A Visual Introduction to OpenGL Programming
Siggraph 1998 - Course 7

Mason Woo
Dave Shreiner

Abstract

This course is an introduction to writing interactive graphics programs using the OpenGL
API. As opposed to seeing shippets of code and static, captured images, this course
features interactive tools to visualize and experiment with computer graphics concepts, such
as transformations, lighting, and texture mapping. Detailed explanations focus upon
controlling the position and movement of the camera, the light sources, and objects in a
scene. The effects of changing the order of modeling transformations (and their associated
matrices) are discussed and visually demonstrated. Manipulating changes to parameters of
the texture mapping API are shown with real-time graphics.

Speaker Biographies

Mason Woo

After 10 years of training and marketing graphics libraries at Silicon Graphics, Mason Woo became an
independent consultant in 1996. He is co-author of the OpenGL Programming Guide (Addison-Wesley, 2nd
edition, 1997) and former secretary of the OpenGL Architecture Review Board. Mason has previously taught
courses at SIGGRAPH, the X Technical Conference, an&hibition, and has been a speaker or panelist at
JavaOne, the Japan Personal Computer Software Association, NCGA, VESA, Microsoft Win32 Professional
Developer's Conference, Defense & Government Computer Graphics Conference, and SIGCHI & GI.

Dave Shreiner

Dave is a member of the OpenGL development team at Silicon Graphics Computer Systems. He has 10 years
of experience with visual simulation and scientific visualization, including 7 years at Silicon Graphics. He was
the original author of “Introductory OpenGL Programming” for Silicon Graphics Technical Education
department. Dave has a Bachelors of Mathematics from University of Delaware, and has done graduate work
at the Johns Hopkins University.

Syllabus

1:30pm Woo Welcome & OpenGL Introduction (pages 1-14)
1:50pm Shreiner Elementary Rendering (pages 15-36)

2:20pm Woo Matrix Transformations (pages 37-56)

3:00pm Break

3:15pm Shreiner Lighting Models (pages 57-68)

3:45pm Shreiner Texturing (pages 69-84)

4:25pm Woo Overview of Other Topics (pages 85-106)

5:15pm All Summay, Q & A (pages 107-109)

Table of Contents

A Visual Introduction to OpenGL Programmingccoeeoerareee e sieesieessieeesiee s siee e e s sresseeeesseeesaeeas 1
COUISE FIOW ...tttk h e h et h ettt e a e e st e a e e et e e et e bt et et e ean e ear e e aneenne s 2
COUISE FIOW ...tttk a b h ekt h ekt h e e h e h e e et e bt e et e bt e bt e an e ean e eareeaneenn e 3
WWHEE IS OPENGL? ...ttt ettt ettt ettt ettt e bt e e e bt e e eabe e sabe e ambe e e be e e abee e saee e smbeesmbeeanbeeenbeeesnneas 4
OPENGL ATCHITECIUIE. ... ettt ettt et ettt be e e she e e sabe e sabeeeabe e e abeeesabeesmbeeanbeeeabeeesnneesnneeaas 5
OPENGL 8S A RENAEIES ..ottt h et e e bt e ettt e sbe e e sabe e sabeeebeeesbeeesaneesnreeaas 6
OpenGL and REGIEA APIS ...ttt sttt e sb e e e sabe e s abe e st e e e sbeeesaneesnbeeaas 7
OpenGL and REGIEA APIS ...ttt ettt et e e sb e e e sabe e s abe e s be e e sbeeesaneesnbeeaas 8
PrOQIaIm SITUCLUI ..ottt ettt ettt e ettt e e e st et e e s aab e e e e s bbe e e e sabee e e e anbeeeeanbeeaeannreeesanneas 9
PIEIIMINAITES. ...ttt b bbbt bt bbbt e bt e b e e r e e b e r e e ne e reene e 10
OPENGL COMMANG SYNEBXeeiteieiteieiiteeeiee et ettt stee e ssbe e bt e e ebe e e sbee e saee e aabeesbeeaabeeeabeeeasbeesabeesbeeaareeesnneas 11
A SIMpPle EXAMPIE PrOGIramM.... ...ttt ettt e sb e e saee e ssbe e s be e sbe e e saeeesnbeaans 12
Simple Program (CONtINUE).coiuie ettt ettt et e e s sbe e e sbe e e smbe e sabe e ebeeaereeesneeas 13
L g o] gl o F= 12 o | 1 o USSP 14
Elementary RENAEITNG.c.uii ittt ettt et be e saee e s abe e s abe e sbe e e saeeesnbeesnneaan 15
OpenGL GEOMELIIC PrIMITIVEScoiueie ettt ettt ettt et e e e sbe e e sbee e ssbe e sabeeebeeeabeeesneeas 16
Specifying GEOMELITC PIIMITIVESooiiii ittt e e sbe e saee s 17
OPENGL COlOr MOGEIS......eeeteeetee ettt et a e e st e s b e e e be e e sbee e ssbeesabeeebeeeabeeesneeas 18
SIMPIE EXBIMPIE.....ce ettt ettt b et h bt e s et e e st et et e e e sbee e smbeesabeesbeeeabeeesnneas 19
AGVANCED PHIMITIVES ...ttt sttt e ar e n e e reeane s 20
AV = QN £ = V£ T OO T RO P P UPPRO 21
INEEITEAVEA ATTAYS. ... ettt ettt bt h e st e bt e e ebe e e ehe e e sabe e eabe e e be e e ebbeesabeesabeeebeeeanbeesnbeaan 22
RENAENTNG WIth VEITEX ATTAYS. ...eeteeitie ettt ettt ettt sat e sabe e s be e e be e e sbee e sate e sabeesabeeabeeeaaeeesabeesnreaans 23
Controlling ReNAEring APPEaIAINCEcciuuii ittt ettt e rte et e e sbee e saee e sabeesbe e e sbeeesbaeessbeesnbeesbeeasbeeesaneas 24
OPENGL’S SEALE IMBCNINEeei ittt ettt ettt et e e s ate e st e e s be e e be e e sbee e ssbeesabeesbeeeabeeesnneas 25
Manipulating OPENGL SEBLEccouueiiieieitie ettt sae et e e bt e bt e e sbe e e saee e sabeesabeeebeesaaeeesabeesnneaan 26
CONLrOHTNG CUMTENE SEALE ... teeitee ettt ettt ettt ettt h e et e e st e e et e e e abee e ssbeesabeesbeeaabeeesnneas 27
OPENGL BUFFEIS. .ottt ettt ettt et ettt e eb et e shbe e sab e e s abe e e be e e abee e esbeesmbeeanbeeeabaeesneeas 28
O L= T g T = £ PR ORI 29
(D o10o 1] 21U 1§ = 110 o TR SRUPRRIN 30
Animation Using DouBDI@ BUFFEITNGcouuiiiiiii ettt saee e s 31
(D] 011 gl 21U 4= T oo RS UPRTRIN 32
Depth BUFfering USING OPENGLcooiiiiiiieiie ettt sttt ettt ettt ettt et e e sbe e saee e sabe e sbeesbeeasaeeasneeesnneaan 33
A COMPLELE EXAMPIE ...ttt ettt b e e b e e e sabe e ssbe e s abe e e be e e sneeesnbeaans 34
A Complete EXAMPIE (CONL.)veiiiiietie ettt sa et e st e b e e e saee e ssbe e sbeesbeeesneeesnneaans 35
A Complete EXAMPIE (CONL.)veiiiiieiie ettt ettt ettt sa et e st e b e e e saee e ssbe e sabeesbeeesnneesnneeans 36
TEANSTOMMIBEIONS. ...ttt b b b s bt e s bt e s b e e s b e e e b e sb e s be e s b et sbe e nbe e ebeenbeesn e e nnnennnas 37
1072100 1C r= N 0= oo YOOI 38
D MBINEIMELICS. ...ttt ettt b e b e bt s bt s bt e s b e e s bt e sb e e sR e e sb e e sb e e sb e e sb e e sbeenbeenbeenreenreenreenreen 39
(0721001 r= N o= oo YU OURRRI 40
TransformMation PIPEIING.oo.ei ettt b e sa e e st e e st e e e sbe e e saee e snbeesnbeeenees 41
Y e D Q@] o= = o LTSRN 42
Projection TranSfOrMELION.coouiiiee ittt ettt et e sbe e saee e sabe e s abe e sbe e e saee e sabeesnneaan 43
VIeWiNG TranSfOMMIBHIONS.ei ittt ettt et ettt e e she e e sabe e s be e e sbee e saeeessbeesabeesbeeesnneesnbeaans 44
MOdEliNg TranSfOMMIBLIONS.oe ettt sae et e bt e bt e e sbe e e sabe e sabeesabeeebeeeaaeeesnbeesnneaan 45
Connection: Viewing and MOOEITNGottt sttt e sae e saeeas 46
Projection iSTEft NANAEAottt sttt e st e e sbe e e sabe e snneaan 47
Common TranSforMation USBJE........coiuuia ittt ettt ettt et et e e rbe e e sbee e ssbe e sabeeebeeesbeeesneeas 48
reSIZE(): PErSPECHIVE & LOOKAT ... eeiiiit ittt e rbe e saee e sabe e st e e sbe e e abee e sabeesnbeaan 49

resize(): Perspective & TranNGale.c.oiiieiiiiee ettt ettt sae e saee e sareean 50

