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Abstract  
The possibility of processing small-view hilbertograms by the Gershberg-Papulis method to restore 
the refractive index of phase objects is discussed. The method consists in iterative transitions from 
estimating a function in the Fourier plane to estimating it in a coordinate space with an adjustment 
using a priori information. The spectrum of the function is determined on the entire frequency plane 
as an iterative process result Numerical simulation of the refractive index reconstruction for various 
test functions was performed using the Gershberg-Papulis method using Radon data known for four 
angles. Experimental studies on the Hilbert diagnostics example of reacting media (flames) in a 
high-speed shooting mode (up to 2000 frames per second) were performed using a four-angle 
tomographic complex implemented on the basis of an upgraded IAB-463M shadow device.  
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1. Introduction 

Hilbert optics is a powerful tool for analyzing light fields in optical systems [1]. Hilbert optics 
methods make it possible to restore phase functions more efficiently and accurately using information 
obtained from hilbertograms and to estimate, with appropriate processing, temperature fields and molar 
concentrations of combustion products [2, 3]. 

Computed tomography (CT) in optics is a method of reconstructing three-dimensional structures of 
objects based on their two-dimensional projections, which are formed using probing light fields [4, 5]. 
One of the key problems of optical CT is the problem associated with the difficulty of organizing a 
sufficient number of projections or a small angular range of diagnosing an object, which leads to loss 
of information or the impossibility of obtaining accurate values of the required parameters from 
processed tomograms. 

The Gershberg-Papulis algorithm is one of the common methods for solving the problem of 
reconstructing the structures under study in low-angle tomography [6–8]. It is based on an iterative 
process that allows you to gradually refine the results, minimizing the discrepancies between 
experimental data and theoretical estimates at each iteration. As a result, a high quality of reconstruction 
can be achieved even with a limited number of projections. 

The purpose of this work is to study the Gershberg-Papulis method and its application for the 
reconstruction of the phase optical density fields of gaseous, condensed and reacting (flames) media 
according to low-angle Hilbert tomography data.  
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2. Low-angle Hilbert tomography 

The optical complex was developed to implement Hilbert tomography based on the upgraded 
shadow device [9] IAB-463M, which allows probing the object under study from four angles and 
synchronously recording tomographic projections of the visualized phase structures with one video 
camera (figure 1). 

 
Figure 1: Simplified diagram of the Hilbert tomograph 

The complex contains an illumination module consisting of a radiation source 1, the objective 2, and 
a slit diaphragm 3 placed in the front Fourier plane of the objective 4. A KLM-532-2000 laser with 
spatial coherence suppression is used as a radiation source. The structure of the probing light fields that 
implement 4D tomographic diagnostics is formed by a pair configuration of mirrors 5 and 5', 6 and 6', 
7 and 7', forming beams oriented relative to the optical axis of the shadow device at angles 𝜃𝜃𝑝𝑝 = 𝜋𝜋(𝑝𝑝 −
1)/4, where the projection number is 𝑝𝑝 = 1, …, 4. Overall dimensions of the mirrors are 100×15×145 
mm. The Fourier spectrum of phase perturbations induced in probing fields by the object of study is 
localized in the frequency plane of objective 8, where a quadrant phase Hilbert filter 9 is placed [1]. 
The lens 10 of the high-speed video camera converts the filtered field, depending on the spectral 
characteristics of the light source, into analytical or Hilbert-coupled optical signals, which are recorded 
on the CCD matrix 11. The choice of the tomograph technical solution is due to the possibility of using 
a large field of view (400 mm) of the IAB-463M shadow device.  

