Генерация 3D-модели персонализированного каркаса для сухих электродов электроэнцефалографа

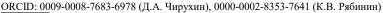
Д.А. Чирухин ¹, К.В. Рябинин ^{2,1}

Аннотация

В статье представлен метод генерации 3D-модели разборного каркаса для сухих электродов электроэнцефалографа на основе параметров головы человека. Каркас для электродов, точно голове конкретного человека, необходим персонализированных человеко-машинных интерфейсов мозг-компьютер. Предложена математическая модель, основанная на аппроксимации формы головы с помощью эллипсоида и размещении гнёзд для электродов по международной универсальной системе 10-20. Для соединения гнёзд используются трёхмерные мостики на основе кривых Безье. Предложенный метод реализован в среде системы автоматизированного проектирования FreeCAD на языке программирования Python. Сгенерирована модель каркаса. Точность размещения электродов на каркасе проверена с помощью 3D-скана головы, полученного сканером Calibry Mini. Физических характеристики каркаса проверены посредством печати на бытовом 3D-принтере. Полученный каркас лучше подходит для человека, у которого брались параметры головы, чем стандартные каркасы, и требует меньше материала и времени для 3D-печати.

Ключевые слова

Геометрическое моделирование, сухие электроды, электроэнцефалография, схема 10-20, интерфейс мозг-компьютер, эллипсоид, кривые Безье, FreeCAD, Python.


Generation of a Personalized Headcap 3D Model for **Encephalography with Dry Electrodes**

D.A. Chiruhin¹, K.V. Ryabinin ^{2,1}

Abstract

The article presents a method for generating a 3D model of a collapsible headcap for dry electrodes of an electroencephalograph based on the parameters of a human head. A headcap for electrodes that precisely fits the head of a particular person is essential in the development of personalized human-machine brain-computer interfaces. A mathematical model is proposed, based on the approximation of the head shape using an ellipsoid and the placement of sockets for electrodes according to the international universal system 10-20. 3D bridges based on Bezier curves are used to connect sockets. The proposed method is implemented in the FreeCAD computer-aided design environment using the Python programming language. The headcap model has been generated. The accuracy of electrode placement on the headcap was verified using a 3D scan of a head obtained with a Calibry Mini scanner. The physical characteristics of the headcap are verified by printing it

ГрафиКон 2023: 33-я Международная конференция по компьютерной графике и машинному зрению, 19-21 сентября 2023 г., Институт проблем управления им. В.А. Трапезникова Российской академии наук, г. Москва, Россия EMAIL: chiruhind@gmail.com (Д.А. Чирухин), kostya.ryabinin@gmail.com (К.В. Рябинин)

© 2023 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 $^{^{1}}$ Пермский государственный национальный исследовательский университет, Букирева 15, Пермь, 614068, Россия

² Институт вычислительной астрономии Астрономического центра Университета г. Хайдельберг, Мёнщхофштр. 12-14, Хайдельберг, 69120, Германия

¹ Perm State University, Bukireva 15, Perm, 614068, Russia

² Astronomisches Rechen-Institut, Centre for Astronomy of Heidelberg University, Mönchhofstr. 12-14, Heidelberg, 69120, Germany

on a consumer-grade 3D printer. The resulting headcap is better suited for the person whose head parameters were taken than standard headcaps and requires less material and time for 3D printing.

Keywords

Geometric modeling, dry electrodes, electroencephalography, 10-20 system, brain-computer interface, ellipsoid, Bezier curves, FreeCAD, Python.

1. Введение

При проведении исследований в области человеко-машинного взаимодействия, а именно в области построения интерфейсов мозг-компьютер [1] (англ. Brain Computer Interface, BCI) удобно использовать т.н. сухие электроды, непосредственно прилегающие к коже головы и не требующие наполнения токопроводящим гелем [2]. Для их размещения необходим жесткий каркас, фиксирующийся на голове наподобие каски. Существуют стандартные модели таких каркасов, но они рассчитаны на среднестатистический размер головы и часто плохо подходят для конкретного человека, не обеспечивая надёжной фиксации электродов в нужных местах (соответствующих выбранной схеме их расстановки [3]). В связи с этим возникает потребность в генерации 3D-моделей каркаса по меркам головы конкретного человека для последующей печати на 3D-принтере. Такой подход позволит улучшить качество контакта между электродами и кожей и, как следствие, уменьшить шум и искажения в сигналах при исследованиях в области ВСІ. Для удовлетворения данной потребности разработано программное решение, использующее систему автоматизированного проектирования (САПР) FreeCAD и язык Руthon.