(=S =) O 1 [0 TSP 51

Compositing Modeling TranSfOrMationscoooeiiiiieiiee ettt sae e saee s 52
Compositing Modeling TranSfOrMationScooeiiiiiaiee et sae e saee s 53
Additional CliPPING PLANESooiiieii ettt ettt e sb e e e saee e ssbe e sbeesabeeesbeeesabeaans 54
Reversing Coordinale PrOJECHIONciiiiiiiiee ettt ettt ettt sbe e saee e sabe e st e s be e s saee e sneeesnneaans 55
CUlling @Nd POlYGON IMOUE.eeiiiiie ettt ettt et ate e st e e s bt e et e e e sbee e ssbe e sabeeenbeeesbeeesnneas 56
(Yo 0117 oo FO RS RUPRRIN 57
LIGNEING BASICS.....e ettt h et h e sa bt et e e ettt e he e e eabe e eabe e eabe e e be e e eaee e nnreeanreaan 58
Phong Lighting MOE]oo ittt ettt e e st e et e e e saee e sateesnbeaans 59
SUIMTACE NOIMEIS......eeeeee ettt b e b e s bt st e e s b e e sb e e sb e e sb e e sbeesbeesbeenreesreenreenreens 60
SPECifYiNg Material PrOPEITIEScoiuei ettt ettt et e b et e ssbe e sabe e sbe e e sbeeeaneeas 61
MELEITAl EXBIMPIE..... ettt rh et a e e st e s bt e ettt e sbe e e saee e sabe e sabeeeabeeeaaeeesnbeesnneaan 62
LIGNE SOUICES ... ettt ettt ettt ettt b et e s h e e sa bt e st e e ettt e be e e saee e smbeesabeeenbeeeaneeesnbeesnneans 63
(Yo o100 o TH [forc-=Y (o] | o) PRSPPI 64
Lighting EXAMPIE ... ettt sttt ettt ettt e bt e e sae e e sabe e st e e e be e e eae e e sareennreaan 65
(=0 lo] Fha ol I To] 11T oo FO RO RRRUPRRIN 66
Controlling @Light’ S POSITIONcoiuuieiiie ettt ettt e e sbe e e sbee e ssbe e sabe e sbeeesbeeesaeeas 67
Specifying Lighting MOl Properti€sooieiiii ettt 68
R =\ F=To] o] oo [PPSR 69
APPIYING TEXEUIES.....ce ettt ettt ettt ettt e b et sa e e s s e e e bt e e be e e ehee e eabe e aabeeebee e ebee e smbeesmbeeabeeesnneesnbeaans 70
TEXIUNE O ECES ...ttt h e a e bt e s bt e e eh et e sabe e s ab e e s abe e e abee e saee e snbeesnbeeenees 71
SPECIHTY TEXIUINE IMBOE.... .. eeietee ettt ettt ettt ettt ra ettt e s bt e ettt e b e e e shbe e sabe e sabe e e be e e abeeeembeesmbeesnbeeeabeeesnneas 72
CONVEITING A TEXIUNE IMIBOR.teeeiteee ittt ettt ettt ettt ettt e bt e sate e sabe e s be e e be e e abee e ssbeesabeesnbeesabeeesnneas 73
Specifying a Texture: Other MEtNOAScoiiiii et saee s 74
Y=o o L g To [N I LU = OO SUPRRIN 75
Generating TeXtUre COOMTINGLES.iuuia ettt ettt ettt et et e et e s be e e sbe e e sbee e ssbeesabeesbeeesbeeesneeas 76
Texture APPlICatioN MELNOAS........coouiiii ettt b e e e saee e sabe e s beeenees 77
FITEI IMIOOES. ...ttt b ettt b e e bt bt et r e e b e ar e e r e e n e e reeane e 78
MIPMEBPPEI TEXLUMESeeieieeeeieiee et e et ettt e st e bt e e sbee e sat e e sabe e eabe e e abe e e abee e saeeesabeesabeeabeeaaneeesnbeasnreans 79
VAT = o] o T aTe 1Y oo (PSP UURRRURRTRN 80
TEXIUNE FUNCHIONS ...ttt ettt et bbb bt b e bt b e b e s b e s be e s b e e sb e e nbe e eb e e nmeenn e e nnnennnas 81
Perspective CorreCHiON HIMt..... ...ttt ettt rbe e sae e e st e e st e e e be e e sbee e sneeesnneaans 82
[STHEre ROOM fOI @ TEXIUIE?.......eeiieiieeitee ittt san e ean e e e 83
BTSN R = Lo (= o Tos YOS 84
OVEIVIEW Of OLNEr TOPICS ... veeiieee ittt ettt ettt et e e e sbe e e ssbe e sabeeebe e e sbeeesaeeas 85
IMmediate VS REAINE IMOUEoiuiiieieieieiee e e 86
(D1 o A I PRSPPI 87
(D1 o A I SRSV SRUPRTRIN 88
FEadDaCK & SEIECHION ..ot ittt et e b e n e n e e 89
L Lot Lo T TSR RUPRRIN 90
PiCKING PSBUAOCOME. ...ttt ettt sa ettt e bt e bt e e saee e sabe e sabe e eabe e e abeeesnbeesnneaan 91
Picking Pseudocode (CONEINUEM)ueieiteieiiee e siee ettt ettt e et be e e saee e st e e sbe e sbe e e saeeesateesnneaan 92
BItMEaPS @NG TMAOES. ...ttt h et a et sa bt e s bt e e be e e abe e e sabe e sabe e sabeeebeeeaaeeesabeasnbeans 93
PiXEl PrIMITIVE CallS ..o e e n e 94
L D E I e o= 1T o= PRSPPI 95
[0 T T TP P PR PR PR PR PR 96
FragmENt OPEIaliONS........coiuuieiiee ettt ettt ettt et e e sb et e sae e e sabe e sabe e e be e e abee e sabeesabeesabeeebeeaabeeesabeasnreaans 97
FragIMENT TESES ...ttt ettt ettt e e e e e e e ekt et e e s b bt e e e e abbe e e e aabee e e s sbeeeeabbeeessnbeeaeaanreeananns 98
(211 0T 1 oo TRV RRRUPRRIN 99
F N 1 L= oo PSSR RT 100

Last Fragment OPEraliONS.ea ueaiieeatee ettt e st e sbeeasbe e sbee e saeeesabeesbeeabeeaabeeesaeeesabeesabeaabeeeabeeesnneas 101

EXIENSIONS ... 102

@] 1< 0 [I TS UPOU PR UR TR 103
@] 01= 0 1 I PP P TR UR RO 104
Final REVIEW: TYPICA SEEPDSeeeiiiiiiie ettt ettt sttt e bt e e sbe e sae e e sabe e sabeeebeeeabeeesnneas 105
= S YT Y (2 PSPPSR 106
ON-LINE RESOUITES. ...ttt ettt ettt ettt s bt h e s a bt e et e e e be e e ebee e shee e sabeeambeeebeeeabeeesnbeesmbeesnbeeentes 107
T 0T0] (S PP OTRR 108

A Visual Introduction to

OpenGL Programming &

Mason Woo

Dave Shreiner

Course Flow 4

Introduction

= What is OpenGL?

= OpenGL Architecture

= OpenGL and the window system

= Typical program structure
Elementary Rendering

= Geometry Primitives

= States

= Animation

= Buffers

Course Flow 4

Viewing and Transformations
Lighting

Texture mapping

Overview of Other Operations

= Display Lists

= Feedback

= Image Primitives

= Fog, Antialiasing, Fragment operations
Summary and References, Q&A

What is OpenGL? %

A graphics rendering library
API to produce high-quality, color images
from geometric and raster primitives

Window System and Operating System

Independent
OpenGL “doesn’t do windows”

A graphicsrendering library is alayer of abstraction between graphics
hardware and an application program.

API = Application Programming (or Procedural) Interface.

Geometric primitives are vertex-based and are either 2D or 3D.

Raster primitives are pixel-based (either bitmaps or pixmaps) and generally
2D. Texture mapping combines both raster and geometric primitives to create
an image.

OpenGL libraries are supported for use with X Window System? and UNIX?,
Microsoft Windows?, Microsoft Windows NT2, and IBM OS24 .

OpenGL does not perform operations which are redundant with the window
system: window management, event (mouse & keyboard) handling, and
loading color maps.

OpenGL Architecture

Per Vertex
Polynomial Operations &
Evaluator Primitive

Assembly

Display - Per Fragment Frame
Rasterization Operations Buffer

Texture
Memory
Pixel
Operations

Thisis the most important diagram you will see, representing the flow of
graphical information, asit is processed from CPU to the frame buffer.

There are two pipelines of dataflow. The upper pipelineisfor geometric,
vertex-based primitives. The lower pipelineisfor pixel-based, image
primitives. Texturing combines the two types of graphics together.

Thereisapull-out poster in the back of the OpenGL Reference Manua (blue
book), which shows this diagram in more detall.

OpenGL as a Renderer &

Renders simple geometric primitives

= points, lines, polygons

Renders images and bitmaps

= separate pipelines for geometry and pixels, linked

through texture mapping

Rendering depends on state
= colors, light sources, materials
= surface normals, texture coordinates

OpenGL and Related APIs

GLU (OpenGL Utility Library)
= guaranteed to be available
= tesselators, quadrics, NURBEs, etc.
= some surprisingly common operations, such as
projection transformations (such as gl uPer specti ve)

GLX or WGL

= bridge between window system and OpenGL
GLUT

= portable bridge between window system and OpenGL
= not “standard”, but informal popularity

The GLU (OpenGL Utility library) isaset of commonly used graphics
routines mandatory for all implementations of OpenGL. All routinesin the
GLU havethe prefix, glu. The GLU contains more complicated commands,
such astesselators, quadric objects, and NURBS.

The GLX and WGL libraries are extensions of the X Window System and
Microsoft Windows, respectively. They support operations to create an
OpenGL context, visuals (or corresponding pixel format), frame buffer
configuration (including double buffering and depth buffer size), and
synchronization.

The GLUT (OpenGL Utility Toolkit) isa set of portable, convenience routines
to deal with window management, event handling, and modeling some basic
3D objects. Implementations of GLUT have been ported to different window
systems, including both X and Microsoft Windows, so programs written with
GLUT port very easily. GLUT isnot an officia, governed API; it was
originally written by Mark Kilgard and has gained informal acceptance in the
OpenGL community.

Mark Kilgard's book, OpenGL Programming for the X Window System, is
published by Addison-Wesdley (ISBN 0-201-48359-9). His book includes
extensive description of the GLUT toolkit.

OpenGL and Related APIs

application program
I T T T S

OpenGL Motif
widget or similar

software and/or hardware

Program Structure

initialize visual & open window
initialize states & display lists
register display callback function

= clear screen, change states, render graphics, swap buffers...
register reshape callback function

= modify clipping, viewing
register input device (mouse, keybd) callback functions
register idle callback function (the keep busy operation)
enter main loop

if contents need to be redrawn, display callback called

if window resized, reshape callback called

if input event, appropriate input callback function called
if nothing happening, idle callback function called

Preliminaries

Header files

#i ncl ude <@/ gl . h>
#i ncl ude <G/ gl u. h>
#include <G@./glut.h> /* see note! */

Link with graphics libraries

cc prog.c -lglut -1GU -1 G -1X11 -|I Xmu -0 prog
cl proc.c glut32.1ib glu32.1ib opengl32.1ib \
gdi 32.lib user32.1ib

GL enumerated types

=for platform independence

GLbyte, Gshort, G.ushort, CGLint, G.uint, G.sizei,
G.float, G.double, G.clanpf, G.clanpd, GLubyte,
A.bool ean, GLenum GLbitfield

Note that including glut.h automatically includes both gl.h and glu.h. Also, for
Microsoft Windows, glut.h includes windows.h along with gl.h and glu.h, so
that no compiler errors or warnings result. Therefore, if you use glut.h, it is
recommended that you don’t redundantly include gl.h and glu.h again.

For Microsoft Windows, be sure the INCLUDE and L1B environment
variables are pointing to correct path. One common setting is:

set | NCLUDE=c: \ msdev\i ncl ude

set LIB=c:\nmsdev\lib

OpenGL Command Syntax %

gl Vert ex3f v(

.

Nunber of Dat a Type Vect or

conponent s - byte i omt “v” for
2 - (%) ;’Ez'r?ne yte scal ar form
- (xy,2) - unsi gned short
4 - (X,Y,2,W) i~ int gl Vertex2f (x, y)
i - unsigned int
- float
- doubl e

The OpenGL API calls are designed to accept amost any basic data type,
which isreflected in the call’ s name. Knowing how the calls are structured
makes it easy to determine which call should be used for a particular data
format and size.