The use of a linear light source oriented along one of the spatial-frequency axes in combination with 
a quadrant phase Hilbert filter provides a one-dimensional Hilbert transform of the optical field 𝑝𝑝-
tomographic component:  

𝐼𝐼𝑝𝑝�𝑦𝑦𝑝𝑝, 𝑧𝑧� = �
1
𝜋𝜋
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𝑠𝑠𝑝𝑝(𝑦𝑦′, 𝑧𝑧)
𝑦𝑦𝑝𝑝 − 𝑦𝑦′
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−∞
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= ��̂�𝑠𝑝𝑝(𝑦𝑦𝑝𝑝, 𝑧𝑧)�2,  

where 𝐼𝐼𝑝𝑝 �𝑦𝑦𝑝𝑝, 𝑧𝑧� is the signal intensity recorded by the video camera, 𝑠𝑠�𝑝𝑝(𝑦𝑦𝑝𝑝, 𝑧𝑧) is the signal Hilbert 

image 𝑠𝑠𝑝𝑝 �𝑦𝑦𝑝𝑝, 𝑧𝑧� = 𝑒𝑒𝑖𝑖𝜑𝜑𝑝𝑝(𝑦𝑦𝑝𝑝,𝑧𝑧), 𝜑𝜑𝑝𝑝(𝑦𝑦𝑝𝑝, 𝑧𝑧) is the phase function, which is determined by the Radon 
transform of the refractive index 𝑛𝑛�𝑥𝑥𝑝𝑝,𝑦𝑦𝑝𝑝, 𝑧𝑧� in the local structure of the medium under study:  

𝜑𝜑𝑝𝑝�𝑦𝑦𝑝𝑝, 𝑧𝑧� =
2𝜋𝜋
𝜆𝜆
� �𝑛𝑛�𝑥𝑥𝑝𝑝,𝑦𝑦𝑝𝑝, 𝑧𝑧� − 𝑛𝑛∞�𝑑𝑑𝑥𝑥𝑝𝑝
𝑥𝑥′′

𝑥𝑥′
,  

𝜆𝜆 – the wavelength, 𝑛𝑛∞ is the air refractive index, 𝑥𝑥′ and 𝑥𝑥′′ are the entry and exit points of the beam 
relative to the local structure of the medium under study for a certain tomographic component.  

An experiments series to study combustion processes was carried out on a Hilbert tomographic 
complex (figure 2). 
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Figure 2: (a) 3R burner flame hilbertograms: projection 𝜃𝜃𝑝𝑝 = 3𝜋𝜋/4, front projection 𝜃𝜃𝑝𝑝 = 0 and 
angle projection 𝜃𝜃𝑝𝑝 = 𝜋𝜋/4 are shown in succession; (b) 4R candle flame hilbertograms: projection 

𝜃𝜃𝑝𝑝 = 𝜋𝜋/2, 𝜃𝜃𝑝𝑝 = 3𝜋𝜋/4, front projection 𝜃𝜃𝑝𝑝 = 0 and angle projection 𝜃𝜃𝑝𝑝 = 𝜋𝜋/4 

3. The Gershberg-Papoulis method 

The tomography inverse problem in a parallel setting is to restore the refractive index function  
𝑛𝑛 = 𝑛𝑛(𝑥𝑥,𝑦𝑦) from the integrals values of it along the straight lines 𝐿𝐿: 𝑟𝑟 ∙ 𝑒𝑒𝜃𝜃����⃗ = 𝑠𝑠, 𝑟𝑟 = (𝑥𝑥,𝑦𝑦) and  
𝑒𝑒𝜃𝜃����⃗ = (cos𝜃𝜃, sin𝜃𝜃):  

ℛ𝜃𝜃𝑛𝑛(𝑠𝑠) = � 𝑛𝑛(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑
𝐿𝐿

= � 𝛿𝛿(𝑠𝑠 − 𝑟𝑟 ∙ 𝑒𝑒𝜃𝜃����⃗ )𝑛𝑛(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦
𝑅𝑅2

.  

Many inversion formulas for the Radon problem are based on the central section theorem [10], which 
states that the (one-dimensional) Fourier transform of the projection ℛ𝜃𝜃𝑛𝑛(𝑠𝑠) is equal to the cross section 
of the two-dimensional Fourier transform of the function 𝑛𝑛 = 𝑛𝑛(𝑥𝑥,𝑦𝑦): 

