Сегментация и отображение загрязнений водной среды на основе метода К-средних

М.Б. Хасанов¹, С.А.К. Диане²

¹ НИУ ВШЭ, ул. Мясницкая, д. 20, г. Москва, 101000, Россия ² ИПУ РАН, ул. Профсоюзная, 65, г. Москва, 117997, Россия

Аннотация

В докладе представлено исследование текущего состояния систем обнаружения загрязнений водной поверхности. Предложена формализация карты центроидов для трёхканального аэрофотоснимка. Рассмотрен пример использования алгоритма К-средних для кластеризации участков местности на тестовых аэрофотоснимках. Дана визуализация результатов кластеризации аэрофотоснимков для разного количества центроидов и результатов сегментации загрязнения. Приведена блок-схема алгоритма кластеризации, выявлены его преимущества и недостатки. Описана структурная схема программного обеспечения, разработанного на языке Python с применением кроссплатформенных библиотек компьютерной графики. Произведена оценка точности использования алгоритма кластеризации с применением метрики F1. Предварительные экспериментальные исследования показали, что включение эксперта в контур принятия решений позволяет повысить гибкость программы, благодаря возможности выделять целевую область, изменять параметры количества кластеров, точность сегментации.

Ключевые слова

Алгоритм К-средних, кластеризация, сегментация изображений, обнаружение загрязнений, F1-мера.

Segmentation and Visualization of Water Pollution Based on the K-means Method

M.B. Khasanov¹, S.A.K. Diane²

¹ HSE University, 20 Myasnitskaya str., Moscow, 101000, Russia ² ICS RAS, 65 Profsoyuznaya str., Moscow, 117997, Russia

Abstract

The paper presents a study of the current state of water pollution detection systems. A formalization of the centroid map for a three-channel aerial photograph is proposed. An example of using the K-means algorithm for clustering terrain and water areas on test aerial photographs is considered. The visualization of the results of clustering of aerial photographs for a different number of centroids is given as well as the results of pollution segmentation. A block diagram of the clustering algorithm is presented. Its advantages and disadvantages are identified. The structure of the developed software using Python and cross-platform computer graphics libraries is described. An assessment of the accuracy of using the clustering algorithm using the F1-measure is performed. Preliminary experimental studies showed that the inclusion of an expert in the contour of decision-making allows increasing the flexibility of the program, due to the possibility of selecting a target area, choosing the number of clusters and segmentation accuracy.

Keywords

K-means algorithm, clustering, image segmentation, pollution detection, F1-measure.

ORCID: 0000-0002-8690-6422 (С.А.К. Диане)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

ГрафиКон 2023: 33-я Международная конференция по компьютерной графике и машинному зрению, 19-21 сентября 2023 г., Институт проблем управления им. В.А. Трапезникова Российской академии наук, г. Москва, Россия EMAIL: mbkhasanov@edu.hse.ru (М.Б. Хасанов); diane1990@yandex.ru (С.А.К. Диане)

1. Введение

Проблема экологического мониторинга и, в частности, задача обнаружения загрязнений на поверхности воды приобретают все большую актуальность ввиду возрастающих темпов промышленного производства, а также приобретения и эксплуатации плавательных судов.

Исследование текущего состояния систем визуального обнаружения загрязнений на водной поверхности показало, что ключевыми подходами, используемыми на сегодняшний день, являются: корреляционный, гистограммный и нейросетевой методы.

Суть корреляционного анализа заключается в расчете коэффициентов корреляции эталонного изображения с фрагментами анализируемой фотографии. Данные коэффициенты могут принимать, как правило, положительные и отрицательные значения. Нормализованное значение коэффициента корреляции может быть интерпретировано как вероятность нахождения эталонного фрагмента в рассматриваемой позиции [1].

Гистограммный метод хорошо работает для изображения, где присутствует большое число объектов с разнообразной яркостью. Для каждого из анализируемых фрагментов изображения строится вектор признаков – гистограмма, содержащая информацию о количестве пикселей, имеющих тот или иной оттенок. Данная гистограмма затем сравнивается с эталонным вектором. Сопоставление гистограмм, с одной стороны, более вычислительно эффективно, нежели сравнение исходных растров, а с другой – более устойчиво к различного рода смещениям объектов на фотографии [2].

В последние десятилетия хорошо зарекомендовали себя нейросетевые методы. Данные методы базируются на применении различных типов нейронных сетей, в особенности сверточных. Данная технология, по сути, сочетает в себе функционал корреляционного и гистограммного подходов, позволяя извлекать ключевые характеристики или признаки наблюдаемых образов, классифицировать эти образы, а также находить приближенные решения оптимизационных задач [3].

Возможным недостатком нейросетевого подхода является сложность отладки найденных закономерностей по причине неявного представления знаний, хранимых в формате массива весовых коэффициентов, отражающих силу связей между нейронами.

