Step 1) Look at the parent of the current node.
Step 2) Retrieve the class from CMT, to which belongs,

and the transform that takes into the standard
node of the class. Let the class number be .

Step 3) Apply to and find the child position in stan-
dard node to which current node is mapped.

Step 4) Apply to . Then, newly obtained filling pattern
is at the position in the standard node of the

class .
Step 5) Retrieve the required probability from the entry

of the probability table corresponding to the class-
position combination (,).

Step 6) For the 1-context model, the above steps are mod-
ified in an obvious way. Needless to say, all the
transforms are precomputed, and implemented in a
lookup table.

1040 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 14, NO. 7, JULY 2004

Note that at the stage of decoding of the node its parent
is already decoded, and hence transform is known. All of

the steps at the stage of decoding are absolutely similar to the
corresponding encoding steps.

Finally, let us outline the probability update process. Let
be a probability table for some context. is the entry of
corresponding to the probability of occurrence of the node
in this context. In our implementation, is an integer, and
after each occurrence of , is updated as

(3)

where is an integer increment parameter varying typically
from 1 to 4 for different context models. Let be the sum
of all entries in . Then the “probability” of that is fed to the
arithmetic coder is computed as . As soon as
reaches a threshold value , all the entries are renormalized:
in order to avoid occurrence of zero values in , entries equal
to 1 are left intact, while the others are divided by 2.

C. VoxelImageIndex Field Compression

The stream of symbols determining the image index for each
voxel is compressed using its own probability table. In the terms
used above, it has a single context. PT entries are updated with
larger increment than entries for octree nodes: this allows to
adapt the probabilities to high variability of the involved symbol
frequencies; in the rest, there is no difference with node symbols
coding.

VI. RENDERING

Rendering methods for DIBR formats are not part of AFX,
but it is necessary to explain the ideas used to achieve sim-
plicity, speed, and quality of DIBR objects rendering. Our ren-
dering methods are based on splats, small flat color patches used
as “rendering primitives.” In Section II, we mentioned this ap-
proach as widely used in image-based representations. Two ap-
proaches outlined below are oriented at two different represen-
tations: DepthImage and OctreeImage. In our implementation,
OpenGL functions are employed for splatting to accelerate the
rendering. Note that software rendering is also possible and en-
ables to optimize computations using the simple structure of
DepthImage or OctreeImage.

A. Rendering DepthImage Objects

The method we use for rendering DepthImage objects is ex-
tremely simple. It should be mentioned, however, that it depends
on the OpenGL functions and works much faster with the aid of
a hardware accelerator. In this method, we transform all of the
pixels with depth from SimpleTextures and PointTextures that
are to be rendered into 3-D points, then position small poly-
gons (splats) at these points, and apply rendering functions of
OpenGL. Pseudocode of this procedure for SimpleTexture case
is given in Fig. 11. PointTexture case is treated exactly in the
same way.

The size of the splat must be adapted to the distance between
the point and the observer. We used the following simple ap-
proach. First, the enclosing cube of a given 3-D object is subdi-
vided into a coarse uniform grid. The splat size is computed for

Fig. 11. Pseudocode of OpenGL-based rendering of SimpleTexture.

each cell of the grid, and this value is used for the points inside
the cell. The computation is performed as follows.

— Map the cell on the screen by means of OpenGL.
— “Calculate length of the largest diagonal of projection (in

pixels).
— Estimate (splat diameter) as , where is average

number of points per cell side and is a heuristic constant,
approximately 1.3.

This method could certainly be improved by sharper radius
computations, more complex splats, and antialiasing, although
even this simple approach provides good visual quality.

B. Rendering OctreeImage Objects

The same approach works for OctreeImage, where the nodes
of the octree at one of coarser levels are used in the above com-
putations of splat size. However, for the OctreeImage, color in-
formation should first be mapped on the set of voxels. This can
be done very easily, because each voxel has its corresponding
reference image index. The pixel position in a reference image
is also known during the parsing of the octree stream. As soon
as the colors of OctreeImage voxels are determined, splat sizes
are estimated and the OpenGL-based rendering is used as de-
scribed above.