ℛ𝜃𝜃𝑛𝑛�(𝜔𝜔) = 𝐹𝐹[𝑛𝑛](𝑊𝑊𝜃𝜃),   𝑊𝑊𝜃𝜃 = (𝜔𝜔cos𝜃𝜃,𝜔𝜔s𝑖𝑖𝑛𝑛𝜃𝜃).  
This theorem underlies many algorithms of computed tomography, in particular, the back projection 

method [8]. 
The Gershberg-Papoulis algorithm is one of the most efficient methods for reconstructing functions 

from their Radon projections, especially in cases where the scanning directions number is small or their 
angular range is limited. The method essence lies in the fact that a priori information about the desired 
function 𝑛𝑛(𝑥𝑥,𝑦𝑦) and its known projections ℛ𝜃𝜃𝑛𝑛(𝑠𝑠) is used to create an initial approximation and 
subsequent correction in the coordinate and frequency spaces. The non-negativity and finiteness of the 
desired function are used as a priori information: 

𝑛𝑛(𝑥𝑥, 𝑦𝑦) ≥ 0;  𝑛𝑛(𝑥𝑥,𝑦𝑦) = 0; 𝑥𝑥2 + 𝑦𝑦2 ≥ 1.  
The 𝐶𝐶𝑀𝑀 operator, acting in the spatial plane, defines these properties.  

The function values 𝑁𝑁(𝑊𝑊) = 𝐹𝐹[𝑛𝑛](𝑊𝑊) in the directions along the vectors 𝑒𝑒𝑝𝑝����⃗ = (cos𝜃𝜃𝑝𝑝, sin𝜃𝜃𝑝𝑝) are 
known in the Fourier plane from the Radon data. Thus, the Fourier transform of the desired function 
𝑛𝑛(𝑥𝑥,𝑦𝑦) is known on the set 𝑀𝑀:  

𝑀𝑀 = �𝑊𝑊 = 𝜔𝜔𝑒𝑒𝑝𝑝����⃗ ,−∞ < 𝜔𝜔 < ∞�.  
If 𝐻𝐻𝑀𝑀 is the characteristic function of the set 𝑀𝑀:  
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𝐻𝐻𝑀𝑀 = �1, 𝑊𝑊 ∈ 𝑀𝑀
0, 𝑊𝑊 ∉ 𝑀𝑀 ;  

then the values are known 
𝑆𝑆𝑀𝑀(𝑊𝑊) = 𝐻𝐻𝑀𝑀(𝑊𝑊)𝑁𝑁(𝑊𝑊).  

The following operations must be performed to reconstruct the refractive index function: 
1. One-dimensional Fourier transforms are computed from known Radon data. Thus, the 

function 𝑆𝑆𝑀𝑀 is determined, equal to the values of the two-dimensional Fourier transform of 
the desired function in the directions corresponding to the projections angles, and equal to 
zero at Fourier plane other points. 

2. The initial approximation 𝑛𝑛0 is determined: the inverse two-dimensional Fourier transform of 
the 𝑆𝑆𝑀𝑀 function is performed. A priori information about the refractive index positiveness 𝑛𝑛 
and the area boundedness of its assignment is introduced (the 𝐶𝐶𝑀𝑀 operator is applied).  

3. A two-dimensional Fourier transform is performed from the initial approximation. The 
spectrum values in the directions corresponding to the projection angles are replaced by the 
values calculated in step 1.  

4. The inverse two-dimensional Fourier transform of the function obtained at the previous step 
is performed and the 𝐶𝐶𝑀𝑀 operator is applied to the result. 

5. The criterion for the iterative process end is checked (if it is not fulfilled, then steps 3, 4 are 
repeated): the norm smallness of obtained tomogram deviation from its estimate at the 
previous stage ∆𝑚𝑚: 

∆𝑚𝑚2 =
∑ ∑ �𝑛𝑛𝑖𝑖,𝑗𝑗𝑚𝑚 − 𝑛𝑛𝑖𝑖,𝑗𝑗𝑚𝑚+1�2𝑗𝑗𝑖𝑖

∑ ∑ �𝑛𝑛𝑖𝑖,𝑗𝑗𝑚𝑚�
2

𝑗𝑗𝑖𝑖

.  