2. Схема расстановки электродов

В исследованиях с применением электроэнцефалографии чаще всего используют универсальную схему расстановки электродов 10-20 [4]. Она основана на относительных расстояниях между электродами. Берутся две опорные точки: «назион» (передняя часть головы) и «инион» (задняя часть головы), между ними строится сетка из электродов, с расстояниями в 10% или 20% от длины линии между «назионом» и «инионом». Все электроды имеют свои стандартизированные названия, которые будут далее использоваться в тексте. Полная схема расстановки с указанием названий позиций электродов и расстояний между ними представлена на рисунке 1 [5].

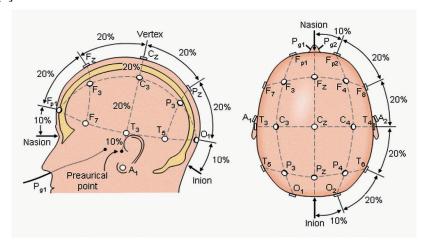


Рисунок 1 — Схема расстановки электродов 10-20

3. Существующие решения

Во многих исследованиях используются стандартизированные каркасы. Один из таких – это Ultracortex Mark IV [6]. Данный каркас не предполагает подстройку под конкретного человека,

существуют только несколько фиксированных его размеров, из которых предлагается выбрать наиболее подходящий.

Среди популярных решений с возможностью адаптации каркаса для человека можно выделить WalkEEG [7] и Spiderclaw [8]. Они позволяют подстроить каркас, но это подстройка все ещё имеет ограничения. К тому же данные каркасы не удобны для 3D-печати из-за сложных и крупных деталей, а WalkEEG при этом ещё и не поддерживает расстановку 10-20.

Ввиду отсутствия готовых легко адаптируемых решений, разработка программного обеспечения для генерации 3D модели каркаса по заданным параметрам является актуальной научно-технической задачей.

4. Метод генерации 3D-модели каркаса для электродов

Каркас для сухих электродов не должен плотно прилегать к голове: плотный контакт обеспечивают подпружиненные электроды. Поэтому в целях моделирования голову человека предлагается аппроксимировать эллипсоидом.

4.1. Моделирование головы

Для создания эллипсоида, подходящего для моделирования головы конкретного человека, необходимо снять с его головы мерки и преобразовать их в длины полуосей эллипсоида. Есть два способа снять мерки: измерить длины обхватов головы (рисунок 2) или отсканировать голову 3D-сканером и измерить её размеры по трём измерениям программным путём (рисунок 3).

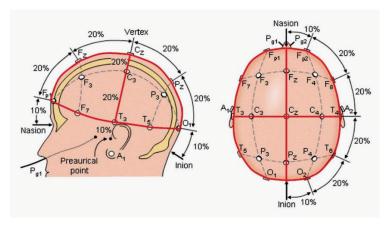


Рисунок 2 — Обхваты головы

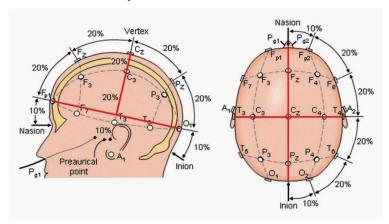


Рисунок 3 – Размеры головы по трем измерениям

Если используются длины обхватов, то для расчёта длин полуосей решается система уравнений (1):

$$\begin{cases}
P(\alpha) = P_{\alpha} \\
P(\beta) = P_{\beta}, \\
P(\gamma) = P_{\gamma}
\end{cases} \tag{1}$$

где $P\left(x\right)$ — периметр эллипса x, а $P_{\rm x}$ — введенный параметр периметра для эллипса x.

Существуют точные формулы для вычисления периметра эллипса (2), (3) [9].

$$L = 4a \int_{0}^{\pi/2} \sqrt{1 - e^2 \sin^2 t} dt = 4aE(e), \tag{2}$$

где E(e) — полный эллиптический интеграл второго рода [10], a — длина большей полуоси, e — эксцентриситет эллипса.

$$L = \pi(a+b) \left[1 + \sum_{n=1}^{\infty} \left[\frac{(2n-1)!!}{(2n-1) \cdot 2^n \cdot n!} \left(\frac{a-b}{a+b} \right)^n \right]^2 \right], \tag{3}$$

где a, b — длины полуосей эллипса.

Данные формулы сложны для решения системы уравнений, поэтому для вычисления периметра эллипса используется приближенная формула (4):

$$L \approx \pi \left[3(a+b) - \sqrt{(3a+b)(a+3b)} \right],\tag{4}$$

где a, b – длины полуосей эллипса.