VII. EXPERIMENTAL RESULTS

DIBR formats have been implemented and tested on several
3-D models. One of the models (“Tower”) was obtained by
scanning actual physical object (Cyberware color 3-D scanner
was used), and the others have been converted from the
3DS-MAX demo package. Tests have been performed on an
Intel Pentium-IV 1.8-GHz PC with an OpenGL accelerator.

LEVKOVICH-MASLYUK et al.: DEPTH IMAGE-BASED REPRESENTATION AND COMPRESSION FOR STATIC AND ANIMATED 3-D OBJECTS 1041

TABLE II
STATIC DIBR MODELS COMPRESSION. MODEL SIZES ARE IN KILOBYTES

TABLE III
COMPRESSION RESULTS FOR OCTREE AND VOXELIMAGEINDEX FIELDS IN OCTREEIMAGE FORMAT. FILE SIZES ARE ROUNDED TO KILOBYTES

In the following sections, we explain the methods of con-
version from polygonal to DIBR formats and then present the
modeling, representation, and compression results of the dif-
ferent DIBR formats. Most of the data is for DepthImage and
OctreeImage models; these formats have animated versions and
can be effectively compressed. All of the presented models have
been constructed with the orthographic camera since it is, in
general, a preferable way to represent “compact” objects. Note
that the perspective camera is used mostly for economic DIBR
representation of the distant environments.

A. Generation of DIBR Models

DIBR model generation begins with obtaining a sufficient
number of SimpleTextures. For a polygonal object, the Simple-
Textures are computed, while for the real-world object the data
are obtained from digital cameras and scanning devices. The
next step depends on the DIBR format we want to use.

1) DepthImage: DepthImage is simply a union of the ob-
tained SimpleTextures. Depth maps are stored in losslessly com-
pressed form, because even small magnitude distortions in ge-
ometry, especially those unmatched in different but overlapping
depth maps, usually lead to artifacts like holes and sharp peaks
or edges which are clearly noticeable in three dimensions.

Reference images can be stored in lossy compressed form,
but in this case a preprocessing is required. While it is generally
tolerable to use popular methods like JPEG lossy compression,
the boundary artifacts become more noticeable in the 3-D ob-

Fig. 12. Compression of reference image in SimpleTexture. (a) Original
reference image. (b) Modified reference image in JPEG format.

ject views generated, especially due to the boundaries between
object and background of the reference image, where the back-
ground color appears to “spill” into the object. The solution we
have used to cope with the problem is to extend the image in the
boundary blocks into the background using average color of the
block and fast decay of intensity, and then apply the JPEG com-
pression. The effect resembles “squeezing” the distortion into
the background where it is harmless since background pixels are
not used for rendering. Internal boundaries in lossy compressed
reference images may also produce artifacts, but these are gen-
erally less visible.

2) OctreeImage: To generate OctreeImage models, we use
an intermediate point-based representation (PBR). Set of points
that constitute a PBR is a union of the colored points obtained

1042 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 14, NO. 7, JULY 2004

Fig. 13. “Morton” model in different formats. (a) Original polygonal format.
(b) DepthImage model. (c) OctreeImage model.

Fig. 14. Rendering examples. (a) Scanned “Tower” model, DepthImage. (b)
The same model, OctreeImage (scanner data have been used without noise
removal, hence the black dots are observed in the upper part of the model).

by shifting pixels in reference images by distances specified in
the corresponding depth maps. Original SimpleTextures should
be constructed so that the resulting PBR would provide suffi-
ciently accurate approximation of the object surface. After that,
PBR is converted into OctreeImage as outlined in Fig. 5 and is
used to generate a new complete set of reference images that sat-
isfy restrictions imposed by this format (see Section IV). At the
same time, additional data structure voxelImageIndex (see Sec-
tions III-B and III-C) representing reference image indices for
octree voxels, is generated. In case the reference images must be
stored in a lossy format, they are first preprocessed as explained
in the previous subsection. Besides, since a TBVO structure ex-
plicitly specifies the pixel containing its color of each voxel, re-
dundant pixels are discarded, which further reduces the volume
of voxelImageIndex. Examples of the original and modified ref-
erence image in JPEG format are shown in Fig. 12.