As a result, the reconstruction algorithm can be represented as:  
𝑁𝑁0 = 𝑆𝑆𝑀𝑀 ,   𝑛𝑛0 = 𝐶𝐶𝑀𝑀𝐹𝐹−1[𝑁𝑁0], 

𝑁𝑁𝑚𝑚+1 = 𝑆𝑆𝑀𝑀 + 𝐹𝐹+1[𝑛𝑛𝑚𝑚](1−𝐻𝐻𝑀𝑀),   𝑛𝑛𝑚𝑚+1 = 𝐶𝐶𝑀𝑀𝐹𝐹−1[𝑁𝑁𝑚𝑚+1]. 
 

The use of the Gershberg-Papulis method for the refractive index reconstruction from hilbertograms 
is due to the following. The projection values for all selected observation angles are determined at those 
points that correspond to the Radon integrals along the straight lines passing through the nodes of the 
sampling grid when obtaining a digital image using a system of mirrors. The sampling grid nodes 
correspond to the photomatrix resolution. Therefore, the discrete analog of the central section theorem 
allows one to obtain initial data in the Fourier plane without preliminary interpolation. 

4. Test objects reconstruction 

Linear combinations of the following functions were considered to evaluate the application 
effectiveness of the Hershberg-Papulis method in recovering an unknown function from its Radon data 
obtained from four projections:  

𝑓𝑓(𝑥𝑥,𝑦𝑦) = 𝐴𝐴 𝑒𝑒1/𝑎𝑎2𝑒𝑒−1/�𝑎𝑎−|𝑟𝑟−𝑟𝑟0|�
2
 𝐻𝐻𝑒𝑒𝐻𝐻𝐻𝐻𝑖𝑖𝑠𝑠𝑖𝑖𝑑𝑑𝑒𝑒(𝐻𝐻 − |𝑟𝑟 − 𝑟𝑟0|),  

𝑔𝑔(𝑥𝑥,𝑦𝑦) = 𝐴𝐴 𝑒𝑒−|𝑟𝑟−𝑟𝑟0|2/𝑠𝑠2 , 
ℎ(𝑥𝑥,𝑦𝑦) = 𝐴𝐴 𝐻𝐻𝑒𝑒𝐻𝐻𝐻𝐻𝑖𝑖𝑠𝑠𝑖𝑖𝑑𝑑𝑒𝑒(𝐻𝐻 − |𝑟𝑟 − 𝑟𝑟0|), 

 

where  
𝑟𝑟 = (𝑥𝑥,𝑦𝑦),       𝑟𝑟 = �𝑥𝑥2 + 𝑦𝑦2, 

𝑟𝑟0 = (𝑥𝑥0,𝑦𝑦0),       𝑟𝑟0 = �𝑥𝑥02 + 𝑦𝑦02. 
 

The reconstruction results are shown in figures 3–9, where (a) is the original function, (b) is the 
reconstructed function by the Hershberg-Papulis method with indication of the root-mean-square 
recovery error ∆𝑚𝑚, (c) is the reconstructed function by the back projection method with filtering, (d) is 
the reconstructed function by the method of back projections without filtering.  
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a b c d 

Figure 3: 𝑛𝑛(𝑥𝑥,𝑦𝑦) = 𝑓𝑓𝑝𝑝(𝑥𝑥,𝑦𝑦);    𝑥𝑥0 = –0,4;    𝑦𝑦0 = 0,65;    𝐴𝐴 = 1;    𝐻𝐻 = 0,3;  
∆𝑚𝑚 = 1,53% 

 
a b c d 

Figure 4: 𝑛𝑛(𝑥𝑥,𝑦𝑦) = ∑ 𝑓𝑓𝑝𝑝(𝑥𝑥,𝑦𝑦)3
𝑝𝑝=1 ;  

𝑥𝑥0 = 0,45 (1; –0,5; –0,5);    𝑦𝑦0 = 0,45 (0; 0,86; –0,86);  
𝐴𝐴 = (1; 1; 1);    𝐻𝐻 = (0,5; 0,5; 0,5);  

∆𝑚𝑚 = 11,53%  
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a b c d 

Figure 5: 𝑛𝑛(𝑥𝑥,𝑦𝑦) = ∑ 𝑓𝑓𝑝𝑝(𝑥𝑥,𝑦𝑦)6
𝑝𝑝=1 ;  

𝑥𝑥0 = (0; 0,35; 0,55; 0,7; –0,45; –0,3);    𝑦𝑦0 = (0; –0,15; –0,25; 0,2; –0,5; 0,3);  
𝐴𝐴 = (1; 0,3; 0,5; 0,4; 0,2; 0,8);    𝐻𝐻 = (0,7; 0,3; 0,5; 0,4; 0,2; 0,1);  

∆𝑚𝑚 = 9,99% 

 

Further, functions similar to the test examples presented in [11] are considered. 

