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Abstract  
Fluorescence in situ hybridization (FISH) is a molecular cytogenetic technique. It provides a 
powerful tool for understanding genetic and genomic processes, diagnosing genetic disorders, and 
studying the structure and function of genes and chromosomes. This paper proposes a method for 
automatic object segmentation of preparations of blood cell nuclei and a method for detecting 
chromosomes with the aim of further studying them for chromosomal mosaicism. Based on the data 
provided by the laboratory of the Institute of Biology and Biomedicine of Lobachevsky University, 
the SOTA deep learning model YOLOv8-seg was trained. This was made possible by marking up 
a small portion of the 87 images. Experiment on model training for segmentation showed very good 
quality metrics: Precision = 0.940, Recall = 0.980, mAP[0.5] = 0.991 and mAP[0.5:0.95] = 0.764. 
After that, a method for detecting chromosomes was proposed, based on the classical principles of 
image processing and computer vision, due to the lack of the necessary labelled data. 
 
Keywords  1 
Fluorescent hybridization, image processing, semantic segmentation, deep neural networks. 

1. Introduction 

Fluorescence in situ hybridization (FISH) technology was developed in the early 1980s by 
biomedical researchers. This technique was first described by researchers Gall and Pardew in 1969 [1], 
but it was not until the 1980s that significant advances were made to make FISH a practical and widely 
used method today [2].  

FISH is a molecular cytogenetic technique used to detect and localize specific DNA sequences in 
cells or tissue samples. For this, fluorescently labelled DNA or RNA probes are used that bind to 
complementary target sequences in the sample. FISH allows researchers to visualize the spatial 
organization and distribution of specific genes or chromosomal regions, providing valuable information 
about gene expression, chromosomal abnormalities, and genomic variation. This method is widely used 
in various fields, including genetics [3], cancer research [4], prenatal diagnosis [5], and microbial 
ecology [6]. FISH can be performed on fixed cells or tissue sections, which provides a detailed 
understanding of the genetic composition and organization of biological samples.  

Chromosomal mosaicism refers to the presence of two or more different chromosomal cell 
populations within an individual. It occurs when there are genetic alterations or abnormalities that affect 
some but not all cells in the body. This phenomenon can arise during early embryonic development or 
later in life due to genetic mutations, chromosomal rearrangements, or errors in cell division [7]. 

In chromosomal mosaicism, some cells possess a normal chromosomal composition, while others 
exhibit abnormal chromosomal structures or aneuploids (an abnormal number of chromosomes). The 
degree of mosaicism can vary, ranging from a small percentage of affected cells to a larger proportion. 

Mosaicism is often detected through genetic testing methods, such as karyotyping, fluorescence in 
situ hybridization, or chromosomal microarray analysis. Understanding and diagnosing chromosomal 
mosaicism is crucial for proper medical management, genetic counselling, and personalized treatment 
approaches. 
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Existing methods for segmenting cell nuclei and detecting points (or foci) have made significant 
progress in automating and expanding the analysis of cellular structures, especially in recent decades 
with the development of machine and deep learning. For example, The Cell Tracking Challenge, which 
has become a benchmark in cell segmentation and the development of tracking algorithms [8]. The U-
Net architecture (and its modifications) has been one of the most efficient cell segmentation approaches 
in multiple contrast-enhanced datasets [9, 10]. R-CNN (Region-based Convolutional Neural Network) 
was also used in this task, but to a lesser extent [11]. 

2. Dataset 

The data transmitted to us was collected by the laboratory of the Institute of Biology and 
Biomedicine of Lobachevsky University. Most images have a resolution of 512x512 pixels, but there 
are a few images with atypical resolutions of 1024x1024, 1293x1293 and 2873x2873. If we talk about 
the physical size of a pixel, then it varies from 0.12 to 0.69 nm. This is a mixed dataset of approximately 
200 unlabelled images in uncompressed CZI or BMP formats, as well as compressed JPG. The figure 1 
shows several examples from the dataset. 

    
Figure 1: Several examples from dataset. Blue areas in the image represent cell nuclei, in particular, 
rounded areas are whole cells, and clusters of small areas are destroyed cells. The red dots represent 

the locations of the 21-chromosomes and the green dots represent the X-chromosomes. 
Brightness/contrast boost applied for better visibility 

Notably, the CZI format was developed by ZEISS specifically to meet the imaging requirements of 
microscopy. It stores not only the images themselves, but also meta-information, such as microscope 
type and settings, laser or illumination intensities, dimensions and scale bars, used contrasts and 
objectives, fluorescent dyes and filters, camera and detector parameters such as exposure values, 
binning, bit depth, pixel dwell time and more. Such information can also be extremely useful in 
processing images obtained using FISH-analysis. According to the metadata, these 3-channel images 
are not true RGB, but they can be interpreted as RGB. 