For instance, vertices from most commercial models are stored as three
component, single-precision, floating point vectors. As such, the appropriate
OpenGL command to useisgl Vertex3fv(coords).

OpenGL uses homogenous coordinates to specify vertices. For gl Vert ex* ()
callswhich don't specify all the coordinates (i.e. gl Vertex2f ()), OpenGL
defaultstoz=0.0,andw = 1.0

A Simple Example Program

#i ncl ude <G/ gl ut. h>
voi d di splay(void) {
gl d ear (GL_COLOR _BUFFER BI T);
gl Col or3f (0.0, 1.0, 1.0); /* cyan */
gl Begi n(GL_QUADS) ;
gl Vert ex2i (100, 100) ;
gl Vert ex2i (200, 100);
gl Vert ex2i (200, 300) ;
gl Vert ex2i (100, 300);
gl End() ;
gl Fl ush();

¥
void gfxinit(void) {

gl ClearColor(0.0, 0.0, 0.0, 0.0);
¥

Simple Program (continued)

voi d reshape(int width, int height) {
gl Viewport (0, 0, w dth, height)
gl Mat ri xVbde(GL_PROJECTI ON) ;
gl Loadl dentity();
gl uort ho2D(0. 0, (GLdouble) w dth, 0.0,
} (GLdoubl e) hei ght);
void main(int argc, char **argv){
glutlnit(&rgc, argv);
gl ut I ni tDi spl ayMde(GLUT_SINGLE | GLUT_RGB);
win = gl utCreat eW ndow("rect");
gl ut ReshapeFunc(reshape) ;
gl ut i spl ayFunc(di spl ay) ;
gfxinit();
gl ut Mai nLoop() ;

Error Handling %

GLenum gl Get Error (voi d)
eHave an error handling routine

eCall it every time in di spl ay()

GLenum err Code;

const GLubyte *errString;

if ((errCode = gl GetError()) != GL_NO ERROR) {
errString = gluErrorString(errCode);
fprintf (stderr, “OpenGL. Error: %\n”, errString);

}
=|f GL_NO_ERRCR returned, great!

gl Get Error () canalsoreturn: GL_STACK OVERFLOW GL_STACK_UNDERFLOW

GL_I NVALI D VALUE, GL_I NVALI D _OPERATI ON, GL_I NVALI D ENUM Of
GL_OUT_OF_MEMCRY.

gl uError String() convertsthe returned error into something printable.

Thereisaso gl uGet Error () for error conditionsin the GLU.

For atypical, single-threaded OpenGL implementation, only one error is
recorded. If multiple errors occur, only the first error is recorded. For distributed
implementations (such as multi-threaded), there may be several errors recorded.

Elementary Rendering ;

Geometric Primitives
Managing OpenGL State
OpenGL Buffers

In this section, we' |l be discussing the basic geometric primitives that OpenGL
uses for rendering, as well as how to manage the OpenGL state which controls
the appearance of those primitives.

OpenGL also supports the rendering of bitmaps and images, which is discussed
in alater section.

Additionaly, we'll discuss the different types of OpenGL buffers, and what
each can be used for.

15

OpenGL Geometric Primitives

All geometric primitives are specified by

vertices
sy
.. GL_LINES

GL_POLYGON
GL_LINE_ STRIP GL_LINE LOOP -

GL_TRI ANGLES

% GL_QUADS

GL_TRI ANGLE_STRI P GL_TRI ANGLE_FAN GL_QUAD_STRI P

16

Every OpenGL geometric primitiveis specified by its vertices, which are
homogenous coordinates. Homogenous coordinates are of the form

(X, Y,z w). Depending on how vertices are organized, OpenGL can render
any of the shown primitives.

16

Specifying Geometric Primitives

Primitives are specified using
gl Begi n(prinlype);
gl End() ;
= primType determines how vertices are combined

Gfloat r, g, b;
G fl oat coords][3];

gl Begi n(pri miype);

for (i =0; I < nVerts; ++i) {
gICoIorBfg red, green, blue);
gl Vertex3fv(coords);

X
gl End() ;

OpenGL organizes verticesinto primitives based upon which typeis passed
into gl Begi n() . The possible types are:

GL_PO NTS GL_LINE_STRI P
GL_LI NES GL_LI NE_LOOP
GL_POLYGON

GL_TRI ANGLE_STRI P
GL_TRI ANGLES GL_TRI ANGLE_FAN

GL_QUADS GL_QUAD STRI P

17

OpenGL Color Models :

RGBA or Color Index

color index mode

Red Green Blue

*ee

> 24 [N23W|R2190| 74

‘e

Every OpenGL implementation must support rendering in both RGBA mode,
(sometimes described as TrueColor mode) and color index (or colormap)
mode.

For RGBA rendering, vertex colors are specified using the gl Col or * () cal.
For color index rendering, the vertex’ sindex is specified with gl | ndex* () .

The type of window color model is requested from the windowing system.
Using GLUT, thegl ut I ni t Di spl ayMode() call isused to specify either
an RGBA window (using GLUT_RGBA), or acolor indexed window (using
GLUT_| NDEX)

18

Simple Example \

voi d drawRhonmbus(G.float color[])

{
gl Col or 3fv(color);

gl Vertex2f(O.
gl Vertex2f (1.
gl Vertex2f (1.
gl Vertex2f (O.
gl'End() ;

0,
0,
S,
5

Thedr awRhonbus() routine causes OpenGL to render a single quadrilateral
inasingle color. Therhombusis planar, sincethe zvaueisautomatically set
to1.0by gl Vert ex2f ().

Advanced Primitives “

Vertex Arrays

Bernstein Polynomial Evaluators
= basis for GLU Nurbs

GLU Quadric Objects

= sphere
= cylinder
= disk

In addition to specifying verticesone at atimeusing gl Vert ex* (),
OpenGL supports the use of arrays, which allows you to pass an array of
vertices, lighting normals, colors, edge flags, or texture coordinates. Thisis
very useful for systems where functions calls are computationally expensive.
Additionally, the OpenGL implementation may be able to optimize the
processing of arrays.

OpenGL evaluators, which automate the evaluation of the Bernstein
polynomials, allow curves and surfaces to be expressed algebraicaly. They
are the underlying implementation of the OpenGL Utility Library’sNURBS
implementation.

Finally, the OpenGL Utility Library also has calls for generating polygonal
representation of quadric objects. The calls can aso generate lighting normals
and texture coordinates for the quadric objects.

20

Vertex Arrays %

Pass arrays of vertices, colors, etc. to OpenGL

In a large chunk

gl Vert exPoi nter(3, G._FLOAT, 0, coords)
gl Col orPointer(4, G._FLOAT, 0, colors)

gl Enabl eCl i ent St at e(G._VERTEX_ARRAY)
gl Enabl eCl i ent St at e(G._COLOR_ARRAY)

All active arrays are used In rendering

Vertex Arrays alow vertices, and their attributes to be specified in chunks,
which reduces the need for sending singule vertices and their attributes one call
at atime. Thisisauseful optimization technique, aswell asusualy
smplifying storage of polygonal models.

21

Interleaved Arrays

Combine all vertex data into a single array
glInterl eavedArrays(G._C3F V3F, 0, data);

Interleaved
data

gl I nterl eavedArrays() combinesal theinformation for avertex
together locally in memory. When the array is traversed, the format

(GL_C3F_V3F in the above example) tells OpenGL what data, and how it
should be processed, are stored in the array.

The supported formatsfor gl | nt er | eavedArrays() are

GL_V2F GL_CAUB V2F GL_C3F V3F
GL_V3F GL_C4AUB V3F GL_N3F_V3F
GL_CAF_N3F V3F GL_T2F C4UB V3F GL_T2F V3F
GL_T2F C3F V3F GL_T2F N3F_V3F GL_T4F VAF
GL_T2F_C4F _N3F_V3F GL_T4F CAF_N3F_VAF

where the letters below represent the following vertex data:
V - Vertex coordinates
C - Color information
N - Normal vectors
T - Texture coordinates

22

Rendering with Vertex Arrays

Render arrays sequentially
gl DrawArrays(GL_TRIANGLE STRIP, 0, nunWVerts);

Automatically index into arrays
GQuint indices[] ={ 0, 2, 1, 3, 2, 3, 6, 5 };
gl DrawEl enents(GL_QUADS, 2, GL_UNSI GNED | NT,
i ndi ces);
Manually index into arrays
gl Begi n(GL_LI NES);
for (I = 0; I < nunlines; ++i) {
gl ArrayEl enent (I eftEnd[i]);
gl ArrayEl enent (rightEnd[i]);

}
gl'End();

When OpenGL processes the arrays, any enabled array is used for rendering.
There are three methods for rendering using vertex arrays:

First, thegl Dr awAr r ays() routinewill render the specified primitive type
by processing numVerts consecutive data elements from the enabled arrays.

Second, gl Dr awkl enent s() alowsindirect indexing of data elementsin
the enabled arrays. This allows shared data €l ements to be specified only once
in the arrays, but be accessed numerous times.

Finally, gl ArrayEl enent () processesasingle set of data elementsfrom
all activated arrays. As compared to the previous two commands above,
gl ArrayEl erent () must appear between agl Begi n() /gl End() pair.

23

Controlling Rendering
Appearance

From Wireframe to Texture Mapped

OpenGL can render from asimple line-based wireframe to complex multi-pass
texturing agorithms to simulate bump mapping or Phong lighting.

24

OpenGL’s State Machine :

All rendering attributes are encapsulated in

the OpenGL State
rendering styles
shading

lighting
texture mapping

Each time OpenGL processes avertex, it uses data stored in itsinternal state
tables to determine how the vertex should be transformed, lit, textured or any
of OpenGL’s other modes.

25

Manipulating OpenGL State

Appearance is controlled by current state
foreach(primitive to render) {
update OpenGL state
render primitive

}
Manipulating vertex attributes IS most

common way to manipulate state
gl Color*() / gllndex*()
gl Nor mal *()
gl TexCoor d* ()

The general flow of any OpenGL rendering isto set up the required state, then
pass the primitive to be rendered, and repeat for the next primitive.

In general, the most common way to manipulate OpenGL state is by setting
vertex attributes, which include color, lighting normals, and texturing
coordinates.

Controlling current state %

Setting State
gl Poi nt Si ze(size);
gl LineSti ppl e(repeat, pattern);
gl Material fv(G._FRONT, G. DI FFUSE,

col or);
Enabling Features

gl Enabl e(GL_LI GHTI NG) ;
gl D sabl e(GL_TEXTURE_2D);

Setting OpenGL state usualy includes modifying the rendering attribute, such
asloading atexture map, or setting the line width. Also for some state
changes, setting the OpenGL state also enables that feature (like setting the
point size or linewidth).

Other features need to be turned on. Thisisdone using gl Enabl e() , and
passing the token for the feature, like GL_LI1 GHTO or
GL_POLYGON_STI PPLE.