Note that quality degradation due to lossy compression is
negligible for OctreeImages, but sometimes still noticeable for
DepthImage objects.

3) PointTexture: PointTexture models are constructed using
projection of the object onto a reference plane, as explained in
Section III-A. If this does not produce enough samples (which
may be the case for the surface parts nearly tangent to vector of
projection), additional SimpleTextures are constructed to pro-
vide more samples. The obtained set of points is then reorga-
nized into the PointTexture structure.

B. Compression and Rendering

1) Compression: In Table II, we compare data sizes of the
several polygonal models and their DIBR versions. Numbers

Fig. 15. Rendering examples. (a) “Palm” model, original polygonal format.
(b) Same model, DepthImage.

Fig. 16. Rendering examples. A frame from “Dragon512” animation in
OctreeImage.

Fig. 17. Rendering examples. “Angel512” in PointTexture.

in the model names denote the resolution (in pixels) of their
reference images.

Depth maps in DepthImages have been stored in PNG format,
while reference images are stored in high-quality JPEG. The
data in Table II indicate that DepthImage model size is not al-
ways smaller than that of the archived polygonal model. How-
ever, compression provided by OctreeImage is usually much
higher. This is a consequence of unification of depth maps into
a single efficiently compressed octree data structure, as well as

LEVKOVICH-MASLYUK et al.: DEPTH IMAGE-BASED REPRESENTATION AND COMPRESSION FOR STATIC AND ANIMATED 3-D OBJECTS 1043

Fig. 18. Rendering of DIBR objects on a PDA. (a) “Boo” model with 26 SimpleTextures. (b) “Flower” model in PointTexture with 98 469 points. (c) “Morton”
model in OctreeImage.

of sophisticated preprocessing which removes redundant pixels
from reference images. On the other hand, DepthImage struc-
ture provides simple and universal means for representing com-
plex objects like “Palm” without difficult preprocessing.

Table III presents OctreeImage-specific data, giving the idea
of efficiency of the compression developed for this format. Table
entries are data sizes of compressed and uncompressed parts
of the models comprising octree and voxelImageIndex compo-
nents. It is shown that the compression ratio varies from 2 to
2.5. Note that “Palms” model in Table III is not the same one as
“Palm” in Table II.

We conclude this subsection with data on rendering speed
and animated model size. Rendering speed of DepthImage
“Palm512” is about 2 frames per second (fps), while other static
models we tested with reference image side 512 are rendered
at 5–6 fps. Note that rendering speed depends mostly on the
number and resolution of the reference images, but not on the
complexity of the scene. This is an important advantage over
the polygonal representations, especially in the animated case.
Animated OctreeImage “Dragon512” is visualized at 24 FPS
in which the compression results are as follows.

a) Compressed size of octree plus voxelImageIndex compo-
nent: 910 KB (696 KB and 214 KB, respectively);

b) Six reference videostreams in compressed AVI format:
1370 KB;

c) Total data volume: 2280 KB.

2) Rendering Examples: “Angel256” DepthImage model
is shown in Fig. 3. Figs. 13–17 show several other DIBR and
polygonal models. Fig. 13 compares the appearance of the
polygonal and DepthImage “Morton” model. The DepthImage
model uses reference images in JPEG format and rendering is
performed by the simplest splatting described in Section VI,
but the image quality is quite acceptable. Fig. 14 compares
two versions of the scanned “Tower” model. Black dots in the
upper part of the model are due to noisy input data. Fig. 15
demonstrates more complex “Palm” model, composed of
21 SimpleTextures. It also shows good quality, although the
leaves are, in general, wider than those in the 3DS-MAX
original—which is a consequence of simplified splatting.