Вместе с тем, наряду с перечисленными подходами перспективно использовать сегментацию изображений на базе методов кластеризации [4]. Такой подход достаточно прост в реализации, не требует подготовки обширной базы обучающих примеров и интуитивно понятен благодаря простому алгоритму визуализации.

2. Разработка алгоритма кластеризации загрязнений водной среды на основе метода К-средних

Классическим примером кластеризации является разграничение точек на двумерной плоскости. Однако в случае с анализом цифровых изображений размерность задачи существенно повышается. Анализу подлежат не только координаты пикселей аэрофотоснимков, но и их оттенки, выраженные в цветовом пространстве RGB или HSV.

2.1. Построение карты центроидов кластеризации на эталонном аэрофотоснимке с применением алгоритма К-средних

Карта центроидов кластеризации может формально быть представлена в виде множества $M = \{p_1, ..., p_n\}$, состоящего из точек $p_i = \{id, r, g, b\}$, где id – порядковый номер кластера, r, g, b – компоненты красного, зеленого и синего каналов соответственно.

Для построения подобной карты необходимо проанализировать один или несколько тестовых наборов данных (в рассматриваемом случае – точек аэрофотоснимков). При этом центры кластеров, первоначально расположенные в случайных позициях, сместятся в местоположения, близкие к оптимальным.

Обобщенное описание алгоритма К-средних выглядит следующим образом [5]:

- 1. случайным образом создаются *k* точек, в дальнейшем будем называть их центрами кластеров;
- 2. для каждой точки ставится в соответствии ближайший к ней центр кластера;
- 3. вычисляются средние арифметические точек, принадлежащих к определённому кластеру; именно эти значения становятся новыми центрами кластеров;
- 4. шаги 2 и 3 повторяются до тех пор, пока пересчёт центров кластеров будет приводить к изменениям в местоположениях кластеров.

В качестве наглядного примера рассмотрим аэрофотоснимок побережья реки Волга, представленный на рисунке 1. Данная цифровая фотография содержит достаточно большое число типов земной и водной поверхности, такие как: сухой песок, мокрый песок, трава, сухая трава, прибрежная вода, вода, загрязненная трава, металл.

Рисунок 1 – Калибровочный аэрофотоснимок

Такое количество классов может негативно сказаться на результатах обработки аэрофотоснимка. Для упрощения процесса кластеризации целевой области произведем кадрирование и подстройку яркости фотографии (рисунок 2).

Дополнительно на обрезанной версии аэрофотоснимка пользователь задает целевую область в виде многоугольника (рисунок 2, б). Наличие такой области позволяет задать критерий оценки точности автоматической сегментации загрязнения на поверхности воды.

Рисунок 2 – Обработанные изображения: а) осветленный и обрезанный снимок; б) снимок с выделенной целевой областью

Оценка точности может базироваться на сопоставлении площадей эталонного многоугольника и фактически сегментированной зоны. Аналитическим критерием, пригодным для расчета подобного рода оценки является метрика F1.

Вычислить F1-меру можно по формуле:

$$F_1 = \frac{2 * P_r * R_e}{P_r + R_e},$$

где P_r – точность (precision), R_e – полнота (recall).

В свою очередь *P_r* и *R_e* можно вычислить по формулам:

$$P_r = \frac{TP}{TP + FP'}$$

где TP – число истинно положительных классификаций относительно общего числа положительных наблюдений, а FP – число ложноположительных результатов относительно общего числа положительных наблюдений.

$$R_e = \frac{TP}{TP + FN'}$$

где TP – число истинно положительных классификаций относительно общего числа положительных наблюдений, а FN – число ложноотрицательных результатов относительно общего числа отрицательных наблюдений.

На основе расчета оценок F1 для областей загрязнения, с применением различных параметров кластеризации, можно получить число центроидов, максимизирующее точность сегментации загрязнений.

2.2. Обобщенная структурная схема разработанного программноалгоритмического обеспечения

Для проверки эффективности предложенного подхода было разработано программное обеспечение на языке Python, обобщенная структура которого представлена на рисунке 3.

Основными модулями в данной схеме являются:

- 1. процедура нахождения достаточного количества кластеров, опирающаяся на многократный пересчет алгоритма К-средних;
- модуль сегментации загрязнении, позволяющий для выбранного количества кластеров в пределах заданной погрешности обнаружить целевую область на поверхности водоёма;
- 3. интерфейс пользователя, включающий как визуализацию, так и вывод численных оценок.

В качестве стандартных программных компонент для визуализации результатов были использованы кроссплатформенные библиотеки PIL, OpenCV, Matplotlib.

Рисунок 3 – Структурная схема програмного обеспечения

Обобщенный алгоритм работы программного обеспечения для кластеризации загрязнений на поверхности водной среды представлен на рисунке 4.

Рисунок 4 – Блок-схема алгоритма

Как видно из блок-схемы, алгоритм включает ввод данных пользователем, их обработку и вывод полученных результатов.