27

OpenGL Buffers %

Color

= can be divided into front and back for double
buffering

Alpha

Depth
Stencil
Accumulation

OpenGL supports avariety of different buffers, some of which hold color data,
and others which control the updating of that color data.

The principle OpenGL buffer isthe color buffer, which is generaly the
hardware framebuffer, or an offscreen rendering pixmap.

The depth buffer, which isalso called the z-buffer, is used for visible surface
determination.

The stencil buffer provides a per-pixel mask test to determine if apixel in the
color buffer should be updated.

Finally, the accumulation buffer is used for the composting of several
renderings from the color buffer, which can be scaled and combined together
to produce afinal image which is transferred back to the color buffer for
display.

The stencil and accumulation buffers are somewhat advanced topics, and are
outside the scope of this course.

28

Clearing Buffers %

Setting clear values
glClearColor(r, g, b, a);
gl dearDepth(1.0);

Clearing buffers

gl Cear(GL_CO.OR BUFFER BIT |
G._DEPTH BUFFER BI T) ;

Thegl C ear * () commands are used to set the default values used to clear
each of awindows active buffersto. Whenthegl Cl ear () cal isexecuted,
it clears each of the buffers requested with their clear values.

The commands for setting the default clear values are:

gl C ear Col or () - set default RGBA vauefor color buffer (RGBA
mode)

gl C ear | ndex() - set default color index for color buffer (Color index
mode)

gl C ear Dept h() - set default depth value for depth buffer
gl O ear Accun() - set default color for accumulation buffer
gl C ear Stencil () -setdefault value for stencil buffer

29

Double Buffering %

Double buffer is atechnique for tricking the eye into seeing smooth animation
of rendered scenes. The color buffer is usually divided into two equal halves,
called the front buffer and the back buffer.

The front buffer is displayed while the application renders into the back buffer.

When the application completes rendering to the back buffer, it requests the
graphics display hardware to swap the roles of the buffers, causing the back
buffer to now be displayed, and the previous front buffer to become the new
back buffer.

30

Animation Using Double

Buffering %

1) Request a double buffered color buffer
glutlnitD spl ayMde(G.UT_RGB |
GLUT_DOUBLE) ;
2) Clear color buffer

glCear(G._COLOR BUFFER BI T);
3) Render scene

4) Reguest swap of front and back buffers
gl ut SwapBuffers();

Repeat steps 2-4 for, animation

Requesting double buffering in GLUT issimple. In addition to specifying
what type of color model you would like to use, adding GLUT_DOUBLE to
your gl ut I ni t Di spl ayMode() call will cause your window to be double
buffered.

When your application is finished rendering its current frame, and wants to
swap the front and back buffers, the gl ut SwapBuf f er s() call will request
the windowing system to update the window’ s color buffers.

31

Depth Buffering %

Standard
Bitplanes

Depth buffering is a technique for determine which primitivesin your scene
are occluded by other primitives. Aseach pixel inaprimitive israsterized, its
distance from the eyepoint (depth value), is compared with the values stored
in the depth buffer. If the pixel’s depth valueis less than the stored value, the
pixel’s depth value is written to the depth buffer, and its color iswritten to the
color buffer.

The depth buffer algorithm is generally:
if (pixel->z < depthBuffer(x,y)->z) {
dept hBuffer(x,y)->z = pixel ->z;
col orBuffer(x,y)->color = pixel->color;
}
OpenGL depth values range from [0, 1], with one being essientially infinitely
from the eyepoint. Generally, the depth buffer is cleared to one at the start of a
frame.

32

Depth Buffering Using OpenGL

1) Request a depth buffer
glutlnitD spl ayMde(G.UT_RGB |
GLUT_DOUBLE | GLUT_DEPTH);
2) Enable depth buffering

gl Enabl e(G._DEPTH _TEST) ;

3) Clear color and depth buffers
gl Cear(G._CO.OR BUFFER BIT |
G._DEPTH BUFFER BI' T);

4) Render scene

5) Swap Buffers

Enabling depth testing in OpenGL is very straightforward.

A depth buffer must be requested for your window, once again using the
gl ut | ni t Di spayMode() , and the GLUT_DEPTH hit.

Once the window is created, the depth test is enabled using
gl Enabl e(GL_DEPTH_TEST).

33

A Complete Example %

void main(int argc, char** argv)
{
glutlnit(&rgc, argv);
glutlnitD spl ayMde(G.UT_RGB |

GLUT_DOUBLE | GLUT_DEPTH);
gl ut Cr eat eW ndow(“ Tetrahedron”);
Init();
gl utldl eFunc(drawScene);
gl ut Mai nLoop() ;

Inmai n(),
1) GLUT initializes and creates awindow named “ Tetrahedron”

2) set OpenGL state which is enabled through the entire life of the program
in
init()
3) sat GLUT sidlefunction, which is used executed when there are no user
user events to process

4) enter the main event processing loop of the program.

34

A Complete Example (cont.) %

void init(void)

{
GL.float verts[][3] =1 ...};
G.float colors[][3] ={ ...};

glCearColor(1.0, 0.0, 1.0, 1.0);

gl VertexPoi nter(3, G_FLOAT, 0, verts);
gl Col or Poi nter(3, GL_FLOAT, 0, colors);
gl Enabl eCl i ent St at e(GL_VERTEX_ARRAY) ;
gl Enabl eCl i ent St at e(G._CO.CR_ARRAY) ;

Ini nit () thebasic OpenGL state to be used throughout the program is
initialized. Since vertex arrays are used, they are set and enabled ini ni t (),
and referenced when rendering occurs. Additionally, we set the background
(clear color) for the color buffer.

35

A Complete Example (cont.) ;

voi d drawScene(void)

{
GLuint indices[] ={ 0, ...};
gldear(G._COLOR BUFFER BI T |

G._DEPTH BUFFER BI T);

gl Drawkl enents(GL_TRI ANGLE _STRI P, 6,
GL_UNSI GNED_I NT, i1 ndices);

gl ut SwapBuf fers();

IndrawScene(),
1) the color buffer is cleared to the background color

2) atriangle strip isrendered to create atetrahedron using
gl Dr anEl enent s() and the vertex arrays that were set up in
init().

3) thefront and back buffers are swapped.

Transformations 4

Prior to rendering, view, locate, and orient:
= eye/camera position
= 3D geometry

Manage the matrices

= including matrix stack
Combine (composite) transformations

Camera Analogy %

3D is just like taking a photograph (lots of
photographs!)

viewing

volume .

3D Mathematics 4

A vertex is transformed by matrices
each vertex is a column vector v (X, y, z, w)" where w is
usually 1.0
all operations are matrix multiplications| Mo M4 Mg My
all matrices are column-major AL U

matrices are always post-multiplied 5 Ly ey
product of matrix and vector is Mv Mz M7 My; Mys

Programmer does not have to remember the

exact matrices
= check appendix of Red Book (Programming Guide)

A 3D vertex is represented by a 4-tuple vector (homogeneous coordinate system).

Why is a4-tuple vector (and a4 by 4 matrix) used for a3D (X, Yy, z) vertex? To
ensure that all matrix operations are multiplications. Perspective projection and
trand ation require 4th row and column, or operations would require addition, as
well as multiplication.

Camera Analogy "

Projection transformations
- adjust the lens of the camera

Viewing transformations
- tripod—define position and orientation of the

viewing volume in the world
Modeling transformations
- moving the model
Viewport transformations
- enlarge or reduce the physical photograph

Note that human vision and a camera lens have cone-shaped viewing volumes.
OpenGL (and almost al computer graphics APIs) describe a pyramid-shaped
viewing volume. Therefore, the computer will “see” differently from the natural
viewpoints, especially along the edges of viewing volumes. Thisis particularly
pronounced for wide-angle “fish-eye” cameralenses.

normalized
device

Per spectiv
Division

other calculations here
= material = color
shade model (flat)
clipping
polygon culling
polygon rendering mode

The depth of matrix stacks are implementation-dependent, but the Modelview
matrix stack is guaranteed to be at least 32 matrices deep, and the Projection
matrix stack is guaranteed to be at least 2 matrices deep.

The material-to-color, flat-shading, and clipping calculations take place after
the Modelview matrix calculations, but before the Projection matrix. The
polygon culling and rendering mode operations take place after the Viewport
operations.

There is also atexture matrix stack, which is not mentioned here. It isan
advanced texture mapping topic.

41

Matrix Operations %

Specify Current Matrix Stack
gl Mat ri xMbde (GL_MODELVI EW or GL_PROJECTI ON)

Other Matrix or Stack Operations

gl Loadl dentity()
gl PushMat ri x()

gl PopMat ri x()
Viewport
= usually same as window size
= viewport aspect ratio should be same as projection

transformation or resulting image may be distorted
gl Vi ewport(x, y, wdth, height)

Also gl LoadMat ri x{df}(matrix) andgl Mul t Mat ri x{df } (matrix), where
matrix isacolumn-major 4 x 4 double or single precision floating point matrix.
The matrix is either loaded or post-multiplied onto the top of the current matrix
stack.

The stacks are used, because it is more efficient to save and restore matrices
than to calculate and multiply new matrices. Popping a matrix stack can be
said to “jump back” to a previous location or orientation.

gl Vi ewport clipsthe vertex or raster position. For geometric primitives, a
new vertex may be created. For raster primitives, the raster positionis
completely clipped.

Thereis a per-fragment operation, the scissor test, which worksin situations
where viewport clipping doesn’t. The scissor operation is particularly good for
fine clipping raster (bitmap or image) primitives.

42

Projection Transformation

=Shape of viewing frustum
=Perspective projection

gl uPerspective (fovy, aspect, zNear, zFar)
gl Frustum (l eft, right, bottom top, zNear, zFar)
=Orthographic parallel projection

glOtho (left, right, bottom top, zNear, zFar)
gluOrtho2D (left, right, bottom top)

— calls gl ort ho with z values near zero

<0

For perspective projections, the viewing volume is shaped like truncated
pyramid (frustum). There isadistinct camera (eye) position, and vertexes of
objects are “projected” to camera. Objects which are further from the camera
appear smaller. The default camera position at (0, O, 0), looking down z-axis,
although the camera can be moved by other transformations.

For gl uPerspective, fovy istheangleof field of view (in degrees) inthey
direction. f ovy must be between 0.0 and 180.0, exclusive. aspect isx/y and
should be same as the viewport to avoid distortion zNear and zFar define the
distance to the near and far clipping planes.

gl Frust umisrarely used. Warning: for gl uPer specti ve or
gl Frust um don’t use zero for zNear !

For gl Ot ho() , theviewing volume is shaped like a rectangular
parallelepiped (abox). Vertexes of an object are “ projected” towards infinity.
Distance does not change the apparent size of an object. Orthographic
projection is used for drafting and design (such as blueprints).

43

Viewing Transformations

Position the camera/eye in the scene
- place the tripod down; aim camera
To “fly through” a scene

- change viewing transformation and redraw scene
gl uLookAt (eyex, eyey, eyez, ainx, aimy, aing, upx, upy,

- up vector determines unique orientation
- careful of degenerate positions

gl uLookAt () multipliesitself onto the current matrix, so it usually comes after
gl Mat ri xMode(GL_MODELVI EW and gl Loadl dentity().