Finally, Fig. 16 presents a 3-D frame from “Dragon512” Oc-
treeImage animation. Fig. 17 demonstrates the ability of Point-
Texture format to provide models of excellent quality.

3) Rendering on a Mobile Device: In order to show the
rendering performance on a device with limited ability, we
have developed a renderer on a personal digital assistant (PDA)
(iPAQ 3970). The PDA is equipped with an Intel PXA250 400
MHz processor and PocketPC 2002 operating system. Note
that it does not support floating point operation and there is
no 3-D graphic library, which are the barriers in implementing
3-D graphics on PDAs. Although it is not fully optimized yet,
it is observed that we have achieved high frame rates as shown
in Fig. 18. It is almost impossible to render same detailed
mesh models on a PDA VRML browser. In addition, it is not
easy even on a PC to model and render a complex object like
the “Flower” model shown in Fig. 18(b). This confirms the
efficient modeling and rendering capability of DIBR.

VIII. CONCLUSION

We have described the family of DIBR, adopted into MPEG-4
AFX as an alternative to conventional polygonal 3-D represen-
tations. The main formats of the family are DepthImage, Oc-
treeImage and PointTexture. DepthImage represents an object
by a union of its reference images and corresponding depth
maps. OctreeImage converts the same data into hierarchical oc-
tree-structured voxel model, set of compact reference images,
and a tree of voxel-image correspondence indices. PointTex-
ture represents the object as a set of colored points parameter-
ized by projection onto a regular 2-D grid. DepthImage and Oc-
treeImage have animated versions, where reference images are
replaced by videostreams. DIBR formats are very convenient
for 3-D model construction from 3-D range-scanning and mul-
tiple-source video data. MPEG-4 framework allows us to con-
struct a wide variety of representations from the main DIBR
formats, providing flexible tools for effective work with 3-D
models.

Compression of the DIBR formats is achieved by application
of image (video) compression techniques to depth maps and ref-
erence images (videostreams). In addition, we have developed a

1044 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 14, NO. 7, JULY 2004

very efficient method for OctreeImage compression, combining
context-based adaptive arithmetic coding with the context tables
making use of group invariance assumptions.

Our future work includes developing a compression algo-
rithm of the PointTexture model and the OctreeImage animation
model. In addition, we plan to develop adaptive representation
and rendering of DIBR, in which level-of-detail and view-de-
pendent rendering methods will be investigated.

ACKNOWLEDGMENT

The authors would like to thank Dr. Y.-S. Seo and Dr. S. Y.
Jung in Samsung Advanced Institute of Technology for the con-
sistent support to the project. They are also deeply grateful to D.
Timasov for his dedicated work of incorporation and testing the
DIBR formats in the MPEG-4 AFX reference software.

REFERENCES

[1] Information Technology – Coding of Audio-Visual Objects – Part 1: Sys-
tems, ISO/IEC Standard JTC1/SC29/WG11 14 496–1.

[2] Information Technology – Coding of Audio-Visual Objects – Part 2: Vi-
sual, ISO/IEC Standard JTC1/SC29/WG11 14 496–2.

[3] Information Technology – Coding of Audio-Visual Objects – Part 3:
Audio, ISO/IEC Standard JTC1/SC29/WG11 14 496–3.

[4] Information Technology – Coding of Audio-Visual Objects – Part
16: Animation Framework eXtension (AFX), ISO/IEC Standard
JTC1/SC29/WG11 14 496–16:2003.

[5] G. Schaufler and W. Stürzlinger, “A three-dimensional image cache for
virtual reality,” in Proc. Eurographics, 1996, pp. 227–236.

[6] J. Shade, D. Lischinski, D. Salesin, T. DeRose, and J. Snyder, “Hierar-
chical image caching for accelerated walk-throughs of complex environ-
ments,” in Proc. SIGGRAPH, 1996, pp. 75–82.