 

 
a b c d 

Figure 6: 𝑛𝑛(𝑥𝑥,𝑦𝑦) = ∑ 𝑔𝑔𝑘𝑘(𝑥𝑥,𝑦𝑦)6
𝑘𝑘=1 ;  

𝑥𝑥0 = 0,65 (0,86; 0; –0,86; –0,86; 0; 0,86);    𝑦𝑦0 = 0,65 (0,5; 1; 0,5; –0,5; –1; –0,5);  
𝐴𝐴 = (1; 1; 1; 1; 1; 1);    s = (0,1; 0,1; 0,1; 0,1; 0,1; 0,1);  

∆𝑚𝑚 = 18,44%  
Since the Gershberg-Papoulis iterative method interpolates the reconstructed function spectrum by 

known values given on the straight lines corresponding to the scanning directions, the reconstruction 
result will be better if the original function Fourier spectrum is localized in the low spatial frequencies 
region. The given examples of model functions are an illustration of this provision.  
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a b c d 

Figure 7: 𝑛𝑛(𝑥𝑥,𝑦𝑦) = ∑ ℎ𝑝𝑝(𝑥𝑥,𝑦𝑦;𝐻𝐻𝑝𝑝)6
𝑝𝑝=1 ;  

𝑥𝑥0 = 0,65 (0,86; 0; –0,86; –0,86; 0; 0,86);    𝑦𝑦0 = 0,65 (0,5; 1; 0,5; –0,5; –1; –0,5);  
𝐴𝐴 = (1; 1; 1; 1; 1; 1);    𝐻𝐻 = (0,2; 0,2; 0,2; 0,2; 0,2; 0,2);  

∆𝑚𝑚 = 34,85% 

 

 
a b c d 

Figure 8: 𝑛𝑛(𝑥𝑥,𝑦𝑦) = ∑ 𝑔𝑔𝑝𝑝(𝑥𝑥,𝑦𝑦)6
𝑝𝑝=1 ;  

𝑥𝑥0 = 0,65 (0,86; 0; –0,86; –0,86; 0; 0,86);    𝑦𝑦0 = 0,65 (0,5; 1; 0,5; –0,5; –1; –0,5);  
𝐴𝐴 = (0,8; 1; 0,3; 0,5; 0,4; 0,2);    𝑠𝑠 = (0,01; 0,2; 0,02; 0,05; 0,03; 0,05);  

∆𝑚𝑚 = 10,92%  
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a b c d 

Figure 9: 𝑛𝑛(𝑥𝑥,𝑦𝑦) = ∑ ℎ𝑝𝑝(𝑥𝑥,𝑦𝑦;𝐻𝐻𝑝𝑝)6
𝑝𝑝=1 ;  

𝑥𝑥0 = 0,65 (0,86; 0; –0,86; –0,86; 0; 0,86);    𝑦𝑦0 = 0,65 (0,5; 1; 0,5; –0,5; –1; –0,5);  
𝐴𝐴 = (0,8; 1; 0,3; 0,5; 0,4; 0,2);    𝐻𝐻 = (0,01; 0,2; 0,02; 0,05; 0,03; 0,05);  

∆𝑚𝑚 = 14,66% 

5. Conclusion 

The possibility of using the Gershberg-Papulis method for solving the low-angle optical Hilbert 
diagnostics problem is investigated in this work. Numerical simulation was performed to evaluate the 
method effectiveness.  

The Hershberg-Papoulis method is an important tool in the field of computed tomography and optics. 
It solves the problems associated with the images restoration with limited projections, and finds 
application in various fields of science and industry. However, it may be necessary to modify this 
method or use additional methods for more accurate image restoration.  
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