Погрешность данной формулы растет с увеличением эксцентриситета. Например, при эксцентриситете 0,98 погрешность достигает 0,02% [11]. При увеличении эксцентриситета эллипс приближается к прямой, что далеко от модели головы, так что на практике погрешность будет меньше. Для решения системы уравнений (1) используется метод, основанный на методе оптимизации Пауэлла [12].

Так как система 10-20 основана на относительных расстояниях, то, зная угол отклонения конкретного электрода и длины полуосей эллипсоида, возможно вычислить координаты этого электрода на поверхности эллипсоида с помощью формулы параметрического задания эллипсоида (5):

$$\begin{cases} x = a \cos t \\ y = b \sin t \end{cases} \tag{5}$$

где x, y – координаты точки, a, b - длины полуосей эллипса, t – параметр в диапазоне [0:1].

4.2. Генерация каркаса

Полученные точки являются позициями для размещения гнёзд под электроды. Для генерации каркаса используется модель гнезда (рисунок 4), основанная на модели OpenBCI [13], распространяемой свободно. Она содержит внутреннюю резьбу нужного диаметра для вкручивания фабричной чашки с электродом (рисунок 5 [6]).

Копии данной модели размещаются в рассчитанных точках и поворачиваются таким образом, чтоб гнёзда были направлены по нормали эллипсоида в точке размещения (6):

$$N = \left(\frac{2x}{a^2}, \frac{2y}{b^2}, \frac{2z}{c^2}\right),\tag{6}$$

где N– вектор нормали, x, y, z – координаты точки размещения, a, b, c – длины полуосей эллипса. Для поворота модели используется матрица поворота, полученная с помощью метода Родрига [14]. Данный метод позволяет найти матрицу для поворота одного вектора так, чтоб он оказался сонаправленным с другим вектором.

Далее необходимо соединить гнезда в цельный каркас. Для этого между двумя рассчитанными точками строится кривая Безье по поверхности эллипсоида. На её основе можно построить плавную кривую, которая не даёт ложных экстремумов [15]. Во время генерации кривой сохраняются точки, лежащие на ней и отступающие от гнёзд на некоторое расстояние. Полученная кривая копируется, а её копия поднимается вдоль нормали эллипсоида на высоту

соединяющего мостика. Между кривыми строится линейчатая поверхность, которая далее экструдируется. В результате получаются 3D-модели мостиков, которые соединяют модели гнёзд.

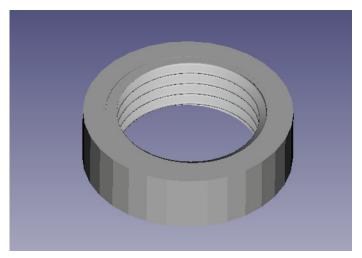


Рисунок 4 — Модель гнезда

Рисунок 5 – Сухие электроды

$$N = \left(\frac{2x}{a^2}, \frac{2y}{b^2}, \frac{2z}{c^2}\right),$$

Модель создаётся пригодной для эффективной печати на 3D-принтере. При печати цельной модели из-за её выпуклой формы потребовалось бы большое количество материала для подпорок и большое количество времени, как это происходит, например, при печати готовой универсальной модели Ultracortex Mark IV [6]. Поэтому, для сокращения времени и расхода материала было принято решение разделить модель на части и печатать их по отдельности, а потом вручную собрать их в цельный каркас.

В качестве крепления было решено использовать бесклеевое соединение «ласточкин хвост» ввиду его надежности и простоты изготовления. Генерируется набор фрагментов секущих плоскостей соответствующей конфигурации под размеры мостиков (рисунок 6), после чего клонируется и размещается на мостиках в точках, сохраненных при генерации кривых.

Далее мостики разрезаются этими наборами секущих, и получаются либо 2 части (если гнёзда расположены близко), либо 3 (если гнёзда далеко и часть мостика выделяется в отдельную модель). Около мест разрезания размещаются текстовые метки с названиями соответствующих электродов, чтобы упростить сборку (для сборки необходимо соединять элементы так, чтобы одинаковые текстовые метки находились напротив друг друга).

Итоговые модели экспортируются в файлы формата STL (англ. Stereolithography). Благодаря редактору FreeCAD полученный каркас также визуально отображается в собранном виде.

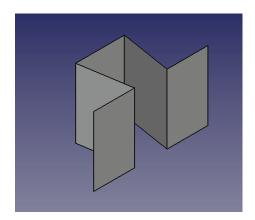


Рисунок 6 – Сечение по форме ласточкин хвост для крепления

Таким образом, общий порядок генерации следующий:

- 1. Преобразование параметров головы в модель эллипсоида.
- 2. Вычисление координат гнёзд электродов для размещения их на модели.
- 3. Размещение моделей гнёзд.
- 4. Соединение моделей гнёзд мостиками.
- 5. Добавление соединения типа "ласточкин хвост".
- 6. Добавление текстовых меток.
- 7. Экспорт моделей.