Because of degenerate positions, gl uLookAt () isnot recommended for most
animated fly-over applications.

Modeling Transformations

Move object

gl Transl ate{fd}(x, y, 2z)

Rotate object around arbitrary axis (X, Y, z)
gl Rotate{fd}(angle, x, y, 2)

- angle is in degrees

Dilate (stretch or shrink) or mirror object
gl Scal e{fd}(x, y, 2)

gl Transl ate(), gl Rotate(),andgl Scal e() multipliesitself onto the
current matrix, so it usually comes after gl Mat r i xMbde(G._MODELVI EW .
There are many situations where the modeling transformation is multiplied onto a
non-identity matrix.

A vertex’ s distance from the origin changes the effect of gl Rot at e() or
gl Scal e() . Generaly, the further from the origin, the more pronounced the
effect.

Connection: Viewing and

Modeling %

<Moving camera is equivalent to moving

every object in the world towards a stationary
camera

=\/iewing transformations are equivalent to

several modeling transformations
gl uLookAt has its own command
can make your own polar view or pilot view

Instead of gl uLookAt , one can use the following combinations of

gl Transl at e and gl Rot at e to achieve aviewing transformation. Like

gl uLookAt , these transformations should be multiplied onto the Model View
matrix, which should have an initia identity matrix.

To create aviewing transformation in which the viewer orbits an object, use this
sequence (which is known as “ polar view”):

gl Transl ated (0, 0, -distance)

gl Rotated (-twist, 0, 0, 1)

gl Rotated (-incidence, 1, 0, 0)

gl Rotated (azinmuth, 0, 0, 1)

To create a viewing transformation which orients the viewer (roll, pitch, and
heading) at position (X, y, z), use this sequence (known as “pilot view”):

gl Rotated (roll, 0, 0, 1)

gl Rotated (pitch, 0, 1, 0)

gl Rotated (heading, 1, 0, 0)

gl Translated (-x, -y, -2)

Projection is left handed &

Projection transformations (gl uPer specti ve,

gl Ot ho) are left handed

- think of zNear and zFar as distance from view
point

Everything else is right handed, including the
vertexes to be rendered

y

y 7+
left handed ‘ i right handed «
X

z+

Common Transformation Usage

3 examples of resi ze() routine
= restate projection & viewing transformations
Usually called when window resized

Registered as callback for gl ut ReshapeFunc()

48

resize(): Perspective & LookAt

void resize (int w, int h) {

gl Viewport (0, 0O, (CGLsizei) w, (Gsizei) h);

gl Mat ri xMbde (GL_PRQIECTI ON) ;

gl Loadl dentity ();

gl uPer spective (65.0, (CG.float) w (G.float) h,

1.0, 100.0);

gl Mat ri xMbde (GL_MODELVI EW ;

gl Loadl dentity ();

gl uLookAt (0.0, 0.0,
0.0, 1.0,

0, 0.0, 0.0, 0.0,
0);

5.
0.

Using the viewport width and height as the aspect ratio for gl uPer specti ve
eliminates distortion.

49

resize(): Perspective & Translate

Same effect as previous LookAt

void resize (int w, int h) {

gl Viewport (0, 0O, (CGLsizei) w, (Gsizei) h);

gl Mat ri xMbde (GL_PRQIECTI ON) ;

gl Loadl dentity ();

gl uPerspective (65.0, (CG.float) w (G.float) h,
1.0, 100.0);

gl Mat ri xMbde (GL_MODELVI EW ;

gl Loadl dentity ();

gl Transl atef (0.0, 0.0, -5.0);

Moving al objectsin the world five units away from you is mathematically the
same as “backing up” the camerafive units.

50

resize(): Ortho

void resize (int w, int h) {
gl Viewport (0, 0, (Gsizei) w, (Gsizei)
gl Mat ri xMbde (G._PRQIECTI ON) ;
gl Loadl dentity ();
if (w<=h)

glOtho (-2.5, 2.5, -2.5*(CGLfloat)h/(G.float)w,
2.5*(CG.float)h/(CG.float)w, -10.0, 10.0);

el se
glOtho (-2.5*(CG.float)w (G.float)h,

2. 5*(CG.float)w (CG.float)h, -2.5, 2.5,

gl Mat ri xMode (G._MODELVI EW ;
gl Loadlidentity ();

Thetwo gl Ort ho calls are needed to accommodate for different aspect ratios,

maintaining a minimum viewable region.

51

Compositing Modeling

Transformations 4

Problem 1: hierarchical objects

- 0ne position depends upon a previous position
- robot arm or hand; sub-assemblies

Solution 1: moving local coordinate system

- modeling transformations move coordinate system
- post-multiply column-major matrices
- OpenGL post-multiplies matrices

The order in which modeling transformations are performed isimportant because
each modeling transformation is represented by a matrix, and matrix

multiplication is not commutative. So arotate followed by atrandate is different
from atrandate followed by arotate.

Compositing Modeling

Transformations 4

Problem 2: objects move relative to absolute

world origin

- my object rotates around the wrong origin
- make it spin around its center or something else

Solution 2: fixed coordinate system
modeling transformations move objects around
fixed coordinate system
pre-multiply column-major matrices
OpenGL post-multiplies matrices
must reverse order of operations to achieve desired
effect

You'll adjust to reading alot of code backwards!

Additional Clipping Planes

= At least 6 more clipping planes available
=Good for cross-sections

= Modelview matrix moves clipping plane
< Ax+By+Cz+D < 0 clipped

gl Enabl e (GL_CLI P_PLANEI)
gldipPlane (GL_CLIP_PLANEi , GLdoubl e* coeff)

Reversing Coordinate Projection

Screen space back to world space

gl Get I nt egerv(G._VI EMWPORT, GLint viewport[4])
gl Get Doubl ev(GL_MODELVI EW MATRI X, GLdoubl e nvmatri x[16])
gl Get Doubl ev(GL_PRQIECTI ON_MATRI X, GLdoubl e proj matri x[16])
gl uUnPr oj ect (GLdoubl e wi nx, W ny, W nz,
mvmat ri x[16], projmatrix[16], GLint viewport][4],
GLdoubl e *obj x, *objy, *objz)

gl uPr oj ect goes from world to screen space

Generally, OpenGL projects 3D data onto a 2D screen. Sometimes, you need to
use a 2D screen position (such as a mouse location) and figure out wherein 3D it
camefrom. If youusegl uUnPr oj ect withwi nz =0andwi nz =1, you can
find the 3D point at the near and far clipping planes. Then you can draw aline
between those points, and you know that some point on that line was projected to
your screen position.

Culling and Polygon Mode "

Culling
= turn on mode to eliminate rendering of
front- or back-facing polygons

= front and back facing determined by
orientation (winding) of polygons
Polygon Mode
= controls how polygons are rendered (filled,
wire frame, or points)
= polygon means GL_POLYGON, G._QUADS,
GL_TRIANGLES, GL_TRI ANGLE_STRI P, efc.

gl Front Face (w ndi ngMbde) determineswhich winding methodis
front- and back-facing for both culling and polygon mode. wi ndi nghode is
GL_CCWor GL_CW (counter clockwise or clockwise). GL_CCWisthe
defaullt.

OpenGL routines for culling include:
gl Enabl e (G._CULL_FACE)
gl Cul | Face (whi chway)
whi ch\Way isGL_FRONT or GL_BACK (the default)

The application (and associated data sets) are responsible for creating the
proper winding of the polygons. Culling is disabled by defauilt.

The OpenGL routine for selecting polygon modeis:

gl Pol ygonMode (GLenum face, GL.enum node)
wherefaceis GL_FRONT, GL_BACK, or GL_FRONT_AND_BACK
modeis GL_FILL (default), GL_LINE, or GL_POINT

56

Lighting ;

Lighting Basics
Phong Lighting Model
Surface Normals

Material Properties

Light Sources

Global Lighting Attributes
Moving a light source

In this section we discuss OpenGL Lighting, which is based on the Phong
lighting model.

The lighting model combines an object’ s materia properties and position, the
light’s color and position, and global lighting parameters to compute avertex’s
color.

Lighting Basics :

Lighting based on how objects reflect light
= surface characteristics

= light color and direction

= global lighting settings

OpenGL uses an additive color model
= Phong lighting computation at vertices

OpenGL uses a Phong based lighting model to compute colors for vertices.
The color generated is a combination of the object’s material properties, the
light’s color and position, and the global lighting characteristics.

Since lighting is used to compute a vertex’s color, the tessellation of the object
isimportant. The better the tessellation and lighting normals, the better the
lighting effects generated.

58

Phong Lighting Model '

Color determined by several factors
= surface normal and color

= light position

= eye position

OpenGL uses an approximation to the Phong lighting model to compute the
color of alit vertex. Inthe diagram above, the following vectors are shown:

* V - vector from eyepoint to vertex
* N - vertex lighting normal

* L - vector from vertex to light
*H-12(V+L)

59

Surface Normals :

Normals define how surface reflects light
gl Normal 3f (nx, ny, nz);

Current normal is used to compute vertex’s
ofo] [o] g

Use unit normals for proper shading
gl Enabl e(GL_NORMALI ZE);
= beware of scaling operations

Evaluators can automatically compute
normals for curves and surfaces

The lighting normal tells OpenGL how the object reflects light around a vertex.
If you imagine that there isa small mirror at the vertex, the lighting normal
describes how the mirror is oriented, and consequently how light is reflected.

gl Nor mal () setsthe current normal, which isused in the lighting
computation for all vertices until a new normal is provided.

Lighting normals should be normalized to unit length for correct lighting
results. gl Scal e() affectsnormalsaswell as vertices, which can change the
normal’ s length, and cause it to no longer be normalized. OpenGL can
automatically normalize normals, by enabling gl Enabl e(GL_NORMALI ZE) .
Since normalization requires the computation of a square root, it can potentially
lower performance.

OpenGL evaluators and NURBS can provide lighting normals for generated
vertices automatically.

60

Specifying Material Properties

gl Materi al fv(face, property, value);

Material properties
GL_EM SSI ON
GL_AMBI ENT
GL_DI FFUSE
GL_SPECULAR
GL_SHI NI NESS
Primitive have material properties for front
and back sides

Materia properties describe the color and surface properties of amateria (dull,
shiny, etc.). OpenGL supports material properties for both the front and back
of objects, as described by their vertex winding.

The OpenGL materia properties are:
* GL_EM SSI ON - color emitted from the object (think of afirefly)
» GL_AMBI ENT - color of object when not directly illuminated
* GL_DI FFUSE - base color of object
* GL_SPECULAR - color of highlights on object

* GL_SHI NI NESS - concentration of highlights on objects. Values
range from O (very rough surface - no highlight) to 128 (very shiny)

Material properties can be set for each face separately by specifying either
GL_FRONT or GL_BACK, or for both faces simultaneously using
GL_FRONT_AND_BACK.