Основными действиями в данном алгоритме являются:

- 1. задание эталонной области, с помощью которой будет вычислена точность работы алгоритма;
- 2. задание количества кластеров N и погрешности E с целью наиболее оптимальной сегментации изображения;
- 3. применение алгоритма кластеризации К-средних с параметром N для последующей сегментации точек загрязнения;
- 4. сегментация точек загрязнения для наглядного отображения целевой области, выделенной экспертом.

3. Кластеризация тестовых аэрофотоснимков с применением оптимального числа кластеров

Серия экспериментов по выбору оптимального количества центроидов для алгоритма Ксредних (таблица 1) показала, что величина F-меры сначала увеличивается при увеличении количества кластеров, так как разбиение на кластеры становится всё точнее и точнее.

Кол-во кластеров	Изначальный снимок	Снимок после кластеризации	Выделенная область	F- мера
10				0.232
20				0.594
30				0.659
40				0.642
50				0.631

Таблица 1 – Кластеризация первого снимка

Начиная с 30 кластеров увеличение останавливается, так как достигнута необходимая точность. Примечательно, что, начиная с 40 кластеров, идет уменьшение величины F-меры, поскольку область, выделяемая при кластеризации, не включает в себя блики от воды и относит их не к загрязнению, а к обычной воде. Исходя из этого, выберем число центроидов для тестовых снимков равным 30.

Результат сегментации загрязнений на тестовых аэрофотоснимках с применением алгоритма, описанного в разделе 2.2, и выбранного количества центроидов кластеризации приведен в таблице 2.

Nº chorro	Изначальный	Область,	Снимок после	Выделенная	F-
φυισ	CHIMOK	экспертом	кластеризации	001100118	мера
2	*		~	*	0.681
3					0.691
4					0.684
5					0.673

Таблица 2 – Таблица для четырех тестовых аэрофотоснимков

4. Заключение

Анализируя полученные результаты, можно выделить несколько особенностей применения алгоритма К-средних для обнаружения загрязнений на водной поверхности.

Главным преимуществом метода кластеризации для решения данной задачи являются наглядная визуализация и возможность последующего анализа полученных изображений, так как геометрические параметры загрязнения достаточно точно определены. Отметим, что включение эксперта в контур принятия решений позволяет повысить гибкость программы, благодаря возможности выделять целевую область, изменять параметры количества кластеров, точность сегментации.

Недостатками в использовании алгоритма кластеризации для отображения загрязнений водной среды являются:

- 1. сравнительно низкая скорость работы алгоритма при обработке изображений большой размерности;
- 2. возможность ложных срабатываний алгоритма в условиях наличия бликов на поверхности воды (этот недостаток можно устранить путем расширения вектора параметров для каждой из кластеризуемых точек);
- 3. необходимость ручного подбора количества кластеров (данный недостаток можно решить путем использования метода локтя [6])

Ряд из выявленных недостатков можно решить за счет использования вместо алгоритма Ксредних алгоритма DBSCAN, в котором не нужно задавать количество кластеров [7].

5. Список источников

- Im J., Jensen J. R., Tullis J. A. Object-based change detection using correlation image analysis and image segmentation // International Journal of Remote Sensing. 2008. № 29(2), P. 399–423. DOI: 10.1080/01431160601075582.
- [2] Liu G. H., Yang J. Y. Deep-seated features histogram: A novel image retrieval method // Pattern Recognition. 2021. № 116 (1). DOI: 10.1016/j.patcog.2021.107926.
- [3] Ilesanmi A. E., Ilesanmi T. Methods for image denoising using convolutional neural network: a review // Complex and Intelligent Systems. 2021. № 7(5), P. 2179–2198. DOI: 10.1007/s40747-021-00428-4.
- [4] A comprehensive survey of image segmentation: clustering methods, performance parameters, and benchmark datasets / H. Mittal, A. C. Pandey, M. Saraswat, S. Kumar, R. Pal, G. Modwel // Multimedia Tools and Applications. 2022. № 81(24), P. 35001–35026. DOI: 10.1007/s11042-021-10594-9.
- [5] Yuryev G. A., Verkhovskaya E. K., Yuryeva N. E. Stochastic swarm clusterization method in natural language data processing. // Experimental Psychology (Russia). 2018. № 11(3), P. 5–18. DOI: 10.17759/exppsy.2018110301.
- [6] A quantitative discriminant method of elbow point for the optimal number of clusters in clustering algorithm / C. Shi, B. Wei, S. Wei, W. Wang, H. Liu, J. Liu // Eurasip Journal on Wireless Communications and Networking. 2021. № 2021 (1). DOI: 10.1186/s13638-021-01910-w.
- [7] An improved DBSCAN method for LiDAR data segmentation with automatic Eps estimation / C. Wang, M. Ji, J. Wang, W. Wen, T. Li, Y. Sun // Sensors (Switzerland). 2019. № 19(1). DOI: 10.3390/s19010172.