5. Проверка корректности работы системы

Для проверки корректности сгенерированных моделей необходимо совместить модель каркаса с существующей фабричной шапочкой с электродами, расположенными в соответствии с системой 10-20. Также необходимо провести печать модели и сборку каркаса.

5.1. Проверка с использованием 3D-сканера

Для проверки корректности расстановки электродов был получен 3D-скан головы с фабричной шапочкой. В качестве сканера использовался Calibri Mini. Полученный скан изображен на рисунке 8.

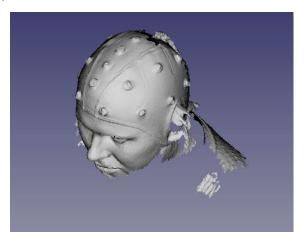
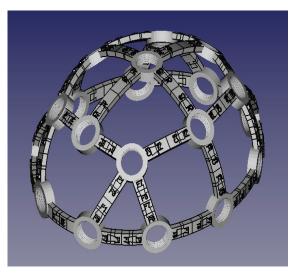



Рисунок 8 – Скан головы с фабричной шапочкой

На основе параметров головы, полученных со скана, была сгенерирована модель каркаса, которую можно увидеть на рисунке 9.

Рисунок 9 — Сгенерированная разработанным программным средством модель каркаса для размещения электродов

Полученная модель была наложена на скан так, чтоб сопоставить электроды Fp1, Fp2, O1, O2, Cz на скане и на модели. Результат наложения можно увидеть на рисунке 10.

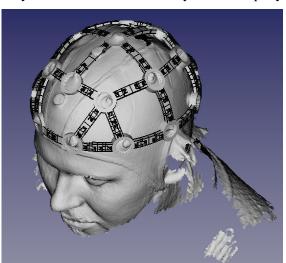


Рисунок 10 – Модель каркаса для размещения электродов, наложенная на скан головы

После совмещения модели со сканом было обнаружено, что следующие гнезда смещены относительно электродов на скане: Т4 – на 0,68 см, F8 – на 0,71 см, F4 – на 0,5 см, Fz – на 0,6 см. Остальные гнезда попали точно в места электродов на скане. Результат сопоставления моделей был верифицирован и одобрен специалистом в области нейрофизиологии, а несоответствие позиций электродов Т4, F8, F4 и Fz признано несущественным в контексте задач разработки и тестирования прототипов интерфейсов мозг-компьютер. В будущем, тем не менее, имеет смысл улучшить разработанную программную систему для уменьшения данной ошибки, так как это позволит обобщить сферу использования системы до медицинских нужд.

Результат работы созданной программы – это не только цельная модель, но и части модели, готовые для печати. Было получено 47 файлов моделей. Из них 19 файлов моделей гнёзд и 28 файлов моделей мостиков. Примеры моделей гнезда и мостика изображены на рисунках 11 и 12.

5.2. Проверка с использованием 3D-принтера

Для проверки того, что каркас можно собрать и разместить на нём электроды, необходимо распечатать сгенерированную модель. Для печати использовался 3D-принтер Voxelab Aquila X2. В качестве материала использовался PLA-пластик. Для экономии времени и материала при

создании тестового образца напечатаны были не все модели, а только гнёзда для электродов Fp1, Fp2, F7, F8, F3, F4, C3, C4, Cz и соединяющие их мостики. В общей сложности получилось 9 моделей гнёзд и 11 моделей мостиков. Модели печатались около 7 часов. Полный набор деталей печатался бы около 15 часов. Для сравнения, цельный каркас Ultracortex Mark IV печатался около 60 часов. Распечатанные модели можно увидеть на рисунке 13.

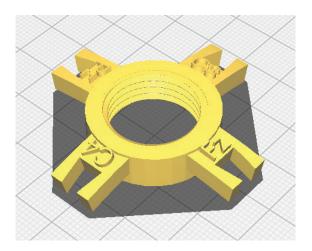


Рисунок 11 — Сгенерированная модель гнезда

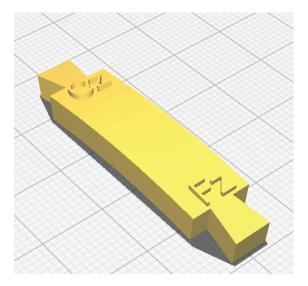


Рисунок 12 — Сгенерированная модель мостика

Рисунок 13 – Распечатанные модели

На очистку деталей от поддержек и сборку каркаса ушло около 5 часов. Даже с учетом того, что многих деталей не хватает, каркас демонстрирует достаточную прочность конструкции. Собранный каркас можно увидеть на рисунке 14.