61

Material Example :

GLfl oat green[] {
GLfl oat red[] {
GLfl oat white[] {

gl Materi al fv(G._FRONT, GL_AWMBI ENT_AND DI FFUSE,

green);

gl Materi al fv(G._BACK, G._AVBI ENT_AND DI FFUSE,
red);

gl Materi al fv(G._FRONT, GL_SPECULAR white);

gl Materi al f (GL_FRONT_AND _BACK, GL_SH NI NESS,
100.0) ;

In the above example, we set the following properties for the material:

The transparency of an object is controlled only by the diffuse material’ s alpha

value.

» ambient and diffuse colors for the front side (as determined
by the vertex winding) to a 50% opaque green

» ambient and diffuse color for the back side to a 75% opague
red color

» specular color for the front side to be full intensity white
* shininessto 100 (shiny) for both the front and back sides.

62

Light Sources '

glLightfv(light, property, value);
| i ght specifies which light
= multiple lights, starting with GL_LI GHTO
gl Getlntegerv(G._NMAX LI GHTS, &n);

Infinite and local lights
« GL_POsSI TI ON
— W coordinate determines type

LLocal lights can also be spot lights

Thegl Li ght () call isused to set the parameters for alight. OpenGL
implementations must support at least eight lights, which are named

GL_LI GHTO through G._ LI GHTn, where n is one less than the maximum
number supported by an implementation.

OpenGL supports two types of lights: infinite (directional) and local (point)
light sources. Thetype of light is determined by the w coordinate of the light's
position.
« if (w == 0.0) then the light is an infinite light, with (X,y,z) specifying
the light’ s direction
«if (w!=0.0) then thelightisalocal light, with (x/w,y/w,z/w)
specifying the light’ s position
A local light can aso be converted into a spot light. By setting the
GL_SPOT_DI RECTI ON, GL_SPOT_CUTOFF, and GL_SPOT_ EXPONENT,
the local light will shinein adirection and its light will be limited to a cone
centered around that direction vector.

63

Light Sources (cont.) '

Light color properties
« GL_AMBI ENT

« GL_DI FFUSE

« GL_SPECULAR

Light attenuation
 GL_CONSTANT_ATTENUATI ON
+ GL_LI NEAR_ATTENUATI ON
 GL_QUADRATI C_ATTENUATI ON

OpenGL light’s can emit different colors for each of amaterials properties. For
example, alight sGL_AMBIENT color is combined with amaterial’s
GL_AMBIENT color to produce the ambient contribution to the color -
Likewise for the diffuse and specular colors.

Each OpenGL light source supports attenuation, which describes how light
diminishes with distance. The OpenGL model supports quadratic attenuation,
and utilized the following attenuation factor, f;, where d is the distance from the
eyepoint to the vertex being lit:

o 10
T kgt kg rdE kR

where:
* kyisthe GL_CONSTANT_ATTENUATION term
* k; isthe GL_LINEAR_ATTENUATION term
* k, isthe GL_QUADRATIC_ATTENUATION term

64

Lighting Exampl
GLfl oat white[]
GLfl oat nmagent a
GLfl oat pos[] =

gl Lightfv(G._LI GHTO,

GL_AMVBI ENT_AND DI FFUSE, magenta);
gl Li ght fv(GL_LIGHTO, GL_SPECULAR white);
gl Li ghtfv(GL_LIGHTO, GL_POSI TION, pos);

gl Enabl e(G._LIGHTO);
gl Enabl e(GL_LI GHTI NG);

In the above example, we set the following properties for the light:

» ambient and diffuse colors to a shade of magenta
* specular color to pure white

* position to (2.5, 6, 3.5) and with w = 1.0, define the light to be a
local light

e turnonboth GL_ LI GHTO and enable GL_ LI GHTI NG

65

Enabling Lighting '

Turn on lighting calculations
gl Enabl e(GL_LI GHTI NG);
Turn on each light
gl Enable(GL_LIGHIn);

To enable the lighting computations, you need to enable each light which you
would liketo usein the scene, using gl Enabl e(G._LI GHTn), wheren
represents the light.

Additionally, you need to globally enable lighting using
gl Enable(GL_LIGHTING).

66

Controlling a Light’s position

Position iIs transformed by current modelview
matrix

Different affects based on when position is
specified

= eye coordinates

= world coordinates
= model coordinates

Push and pop matrices to uniguely control
light’s position

By specifying different ModelView transformations, you can achieve different
types of lighting effects, since the light’ s position is transformed when the
gl Li ght () cdl isissued.

If you specify the light’s position before any modeling or viewing
transformations (eye coordinate space), you'll achieve a headlamp effect, where
the light’s emanating from the eyepoint.

If you specify after the viewing transformation, but before any modeling, the
light’s position will remain fixed relative to the world coordinate system of the
scene. Thisislike mounting the light on asteel rod at the origin. Regardless of
how you move the world coordinates, the light’ s position always remains
constant relative to the world origin.

Finally, if you issue both modeling and viewing transforms, you can animate
the light independent of the eye or anything else in your scene.

67

Specifying Lighting Model

Properties :

gl Li ght Model fv(property, value);
Control global ambient color

« GL_LI GHT_MODEL_ANBI ENT

Two sided lighting

« GL_LI GHT_MODEL_TWO_SI DE
LLocal viewer mode
» GL_LI GHT_MODEL_LOCAL_VI EVER

gl Li ght Model () controlsthe globa parameters of lighting such asthe
ambient light not contributed by alight and two sided lighting.

GL_LI GHT_MODEL _AMBI ENT setsthe globa ambient color for the scene.
Thisis used in combination with the material’ s ambient to produce ambient
lighting, even if no lights are enabled.

GL_LI GHT_MODEL_TWO_SI DE is used to enable primitives to have different
materia propertiesfor each side. Based on the winding of the primitive (set
with gl Cul | Face()), you can set up front and back materials for primitives.

GL_LI GHT_MODEL_LOCAL_ VI EVER is used to produce better lighting
results, by eliminating some approximations made to make OpenGL lighting
faster. This setting will produce better lighting results, but at a possible
performance penalty.

68

- Texture Mapping %

Apply a 1D, 2D, or 3D image to geometric
primitives

Uses of Texturing

= simulating materials

= reducing geometric complexity
= Image warping

= reflections

In this section, we'll discuss texture (sometimes a so called image) mapping.
Texture mapping augments the colors specified for a geometric primitive with
the colors stored in an image. Animage canbeal1D, 2D, or 3D set of colors
caled texels. 2D textures will be used throughout the section for
demonstrations, however, the processes described are identical for 1D and 3D
textures.

Some of the many uses of texture mapping include:
 simulating materials like wood, bricks or granite
» reducing the complexity (number of polygons) of a geometric object

* image processing techniques like image warping and rectification,
rotation and scaling

 simulating reflective surfaces like mirrors or polished floors

69

Applying Textures)

specify textures in texture objects
set texture filter (optional)

set texture function (optional)

set texture wrap mode (optional)

set optional perspective correction hint (optional)
bind texture object

enable texturing

supply texture coordinates for vertex

— coordinates can also be generated

The general stepsto enable texturing are listed above. Some steps are optional,
and due to the number of combinations, complete coverage of thetopicis
outside the scope of this course.

We will be using the texture object approach. Using texture objects may
enable your OpenGL implementation to make some optimizations behind the
scenes.

Aswith any other OpenGL state, texture mapping requiresthat gl Enabl e()
be called. The tokens for texturing are:

GL_TEXTURE_1D - one dimensional texturing
GL_TEXTURE_2D - two dimensional texturing
GL_TEXTURE_3D - three dimensional texturing

2D texturing is the most commonly used. 1D texturing is useful for applying
contours to objects (like atitude contours to mountains). 3D texturingis
useful for volume rendering.

70

Texture Objects "

Like display lists for texture images

= one image per texture object

= may be shared by several graphics contexts
Generate texture names

gl GenTextures(n, *texlds);
Create texture objects with texture data and state
gl Bi ndTexture(target, id);
Bind textures before using
gl Bi ndTexture(target, id);

Thefirst step in creating texture objectsis to have OpenGL reserve some
indicesfor your objects. gl GenText ur es() will request n textureids and
return those values back to you in texids.

To begin defining atexture object, you cal gl Bi ndText ur e() withtheid
of the object you want to create. Thetargetisonof GL_ TEXTURE {123} D.
All texturing calls become part of the object until the next

gl Bi ndText ure() iscaled.

To have OpenGL use a particular texture object, call gl Bi ndText ur e()
with the target and id of the object you want to be active.

To delete texture objects, use gl Del et eTextures(n, *texlds),
wheretexids isan array of texture object identifiers to be deleted.

HH Specify Texture Image
rag.

Define a texture image from an array of
texels in CPU memory

gl Texl mage2D(target, |evel, components,

w, h, border, format, type, *texels);
= dimensions of image must be powers of 2
Texel colors are processed by pixel pipeline
= pixel scales, bias and lookups can be done

Specifying the texelsfor atexture isdone using the gl Tex| nage{ 123} X)
cal. Thiswill transfer the texelsin CPU memory to OpenGL, where they will
be processed and converted into an internal format.

The array of texels sent to OpenGL with gl Tex| mage* () must be a power
of two in both directions. An optional one texel wide border may be added
around theimage. Thisisuseful for certain wrapping modes.

The level parameter is used for defining how OpenGL should use thisimage
when mapping texelsto pixels. Generally, you'll set the level to O, unless

you' re using a texturing technique called mipmapping, which we'll discussin a
few dlides.

Converting A Texture Image

If dimensions of image are not power of 2
gl uScal el mage(format, w.in, h_in,
type_ in, *data_ in, wout, h_out, type out,
*data_out);
= * In is for source image
= * out Is for destination image
Image interpolated and filtered during scaling

If your image does not meet the power of two requirement for adimension, the
gl uScal el mage() call will resample animageto aparticular size. It uses
asimple box filter to interpolate the new images pixels from the source image.

Additionaly, gl uScal el mage() can be used to convert from one datatype
(i.e. GL_FLOAT) to another type, which may better match the internal format
in which OpenGL stores your texture.

Specifying a Texture: Other

Methods “

Use frame buffer as source of texture image
- uses current buffer as source image

gl CopyTex| mage2D. . .)

gl CopyTex|l magelD. . .)

Modify part of a defined texture
gl TexSubl mage2[X . . .)
gl TexSubl magelDX. . .)
Do both with gl CopyTexSubl mage2D. . .), etc.

gl CopyTexl| mage* () alowstexturesto be defined by in any of OpenGL’s
buffers. The source buffer is selected using the gl ReadBuf f er ()
command.

Using gl TexSubl mage* () toreplaceall or part of an existing texture often
outperformsusing gl Tex|l mage* () to alocate and define anew one. This
can be useful for creating a “texture movie” (sequence of textures which
changes appearance on an object’ s surface).

There are some advanced techniques using gl TexSubl mage* () which
include loading an image which doesn’t meet the power of two requirement.
Additionally, several small images can be “packed” into one larger image
(which was originally created with gl Tex| mage* ()), and loaded
individually with gl TexSubl mage* () . Both of these techniques require
the manipulation of the texture transform matrix, which is outside the scope of
this course.