Let's talk more about how this data was collected. The study group included 16 subjects with 
idiopathic infertility referred from medical genetic centres and clinics providing medical services in the 
field of obstetrics and gynaecology. The age of the subjects varied from 25 to 35 years. 

Indirect preparations were prepared from PHA-stimulated peripheral blood lymphocytes cultured 
for 72 hours, stained with the differential GTG method, followed by analysis. At least 30 metaphase 
plates of chromosomes of each subject were analysed by the cytogenetic method on a «ZEISS Primo 
Star» microscope in transmitted light under oil immersion at a total magnification $\times1000$. In 
cases when aneuploidy on the X-chromosome of individual cells of the sample was detected, the 
preparation was sent for FISH-analysis. Cytogenetic preparations of peripheral blood lymphocytes and 
buccal epithelial cells were used for FISH.  
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Viewing and analysis of preparations was carried out using a confocal fluorescence «ZEISS LSM 
800» microscope, where, under the influence of exciting light of a certain spectrum, fluorochrome 
molecules began to emit light quanta, the wavelength of which depended on the properties of the 
fluorochrome used. To detect signals from the X-chromosome, the survey was carried out at a 
wavelength of 525±30 nm. For detection of signals from 21-chromosome at a wavelength of 580±30 
nm. 

3. Proposed methods 

In this paper, a division into 2 tasks is proposed. In the first task, we are trying to segment blood cell 
nuclei using the YOLOv8 deep learning model. In the second -- to detect chromosomes inside the cell 
nuclei using the obtained masks from the 1st algorithm. 

Also, due to the lack of any labelled data, we are faced with a choice: use unsupervised methods 
(including classical computer vision methods) or manually label the data in order to later use it to train 
machine learning models. 

Our decision at this stage is to use partial manual labelling for cell nucleus segmentation and not to 
use labelling for chromosome detection. 

3.1. Manual data labelling 

As mentioned earlier, we want to label a portion of the images in order to apply the segmentation 
network. A small part consisting of 87 images was selected. On these images, all cell nuclei were split 
into 2 groups: healthy (i.e., whole) and destroyed (see example on figure 2). Open-source software was 
used for this task. 

    
Figure 2: An example of manual annotation for segmenting cell nuclei into healthy (red contour) and 

destroyed (yellow contour) 

3.2. Cell nuclei segmentation 

Here, we describe which segmentation model we have chosen. Our choice fell on state-of-the-art 
(SOTA) YOLOv8 algorithm. 

YOLO (You Only Look Once) is a popular series of one-stage deep learning models primarily 
designed for object detection tasks rather than segmentation. The first version of YOLO was presented 
by Joseph Redmon along with his co-authors Ali Farhadi and Santosh Divwala in 2015 [12]. YOLO 
has gained popularity due to its excellent trade-off between high speed and accuracy. Since its initial 
release, YOLO has undergone several iterations and improvements, with subsequent versions being 
developed by various computer vision communities [13, 14, 15, 16, 17]. 
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Initially, YOLOs are designed for object detection, not segmentation. YOLOv5, although not an 
official release by the original creators of YOLO, introduced some modifications and improvements to 
the architecture, including support for segmentation tasks [18] 

YOLOv8 is the latest version of the YOLO object detection model introduced by Ultralytics and 
launched on January 2023, to improve accuracy and efficiency over previous versions [19]. Major 
updates include a more optimized network architecture (see on figure 5), a revised anchor block design, 
and a modified loss function to improve accuracy. 

YOLOv8 also provides a semantic segmentation model called YOLOv8-Seg model. The backbone 
is a CSPDarknet53 feature extractor, followed by a C2f module instead of the traditional YOLO neck 
architecture. The C2f module is followed by two segmentation heads, which learn to predict the 
semantic segmentation masks for the input image [20]. 

3.3. Chromosome detection 

Chromosomes are bright red or green dots on the image, depending on their type. They can look like 
single dots or double dots due to the spatial position they occupy in the cell. 

Therefore, we are pursuing the goal of finding these bright points in the image. We also want to use 
the cell segmentation masks from the previous algorithm to find chromosomes within cells. 

Proposed chromosome detection algorithm: 
1. apply unsharp masking separately for red and green channels; 
2. potential chromosome candidates are selected: 

a. image is binarized by the threshold T; 
b. operation of the morphological gradient with a kernel 3x3 is applied; 
c. connected-component labelling is applied to the resulting areas. 