[7] M. Oliveira, G. Bishop, and D. McAllister, “Relief textures mapping,”
in Proc. SIGGRAPH, July 2000, pp. 359–368.

[8] J. Shade, S. Gortler, L. He, and R. Szeliski, “Layered depth images,” in
Proc. SIGGRAPH, July 1998, pp. 231–242.

[9] L. McMillan, “A List-Priority Rendering Algorithm for Redisplaying
Projected Surfaces,” Univ. of North Carolina, Chapel Hill, 95–005,
1995.

[10] L. McMillan and G. Bishop, “Plenoptic modeling: An image-based ren-
dering system,” in Proc. SIGGRAPH, August 1995, pp. 39–46.

[11] D. Lischinski and A. Rappoport, “Image-based rendering for nondif-
fuse synthetic scenes,” in Proc. 9th Eurographics Workshop Rendering,
1998, pp. 301–314.

[12] M. Oliveira and G. Bishop, “Image-based objects,” in Proc. ACM Symp.
Interactive 3D Graphics, Apr. 1999, pp. 191–198.

[13] C. Chang, G. Bishop, and A. Lastra, “LDI tree: A hierarchical represen-
tation for image-based rendering,” in Proc. SIGGRAPH, Aug. 1999, pp.
291–298.

[14] S. Rusinkiewicz and M. Levoy, “QSplat: A multiresolution point ren-
dering system for large meshes,” in Proc. SIGGRAPH, July 2000, pp.
343–352.

[15] H. Pfister, M. Zwicker, J. Baar, and M. Gross, “Surfels: Surface elements
as rendering primitives,” in Proc. SIGGRAPH, July 2000, pp. 335–342.

[16] S. Gortler, R. Grzeszczuk, R. Szeliski, and M. Cohen, “The lumigraph,”
in Proc. SIGGRAPH, Aug. 1996, pp. 43–54.

[17] M. Levoy and P. Hanrahan, “Light field rendering,” in Proc. SIG-
GRAPH, Aug. 1996, pp. 31–42.

[18] C. Bregler, “Video based animation techniques for human motion,” in
SIGGRAPH’00 Course 39: Image-Based Modeling and Rendering, July
2000.

[19] P. Debevec, C. Taylor, and J. Malik, “Modeling and rendering architec-
ture from photographs: A hybrid geometry and image-based approach,”
in Proc. SIGGRAPH, 1996, pp. 11–20.

[20] A. Zhirkov, “Binary volumetric octree representation for image based
rendering,” in Proc. GRAPHICON, Sept. 2001, pp. 195–198.

[21] M. Levoy and T. Whitted, “The Use of Points as a Display Primitive,”
Univ. of North Carolina, Chapel Hill, 85–022, 1985.

[22] S. Kang, “A survey of image-based rendering techniques,” Proc. SPIE,
vol. 3641, pp. 2–16, 1999.

[23] J. Cleary and I. Witten, “Data compression using adaptive coding and
partial string matching,” IEEE Trans. Commun., vol. COM-32, pp.
396–402, Apr. 1984.

[24] J. Rissanen and G. Langdon, “Universal modeling and coding,” IEEE
Trans. Inform. Theory, vol. 27, pp. 12–23, Jan. 1981.

[25] H. Coxeter and W. Moser, Generators and Relations for Discrete
Groups, 3rd ed. Berlin, Germany: Springer-Verlag, 1972.

[26] C.-S. Kim and S.-U. Lee, “Compact encoding of 3D voxel surfaces based
on pattern code representation,” IEEE Trans. Image Processing, vol. 11,
pp. 932–943, Aug. 2002.

Leonid Levkovich-Maslyuk received the M.S. de-
gree in mathematics from Moscow Lomonosov State
University, Moscow, Russia, in 1976.