- Mapping A Texture

 Based on parametric texture coordinates

« gl TexCoor d* () specified at each vertex

Texture Space Object Space
11 (s,t)=(0.2,0.8)

e (04,02

B

) (0.8,0.4)

When you want to map a texture onto a geometric primitive, you need to
provide texture coordinates. Thegl TexCoor d* () call setsthe current
texture coordinates. Valid texture coordinates are between 0 and 1, for each
texture dimension, and the default texture coordinateis(0,0,0, 1). If you
pass fewer texture coordinates than the currently active texture mode (for
example, using gl TexCoor d1d() whileG._TEXTURE_2Disenabled),
the additionally required texture coordinates take on default values.

Generating Texture Coordinates "

Automatically generate texture coordinates
gl TexGen{i fd}[v] ()

specify a plane Ax+By+Cz+D =0

= generate texture coordinates based upon distance

from plane
generation modes
- GL_OBJECT_LI NEAR
« GL_EYE_LI NEAR
+ GL_SPHERE_IVAP

Y ou can have OpenGL automatically generate texture coordinates for vertices
by using thegl TexGen() and gl Enabl e(GL_TEXTURE_GEN {STRQ).
The coordinates are computed by determining the vertex’ s distance from each
of the enabled generation planes.

Aswith lighting positions, texture generation planes are transformed by the
ModelView matrix, which alows different results based upon when the
gl TexGen() isissued.

There are three ways in which texture coordinates are generated:
GL_OBJECT_LI NEAR - textures are fixed to the object (like wall paper)

GL_EYE_LI NEAR - texture fixed in space, and object move through
texture (like underwater light shining on a swimming fish)

GL_SPHERE_ AP - object reflects environment, asif it were made of
mirrors (like the shiny guy in Terminator 2)

Texture Application Methods

Filter Modes

= minification or magnification

= special mipmap minification filters
Wrap Modes

= clamping or repeating
Texture Functions

= how to mix primitive’s color with texture’s
color
— blend, modulate or replace texels

Textures and the objects being textured are rarely the same size ((in pixels).
Filter modes determine the methods used by how texels should be expanded
(‘magnification), or shrunk (minification) to match apixel’ssize. An
additional technique, called mipmapping is a special instance of aminfication
filter.

Wrap modes determine how to process texture coordinates outside of the [0,1]
range. The available modes are:

GL_CLAMP - clamp any values outside the range to closest valid value,
causing the edges of the texture to be “smeared” across the primitive

GL_REPEAT - use only the fractional part of the texture coordinate, causing
the texture to repeat across an object

Finally, the texture environment describes how a primitives fragment colors
and texel colors should be combined to produce the final framebuffer color.
Depending upon the type of texture (i.e. intensity texture vs. RGBA texture)
and the mode, pixels and texels may be smply multiplied, linearly combined,
or the texel may replace the fragment’ s color atogether.

Filter Modes “

Example:
gl TexParaneteri(target, type,

Texture Polygon Texture Polygon
Magnification Minification

Filter modes control how pixels are minified or magnified. Generaly acolor
is computed using the nearest texel or by alinear average of severa texels.

Thefilter type, aboveisoneof G._TEXTURE_M N_FI LTER or
GL_TEXTURE_MAG FI LTER.
Themodeisone of GL_NEAREST, GL_LI NEAR, or special modes for
mipmapping. Mipmapping modes are used for minification only, and have
values of:

GL_NEAREST_M PVAP_NEAREST

GL_NEAREST_M PVAP_LI NEAR

GL_LI NEAR_M PMAP_NEAREST

GL_LI NEAR_M PMAP_LI NEAR
Full coverage of mipmap texturefiltersis outside the scope of this course.

Mipmapped Textures)

Mipmap allows for prefiltered texture maps of
decreasing resolutions

Lessens interpolation errors for smaller textured
objects

Declare mipmap level during texture definition
gl Texl mage* D(G._TEXTURE *D, | evel,...)
GLU mipmap builder routines

gl uBui | d1DM prmaps(. . .)

gl uBui | d2DM prmaps(. . .)

As primitives become smaller in screen space, atexture may appear to
shimmer as the minification filters creates rougher approximations.
Mipmapping is an attempt to reduce the shimmer effect by creating several
approximations to the original image at lower resolutions.

Each mipmap level should have an image which is one-half the height and
width of the previous level, to an minimum of onetexel in either dimension.
For example, level 0 could be 32 x 8 texels. Then level 1 would be 16 x 4;
level 2would be8 x 2; level 3,4 x 1; level 4, 2 x 1; finally, level 5, 1 x 1.

Thegl uBui | d*Dni prmaps() routineswill automatically generate each
mipmap image, and call gl Texl mage* D() with the appropriate level value.

Wrapping Mode 4

Example:

gl TexParaneteri (G._TEXTURE 2D,
G._TEXTURE WRAP_S, G._CLAMP)

gl TexParaneteri (G._TEXTURE 2D,
G._TEXTURE WRAP_T, G._REPEAT)

-

GL_REPEAT GL_CLAMP
wrapping wrapping

S

texture

Wrap mode determines what should happen if atexture coordinate lies outside
of the [0,1] range. If the GL_ REPEAT wrap mode is used, for texture
coordinate values less than zero or greater than one, the integer isignored and
only the fractional value is used.

If the G__ CLAMP wrap mode is used, the texture value at the extreme (either O
or 1) isused.

Texture Functions “

Controls how texture is applied

gl TexEnv{fi}[v](G._TEXTURE ENV, prop, param)
GL_TEXTURE ENV_MODE modes

- GL_MODULATE

- GL_BLEND
- GL_REPLACE

Set blend color with GL_ TEXTURE _ENV_ COLOR

The texture mode determines how texels and fragment colors are combined.
The most common modes are;

GL_MODULATE - multiply texel and fragment color
GL_BLEND - linearly blend texel, fragment, env color
GL_REPLACE - replace fragment’ s color with texel

If propisG._TEXTURE_ENV_COLOR, paramisan array of four floating
point values representing the color to be used with the G__ BLEND texture
function.

Perspective Correction Hint &

Texture coordinate and color interpolation
- either linearly in screen space
- or using depth/perspective values (slower)

Noticeable for polygons “on edge”

gl H nt (G._PERSPECTI VE_CORRECTI ON_HI NT, hint)
where hi nt is one of

— GL_DONT_CARE

— G__NI CEST

— GL_FASTEST

An OpenGL implementation may chose to ignore hints.

Is There Room for a Texture?

Query largest dimension of texture image

- typically largest square texture

- doesn’t consider internal format size

gl Get I ntegerv(G._MAX TEXTURE SI ZE, &si ze)
Texture proxy

= will memory accommodate requested texture size?

= no image specified; placeholder

= if it won’t fit, texture state variables set to 0

— doesn’t know about other textures
— only considers whether this one texture will fit all of
memory

GLi nt proxyConponents;

gl Texl mage2D(GL_PROXY_TEXTURE 2D, 0, GL_RGBA8, 64, 64, 0,
GL_RGBA, GL_UNSI GNED_BYTE, NULL);

gl Get TexLevel Par anet eri v(G._PROXY_TEXTURE_ 2D, 0,
GL_TEXTURE_COVPONENTS, &proxyConponents);

Texture Residency

Working set of textures
high-performance, usually hardware accelerated
textures must be in texture objects
a texture in the working set is resident
for residency of current texture, check
GL_TEXTURE_RESI DENT state
If too many textures, not all are resident
- can set priority to have some kicked out first
- establish 0.0 to 1.0 priorities for texture objects

Query for residency of an array of texture objects:

GLbool ean gl AreText uresResi dent (GLsi zei n, GLuint *texNuns,
GLbool ean *resi dences)

Set priority numbersfor an array of texture objects:

gl PrioritizeTextures(@.sizei n, Guint *texNunms, G.cl anpf
*priorities)

Lower priority numbers mean that, in a crunch, these texture objects will be
more likely to be moved out of the working set.

One common strategy is avoid prioritization, because many implementations
will automatically implement an LRU (least recently used) scheme, when
removing textures from the working set.

If there is no high-performance working set, then all texture objects are
considered to be resident.

Overview of Other Topics

Display Lists

Feedback

= Picking/Selection

Image Primitives

Fog

Per Fragment Operations
Blending

Antialiasing

85

Immediate vs Retained Mode

Immediate Mode Graphics
= Primitives are sent to pipeline and display right away
= No memory of graphical entities

Retained Mode Graphics
= Primitives placed in display lists
Display lists kept on graphics server
Can be redisplayed with different state
Can be shared among OpenGL graphics contexts

If display lists are shared, texture objects are aso shared.

To share display lists among graphics contexts in the X Window System, use
the gl XOr eat eCont ext routine.

86

Vertex

Display Lists

steps: create it, then call it
GLui nt id;
void init () {
id = gl GenLists(1);
gl NewLi st (id, GL_COWPILE);
/* other OpenGL routines */
gl EndLi st ();
}
voi d displlay () {
gl Cal |l List (id);
}

Instead of GL_COMPILE, gl NewLi st also accepts the constant

GL_COMPILE_AND_EXECUTE, which both creates and executes a display
list.

If anew list is created with the same identifying number as an existing display
list, the old list is deleted. No error occurs.

87

Display Lists %

Not all OpenGL routines can be stored in display
lists

State changes persist, even after a display list is
finished

Display lists can call other display lists

Display lists are not editable, but you can fake it
= make a list (A) which calls other lists (B, C, and D)
= delete and replace B, C, and D, as needed

Some routines cannot be stored in adisplay list. Hereisalist of them:
al gl Get* routines
gl I s* routines (e.g., gllsEnabled, gllsList, gllsTexture)

gl GenLi sts gl Del et eLi sts gl FeedbackBuf f er

gl Sel ect Buf fer gl Render Mode gl Vert exPoi nt er

gl Nor mal Poi nter gl Col or Poi nter gl I ndexPoi nter

gl TexCoor dPoi nt er gl EdgeFl agPoi nt er

gl Enabl eC i ent State gl DisableCientState
gl ReadPi xel s gl Pi xel Store gl GenText ures

gl Del et eText ures gl AreText ur esResi dent
gl Fl ush gl Fi ni sh

If thereis an attempt to store any of these routinesin adisplay list, theroutine is
executed in immediate mode. No error occurs.

88

Feedback & Selection

Usually, transformed vertices and colors
generate an image in the frame buffer
Feedback mode: transformed values are
returned to the application
Selection mode: if primitives are drawn within
viewing volume, names are returned to the
application

= in both cases, drawing stopped; no pixels are

produced

89

Picking %

Picking Is a special case of selection

Programming steps

= restrict “drawing” to small region near cursor
USe gl uPi ckMat ri x() on projection matrix

= enter selection mode; rerender scene
= primitives drawn near cursor cause hits
= exit selection; analyze hit records

The picking region is usually specified in apiece of code like this:
gl Matri xMode (G._PRQIECTI ON) ;
gl Loadl dentity();
gl uPi ckivatrix(x, y, width, height, viewport);

gl uPer spective(...) orglOtho(...)