3. apply filtering of potential chromosome candidates: 
a. for each chromosome, the cell nucleus belonging to it is detected, if the chromosome 

does not lie inside it, then it is excluded from consideration; 
b. the proximity of the chromosome to the border of the cell is checked, if it lies on it 

(or is very close in terms of threshold C), then the chromosome is excluded from 
consideration. 

4. as a result, cell nuclei with detected chromosomes are obtained. 
Now let's discuss the choice of values for the parameters T and C introduced above. The C 

parameter is set to 1, which means that only the closest points to the boundary will be rejected. The T 
parameter is currently set to 80. Both parameters are set for the entire data set and do not depend on a 
particular image. 

4. Implementation details 

The proposed algorithm is implemented using Python 3.10. For image processing, popular libraries 
were used, such as OpenCV [21], scikit-image [22], SciPy [23].  

YOLOv8s-seg model is taken from Ultralytics with PyTorch backend under the AGPL-3.0 licence 
[24]. This model with a standard input of 640x640x3 has about 11.8 million trainable parameters. 

5. Experimental results 
5.1. Evaluation criteria 

We will describe the evaluation criteria for the segmentation model. Criteria for evaluating the 
detection of chromosomes will not be described below due to the lack of necessary markup. 

YOLOv8-seg by default uses the following loss function for optimization: 
𝐿𝐿 = 𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏 + 𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠 + 𝐿𝐿𝑏𝑏𝑏𝑏𝑜𝑜 + 𝐿𝐿𝑐𝑐𝑐𝑐𝑠𝑠, (1) 
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where 𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏 uses Complete Intersection over Union (CIoU) [25] and Distributional Focal Loss (DFL) 
[26], 𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠 equivalent to Binary Cross-Entropy (BCE) for image masks, 𝐿𝐿𝑐𝑐𝑐𝑐𝑠𝑠 also equivalent to BCE. 
For more detailed information, please refer to the relevant citations. 

Intersection over Union (IoU) is a metric commonly used to evaluate the performance of object 
detection and segmentation algorithms. It measures the overlap between the predicted bounding box (or 
segmentation mask) 𝐵𝐵𝑝𝑝 and the ground truth area 𝐵𝐵𝑠𝑠𝑔𝑔. The formula for IoU is: 

𝐼𝐼𝐼𝐼𝐼𝐼 =
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐵𝐵𝑝𝑝 ∩ 𝐵𝐵𝑠𝑠𝑔𝑔)
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐵𝐵𝑝𝑝 ∪ 𝐵𝐵𝑠𝑠𝑔𝑔)

 
(2) 

True Positive (TP), False Positive (FP), False Negative (FN), and True Negative (TN) are terms 
used in binary classification tasks to describe the outcomes of predictions compared to ground truth 
labels. Some basic concepts used by the metrics: 

• True Positive (TP): A correct detection. Detection with IoU ≥ threshold; 
• False Positive (FP): A wrong detection. Detection with IoU < threshold; 
• False Negative (FN): A ground truth not detected; 
• True Negative (TN): Does not apply. 

 
Precision is the ability of a model to identify only the relevant objects. It is the percentage of correct 

positive predictions and is given by: 

𝑃𝑃𝑎𝑎𝑎𝑎𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐼𝐼𝑃𝑃 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃
=

𝑇𝑇𝑃𝑃
𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑𝑎𝑎𝑑𝑑𝑎𝑎𝑃𝑃𝑑𝑑𝑃𝑃𝐼𝐼𝑃𝑃𝑃𝑃

 
(3) 

Recall is the ability of a model to find all the relevant cases (all ground truths). It is the percentage 
of true positive detected among all relevant ground truths and is given by: 

𝑅𝑅𝑎𝑎𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹
=

𝑇𝑇𝑃𝑃
𝑎𝑎𝑎𝑎𝑎𝑎 𝑔𝑔𝑎𝑎𝐼𝐼𝑔𝑔𝑃𝑃𝑑𝑑 𝑑𝑑𝑎𝑎𝑔𝑔𝑑𝑑ℎ𝑃𝑃

 
(4) 

Mean Average Precision (mAP) is a common evaluation metric used in object detection and 
instance segmentation tasks. It measures the accuracy and quality of the predicted bounding boxes or 
segmentation masks. AP (Average Precision) is calculated for each class individually, and then the 
mAP is the mean of the AP values across all classes.  