Рисунок 14 — Собранный каркас

Оригинальные электроды OpenBCI легко вкручиваются в гнезда. Распечатанные копии этих электродов вкручиваются с усилием. Для таких электродов необходимо немного увеличивать масштаб деталей (данная ситуация связана с термической усадкой материала в процессе печати).

6. Заключение

Данная работа предлагает математическую модель и её программную реализацию для решения задачи генерации жесткого каркаса для сухих электродов. Дальнейшее развитие данного направление позволит улучшить точность модели, а также упростить процесс печати и обработки распечатанных моделей.

Исходный код разработанной системы доступен по ссылке: https://github.com/Cow-a-banga/BCIModelGenerator. Данное программное средство включено в состав программно-аппаратного комплекса для автоматизации проведения нейрофизиологических исследований, функционирующего под управлением прикладных онтологий на базе платформы визуальной аналитики SciVi [16].

7. Список источников

- [1] Д.В. Лунев, С. К. Полетыкин, Д. О. Кудрявцев. Нейроинтерфейсы: обзор технологий и современные решения // Современные инновации, системы и технологии. 2022. № 3. С. 117–126.
- [2] Comparison between a wireless dry electrode EEG system with a conventional wired wet electrode EEG system for clinical applications [Электронный ресурс] / H. Hinrichs [и др.] Scientific Reports. 2020. № 10. URL: https://www.nature.com/articles/s41598-020-62154-0 (дата обращения 11.07.2023).
- [3] American Clinical Neurophysiology Society Guideline 2: Guidelines for Standard Electrode Position Nomenclature / N. Jayant Acharya [и др.] Journal of Clinical Neurophysiology. 2016. № 33. С. 308–311.
- [4] The ten-twenty electrode system of the International Federation. / G. H. Klem, H. O. Lüders, H. H. Jasper, C. Elger // Electroencephalography and Clinical Neurophysiology. 1999. № 52. С. 3–6.

- [5] Система 10-20 [Электронный ресурс]. URL: https://cmi.to/ээг/система-10-20 (дата обращения 13.07.2023).
- [6] OpenBCI Ultracortex Mark IV [Электронный ресурс] URL: https://docs.openbci.com/AddOns/Headwear/MarkIV (дата обращения 13.07.2023).
- [7] WalkEEG [Электронный ресурс]. URL: https://www.stlfinder.com/model/walkeeg-headset-opensource-eeg-hes1eL8Q/343938 (дата обращения 13.07.2023).
- [8] SpiredClaw [Электронный ресурс]. URL: https://openbci.com/community/spiderclaw-v2-deprecated (дата обращения 13.07.2023).
- [9] J. Ivory. A New Series for the Rectification of the Ellipsis // Transactions. 2013. № 4. C. 177–190.
- [10] NIST Handbook of Mathematical Functions / F. W. Oliver, D. Lozier, R. F. Boisvert, C. W. Clark. Cambridge: Cambridge University Press, 2010. 485 c.
- [11] P. F. Byrd, M. D. Friedman. Handbook of Elliptic Integrals for Engineers and Scientists. Berlin: Springer, 1971. C. 307–308.
- [12] M. J. D. Powell. A Hybrid Method for Nonlinear Equations Numerical Methods for Nonlinear Algebraic Equations. 1970. № 7. C. 87–114.
- [13] EEG Modular Headset [Электронный ресурс]. URL: https://www.thingiverse.com/thing:5382893 (дата обращения 13.07.2023).
- [14] O. Rodrigues. Des lois géométriques qui régissent les déplacements d'un système solide dans l'espace, et de la variation des coordonnées provenant de ces déplacements considérés indépendants des causes qui peuvent les produire// Journal de Mathématiques Pures et Appliquées. 1840. № 5. C. 380–440.
- [15] К.В. Рябинин. Визуализация дискретного множества точек при помощи плавных кривых без ложных экстремумов // Научная визуализация. 2017, № 1. С. 50–72.
- [16] K. Ryabinin, S. Chuprina, I. Labutin. Ontology-Driven Tools for EEG-Based Neurophysiological Research Automation // Scientific Visualization. M.: National Research Nuclear University "MEPhI", 2021. Vol. 13, No. 4. PP. 93–110. DOI: 10.26583/sv.13.4.08.