The picking matrix is the rare situation where the standard projection matrix
(perspective or ortho) is multiplied onto a non-identity matrix.

Each hit record contains:
number of names per hit
smallest and largest depth values
all the names

90

Picking Pseudocode

gl ut MouseFunc (pi ckMe);

void pickMe (int button, int state, int x,
GLui nt naneBuf f er [256] ;
GLint hits;
GLi nt nmyVi ewport|[4];
if (button != GLUT_LEFT_BUTTON |

state != GLUT_DOWN) return;
gl Get I ntegerv (G._VI EWPORT, nyVi ewport);
gl Sel ect Buffer (256, naneBuffer);
(void) gl Render Mode (GL_SELECT) ;
gl I'ni t Nanes() ;

int y)

91

Picking Pseudocode (continued)

gl Mat ri xMbde (GL_PRQIECTI ON);
gl PushMatrix ();
gl Loadl dentity ();
gl uPi ckiatri x ((GLdoubl e) x, (G.doubl e)
(myViewport[3]-y), 5.0, 5.0, nyViewport);
gluPerspective or glOrtho or other projection
gl PushNane (1);

draw something

gl LoadNane (2);
draw something else....continue...

gl Mat ri xMbde (GL_PRQIECTI ON);

gl PopMatrix ();

hits = gl Render Mode (GL_RENDER);
process nameBuffer.

Be sure and push the first name you use onto the name stack. After the first
name is pushed, it can be replaced by gl LoadNane.

Bitmaps and Images

Pixel-based primitives
= bitmaps (one bit per pixel)
= pixmaps or pixel rectangles (many bits per pixel)
= texture images treated similarly
Use gl Rast er Pos* () to position pixel primitive
= raster position transformed like geometry
OpenGL does not encode/decode file formats (such
as, GIF, JPEG, TIFF)

93

Pixel Primitive Calls

Specify source or destination buffer
gl ReadBuf f er
gl Dr awBuf f er

Save and/or render a pixel primitive
gl Bi t map

gl ReadPi xel s

gl DrawPi xel s

gl CopyPi xel s

Convert window system fonts for OpenGL
gl XUseXFont
wgl UseFont Bi t maps, wgl UseFont Qutlines

Source = incoming fragments

Destination = values (color, depth, etc.) which are aready in the bitplanes

94

Pixel Pipeline

Programmable pixel storage and transfer
operations

gl Bitmap(), gl DrawPi xels() ——>

Pixel Pler—Tra_nsfer Ra_sterlze_ltlon Per Fragment Frame
Storage Operations (including e S Buffer
Modes (and Pixel Map) Pixel Zoom) p

Texture
Memory

gl ReadPi xel s(), gl CopyPi xel s()

Warning: non-default values for pixel storage and transfer can be very slow.

For best performance, the internal representation of a pixel array should match
the hardware. For example, for a 24 bit frame buffer, 8-8-8 RGB would
probably be a good match, but 10-10-10 RGB could be bad.

95

o cueing .
Applied after texturing
Fog color is blended with fragmen

= Amount of fog applied is a function of
— the fragment’s distance from the eye
— chosen fog equation and parameters

Works for RGBA and color index modes

Programming steps to perform fog

1) clear screen to fog color

2) turn on fog with gl Enabl e(GL_FOG)

3) use gl Fog to specify the fog equation to use (linear, exponential or
exponential squared)

4) use gl Fog to specify parameters which affect fog density and color
5) usegl Hi nt to specify quality/performance tradeoffs

96

Fragment Operations

Depth Buffer

Test Blending

Dithering

Logica
Operation

pixelsto
framebuffer

97

Fragment Tests

Pass or Die!
Scissor Test
= fragment inside rectangle: pass
Alpha Test
= fragment has correct source alpha: pass
Stencil Test
= variety of source stencil & depth tests
Depth Buffer Test
= source z correctly compares to destination z: pass

OpenGL routines which control these fragment operations:

gl Enabl e (G__SCl SSOR_TEST)
gl Sci ssor (GLint x, Gint y, Gsizei width, Gsizei height)

gl Enabl e (G._ALPHA TEST)
gl Al phaFunc (G.enum func, G.cl anpf ref)

gl Enabl e (GL_STENCI L_TEST)

gl Stenci |l Func (G.enum func, Gint ref, G.uint nask)
gl Stencil Op (Genum fail, G.enum zfail, G.enum zpass)
gl Stenci | Mask (G.ui nt nask)

gl Enabl e (G._DEPTH_TEST)

gl Dept hFunc (G.enum func)

gl Dept hRange (GL.cl anpd near, G.clanpd far)
gl Dept hMask (G.bool ean fl ag)

98

Blending

RGBA mode only, not color index

= alpha represents 0% to 100% opacity
Translucency effects

= combination of source and destination colors

- C4=CS+C,D

dest color = src color * src factor + dest color * dest factor

Rendering order matters; need to sort polygons

= depth buffer doesn’t work well with alpha blending
Alpha buffer. (bitplanes) rarely needed

= source alpha usually enough

Blending routines:
gl Enabl e(G._BLEND)
gl Bl endFunc(sfactor, dfactor)

Some typical choicesfor sfactor and dfactor are:

gl Bl endFunc(G._ONE, G._ZERO /* default--no blending */
gl Bl endFunc(GL_SRC ALPHA, GL_ONE_M NUS_SRC ALPHA)

gl Bl endFunc(G._SRC ALPHA, G._ONE)

There are very few uses for having actual bitplanes (destination alpha) to save
alphavaues. One use for destination aphaisto save a chromakey value for
manipulating video images.

99

Antialiasing

=
_ ;]
Smooth jagged lines and round o INTS

2 steps
= during rasterization
— subpixel coverage values calculated
— In RGBA, coverage = alpha value
— In color index, coverage = last 4 bits of color, index
)) pixel coverage
= during fragment operations

— In RGBA, blend with source alpha ﬁf /

diased antialiased

Routines for antialiasing lines:
gl Enabl e (G._LI NE_SMOOTH)
gl Hint (G._LI NE_SMOOTH_HI NT, GL_DONT_CARE)

Routines for antialiasing points:
gl Enabl e (G._PA NT_SMOOTH)
gl Hi nt (G._PO NT_SMOOTH_HI NT, GL_DONT_CARE)

Routinesfor RGBA mode, only:
gl Enabl e (GL_BLEND)
gl Bl endFunc (GL_SRC ALPHA, GL_ONE_M NUS_SRC ALPHA)

Thereisaso gl Enabl e(GL_POLYGON_SMOOTH) for antiaiasing the edges of
filled polygons, but it only worksin RGBA mode. Also hidden surface
removal with alpha blending raises additional issues. Y ou might use the
accumulation buffer as an alternate way to achieve full scene antialiasing.

100

Last Fragment Operations %

Dithering

= to compensate for low color resolution

= combine close colors to approximate the color you
really want

= on high-resolution systems, dithering is a no-op
Logical Operations

= |ogical operations on incoming fragment (source)
and current color buffer (destination)

OpenGL routines:

gl Enabl e (G._DI THER)

gl Enabl e (GL_I NDEX_LOG C_OP) oOr gl Enabl e (GL_COLOR _LOG C_OP)
gl Logi cOp (G.enum opcode)

101

Extensions &

Additions to the OpenGL API

= functionality not yet in specification

= some may be incorporated into a future release
man gl I ntro (UNIX platforms)

= describes all OpenGL extensions
= describes machine dependencies

Extension naming conventions
« EXT suffix: Supported by at least two vendors

The availability of an extension can be queried by using

gl Get St ri ng(GL_EXTENSI ONS) and looking for astring which is specified by
the vendor. An aternate way of identifying the availability of an extension is
to look for a constant at compile time (#i f def XXX).

102

OpenGL 1.2 &

Mandatory New Core Capabilities
vertex normals rescaled
3D textures
texture coordinate edge clamping

level of detail for mipmap textures
specular highlights after texturing
BGRA and packed pixel formats
vertex array subrange operations

103

OpenGL 1.2 "

Optional Imaging Subset
enhancements to the pixel pipeline
blending with a constant color
min, max, and subtract

color matrix

color table editing

1D and 2D convolutions
— general or separable filters
histogram statistics

Also new GLX 1.3 routines

The OpenGL 1.2 imaging subset initiates a new concept for OpenGL
functionality. The imaging subset is not mandatory for al OpenGL 1.2
implementations. However, if avendor chooses to support it, they must
support all functiondity in the imaging subset.

Support for the imaging subset can be detected by using

gl Get St ri ng(GL_EXTENSI ONS) and looking for the string ARB_i magi ng.
However, it isn’'t an extension, and the functions and enumerants do not
contain EXT suffixes.

The GLX 1.3 featuresinclude pixel buffers, more flexible frame buffer
configuration, and support for read-only drawables (preparing for support for
video).

104

Final Review: Typical Steps

open a window with specific visual/pixel format
= establish depth buffer and double buffer
to initialize
read images from disk, load color maps
tessellate polygons, load vertex arrays
create display lists, texture objects, light sources
resize()
re-establish viewport, projection, and viewing
transformations
careful with the aspect ratio

105

Final Review (2)

in display/()
= clear screen to background color
initially push modelview matrix (usually)
change states and render geometry & images
finally restore modelview matrix (usually)
swap buffers
check for errors
optional routines for input devices or idle function
= input device may initiate picking
enter event processing infinite loop

106

On-Line Resources

http://ww. opengl . org
= start here; up to date specification
news: conp. graphi cs. api . opengl
http://reality.sgi.conf opengl/opengl-Iinks. htm
http://ww. m crosoft.con hwdev/ devdes/ opengl . ht m
ftp://sgigate.sgi.conf pub/opengl
http://ww. ssec. wi sc. edu/ ~bri anp/ Mesa. ht i
= Brian Paul’s Mesa 3D
http://ww. cs. utah. edu/ ~nar obi ns/ opengl . ht
= very special thanks to Nate Robins for. the OpenGL Tutors
= source code for tutors available here!
http://wwv. specbench. org/ gpc/ opc. static
= benchmarks

107

Books "

OpenGL Programming Guide, 2nd Edition
= ISBN 0-201-46138-2

OpenGL Reference Manual

= ISBN 0-201-46140-4

OpenGL Programming for the X Window

System
= |SBN 0-201-48359-9
= includes Mark Kilgard’s GLUT

Other Books

OpenGL Programming for Windows 95 and Windows NT
by Ron Fosner, ISBN 0-201-40709-4

OpenGL SuperBible
by Richard S. Wright, Jr. and Michael Sweet, ISBN 1-57169-073-5

Interactive Computer Graphics. A Top-Down Approach with OpenGL
by Edward Angel, ISBN 0-201-85571-2

108

Thanks for Coming &

Questions and Answers

nMEson@wo. com
shrei ner @gi . com

109