For our work, we chose mAP[0.5] and mAP[0.5:0.95]. mAP[0.5] refers to the mean Average 
Precision calculated on IoU threshold equals $0.5$. mAP[0.5:0.95] refers to the mean Average 
Precision calculated over a range of IoU thresholds. The range 0.5:0.95 specifies a set of IoU thresholds. 
It means that for each class, the AP is calculated by considering the precision and recall values at IoU 
thresholds ranging from 0.5 to 0.95, with a certain step size equals 0.05. For more details on the 
calculation of this metric, refer to [27]. 

5.2. Discussion of results 

All images were scaled to 640x640x3. 87 images were manually segmented. 60 of them were used 
for model training and 27 for validation.  

Due to the small data set, augmentation was applied. Models from Ultralytics provide an internal 
mechanism for setting parameters for various augmentations. Also, it has integration with the 
Albumentations library for fast and flexible modification of images [28]. Albumentations efficiently 
implements a wide range of image transformation operations optimized for performance. In the current 
work, only the internal mechanism was used, but not the Albumentations library. Let us describe the 
types of augmentations used and their parameters: 

• image HSV-Hue augmentation (fraction set to 0.015), 
• image HSV-Saturation augmentation (fraction set to 0.1), 
• image HSV-Value augmentation (fraction set to 0.1), 
• image rotation (+/- deg set to 0.25), 
• image translation (+/- fraction set to 0.25), 
• image scale (+/- gain set to 0.5), 
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• image shear (+/- deg set to 0.25), 
• image perspective (+/- fraction set to 0.001), 
• image flip up-down (probability set to 0.25), 
• image flip left-right (probability set to 0.25), 
• image mosaic (probability set to 1.0). 

For YOLOv8, an early stop was used to obtain the best model for the validation loss. The AdamW 
optimizer was used with default learning rate = 0.01 and momentum = 0.9. We set the threshold of IoU 
at 0.5. We can report achieved metrics on validation data on table 1. Also check the learning curves on 
figure 6. 

Table 1: Precision, Recall, and mAP metric values for the validation dataset 

Metric Value 
Precision 0.940 

Recall 0.980 
mAP[0.5] 0.991 

mAP[0.5:0.95] 0.764 
 
Despite the small dataset, very good results were achieved. This can probably be explained by the 

good generalizing ability of the model and the use of data augmentation. 
Let's look at some examples below in figures 3 and 4. 
First, let's focus on good examples. On the left image, there are 2 whole cells and one destroyed. 

Their segmented masks are quite precise, but you can see very little overlap between a whole and a 
destroyed cell. At the same time, all chromosomes in these cells were found, including the destroyed 
one. On the right image there are 3 whole cells and also all detected chromosomes. 

    
Figure 3: Good prediction examples (crop images for better visibility). The green colour of the 

outline indicates the detected whole cell, and the red colour indicates the destroyed one. The green 
dotted circle indicates the detected "green" chromosome, and the red circle indicates the "red" one 

Now let's switch to bad examples. In the left image, we can assume that the bottom cell was 
processed acceptably, but the top one was not even segmented, which means the chromosomes were 
skipped. On the right image is a cell with detected chromosomes, however one and the same cell is 
marked both as whole and as destroyed. 

6. Conclusion 

In this paper, an algorithm for automatic object segmentation of fluorescent in situ hybridization 
data was proposed. For this purpose, the SOTA YOLOv8 deep learning model was applied, which is 
capable of segmenting whole and destroyed cells. For this, a small set of available images was marked 
up. A non-learning method for detecting chromosomes has also been proposed. 

In the course of further work, we want to increase the number of labelled images in order to improve 
segmentation, propose improvements or revisions to the chromosome detection method, and introduce 
mosaicism calculation. We also want to consult with experts to get more accurate labelled segmentation 
masks and chromosomes. 
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Figure 4: Bad prediction examples (crop images for better visibility). The green colour of the outline 

indicates the detected whole cell, and the red colour indicates the destroyed one. The green dotted 
circle indicates the detected "green" chromosome, and the red circle indicates the "red" one 
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A. Supplementary materials 

In object detection models, the architecture is often divided into three main components: backbone, 
neck and head. Here is a visual representation of the YOLOv8 architecture. 

 
Figure 5: YOLOv8 architecture [20] 

In object detection, box, seg, obj, and cls losses refer to different components of the loss function 
used during training. Each loss term contributes to the overall optimization of the object detection 
model. 



Biomedical Image Processing and Analysis GraphiCon 2023

642 19–21 September 2023, Moscow, Russia 

 
Figure 6: Model learning curves (loss and metrics) 

 