In 1983, he joined the Keldysh Institute of
Applied Mathematics, Moscow, where he currently
is a Senior Scientist. His research interests include
data compression, computer graphics, and fractal
and wavelet analysis.

Alexey Ignatenko graduated from Moscow
Lomonosov State University, Moscow, Russia, in
2002, where he is currently working toward the
Ph.D. degree.

His research interests are in computer graphics,
image-based rendering and lighting, point sample
rendering, multiresolution rendering, photorealistic
rendering, virtual and augmented reality, and
software engineering.

Alexander Zhirkov graduated from Moscow
Lomonosov State University (MSU), Moscow,
Russia, in 2001, where he is currently working
toward the Ph.D. degree.

His research interests are in image and video
compression, real-time photorealistic rendering,
fractal and multiscale analysis, object and speech
recognition, artificial neural networks, synergetics,
and human-centered interfaces.

Anton Konushin graduated from Moscow
Lomonosov State University (MSU), Moscow,
Russia, in 2002, where he is currently working
toward the Ph.D. degree.

His research interests are in computer graphics,
image-based modeling, virtual and augmented
reality, dynamic knowledge-based systems, and
software engineering.

LEVKOVICH-MASLYUK et al.: DEPTH IMAGE-BASED REPRESENTATION AND COMPRESSION FOR STATIC AND ANIMATED 3-D OBJECTS 1045

In Kyu Park (S’96–M’01) received the B.S., M.S.,
and Ph.D. degrees from Seoul National University,
Seoul, Korea, in 1995, 1997, and 2001, respectively,
all in electrical engineering and computer science.

From September 2001 to March 2004, he was
a Member of Technical Staff with the Multimedia
Laboratory, Samsung Advanced Institute of Tech-
nology, Yongin, Korea, where he was involved
in several projects on computer graphics and
multimedia applications. Also, he has been actively
involved in MPEG-4 and MPEG-7 standardization

activities. Since March 2004, he has been with the School of Information
and Communication Engineering, Inha University, Incheon, Korea, where
he is currently a Full-time Lecturer. His research interests include the joint
area of three-dimensional (3-D) computer graphics, computer vision, and
multimedia application, especially image-based modeling and rendering, 3-D
shape reconstruction, range data processing, and 3-D face modeling.

Dr. Park is a member of the IEEE Computer Society and the Association for
Computing Machinery.

Mahnjin Han (M’02) received the B.Sc. degree in
computer science and the M.Sc. degree in multimedia
from Yonsei University, Seoul, Korea, in 1994 and
1996, respectively.

Currently, he is a Member of Technical Staff and
a Project Manager with the Multimedia Laboratory,
Samsung Advanced Institute of Technology, Yongin,
Korea, focusing on the SNHC research of MPEG-4.
He has been involved in the standardization of 3-D
Model Coding in the Synthetic Natural Hybrid
Coding Group and now is focusing on Animation

Framework eXtension (AFX) effort. He is the main contributor to the depth
image-based representation in AFX and is also actively involved in research
of interpolator compression. His research interests include computer graphics,
data compression, image-based rendering, and scientific visualization.

Yuri Bayakovski received the M.S. degree (with
honors) in electrical and computer engineering from
Moscow Power Engineering Institute, Moscow,
Russia, in 1960 and the Ph.D degree in mathematics
and computer science from Keldysh Institute of
Applied Mathematics (KIAM), Moscow, in 1974.

Since 1977, he has been the head of the Computer
Graphics Department, KIAM. Since 1983, he has
been a part-time Professor with Moscow Lomonosov
State University (MSU), where he established the
Graphics and Media Laboratory. He gives lectures on

computer graphics and computer vision. His research interests are in scientific
visualization, geometry modeling, virtual environments, and computer science
education. He has translated and edited more than 20 technical books from
English and French into Russian. He served as a Program Committee Chair for
several international conferences on computer graphics held in Russia.

Dr. Bayakovski was the recipient of an award given by the U.S.S.R. Govern-
ment in 1986.

