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Abstract

Viewpoint selection methods have a variety of applications in different fields of computer graphics and
computer vision, including shape retrieval, scientific visualization, image-based modeling and others.
In this paper we investigate the applicability of existing viewpoint selection methods to the problem of
textures reconstruction using inverse rendering. First, we use forward rendering to produce path-traced
images of a textured object. Then we apply different view quality metrics to select a set of images for
texture reconstruction. Finally, we perform material and texture reconstruction using these image sets and
evaluate the quality of the results. We show that using viewpoint selection methods allows to achieve faster
inverse rendering times while maintaining quality of the results.
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1. Introduction

Viewpoint selection has many different applications in computer graphics and computer vision.
For example, in scientific visualization it is important to produce images conveying the most
information about the subject. Simultaneous localization and mapping (SLAM) problem requires
planning motion of a robotic system which can provide the best views for construction of an
accurate map.

Intuitively viewpoint selection can be formulated as a simple question - "which views of a 3D
scene/model are the best?" The measure, which determines how good is a specific view, depends
on the problem.

Inverse rendering aims to recover a 3D scene, including geometry, lighting and materials, given
a set of its images. Most approaches to inverse rendering are based on differential rendering [1],
which involves using gradient-based optimization to iteratively improve input parameters (such
as vertex positions in 3D models, intensity of light sources, material properties, etc.) so rendered
images match input images (for example, photographs). Inverse rendering problem can also be
solved without gradient-based methods for specific cases [2] or with some simplifications and a
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Figure 1: Several example views of a 3D model in two positions on the virtual turntable. Texture
optimization iterations increase left to right.

priori knowledge [3]. As differential rendering is more widely applicable, further on in this paper
we will assume it as an approach of choice for texture reconstruction.

The surface of real-world objects is generally non-uniform and has various peculiarities.
Therefore, material and its surface reflectance properties often need to be modeled as spatially-
varying. In practice, this means that material reconstruction process uses textures as parameters
of a material model. To accurately and fully recover a texture of a 3D object, inverse rendering
system should be given a set of views of that object covering the whole surface. As a simplest
example consider a 3D model of a cube. To reconstruct a texture of a cube we will need to have
views of all of the sides of this cube. And if one of the sides is never visible in any of the views,
there is no information to reconstruct the corresponding part of a texture. If the said cube has a
material with non-negligible specular reflective properties, several images of the same side could
be required. The reason is that visual manifestation of specular features of the surface depends on
the viewing angle.

It is also should be noted that inverse rendering is a computationally costly task. And one
of the factors making it such is the need to reconstruct textures, which means having high-
dimensional output as well as input. If we don’t want to sacrifice visual quality of the result by
reducing reconstructed textures resolution, another possibility to speed up computations (as well
as capturing real-world data) would be to reduce the number of input images.

Thus, for material reconstruction using differential rendering we need to have a set of views
of a target 3D object such that every polygon would be visible at least in a single view. At the
same time we would like to keep the number of views to a minimum to reduce computational and
image capturing workloads.

In this paper we propose to apply viewpoint selection methods to produce an input image
set for material (texture) reconstruction with inverse rendering. We verify our proposition on
synthetic data using Mitsuba3 [4] as a basis for the inverse rendering process.
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2. Related work

Research on viewpoint selection yielded a number of different measures, which were surveyed in
[5, 6]. In [5] measures were classified according to data used to compute them - visible polygons
projected area, silhouette, depth, stability and curvature. Authors also evaluate performance of
all surveyed measures (22 in total) against benchmark proposed in [7]. In [6] survey viewpoint
selection methods are classified into three groups - based on geometric information, based
on visual features (predominantly using mesh saliency) and semantic-based (using semantic
segmentation of 3D models).

Apart from measures covered in [5] there are deep learning approaches [8, 9, 10], which usually
aim to select views based on saliency and human perception.

Among the variety of existing approaches we will consider those that are based on geometric
information. In [5] authors review applications of different measures and geometry-based ones
found use in a variety of different problems. Specifically in image-based modeling and rendering
which can be considered as the most similar to the stated problem of inverse rendering. For
example, in [11] authors minimize the number of views for 3D reconstruction with laser scanning
and in [12] - the number of images needed to represent a scene for image-based rendering.
Additionally, methods based on saliency and human perception seem to be conceptually not well-
suited for inverse rendering problem, since they tend to select views containing so-called "points
of interest" and highly detailed areas. However, in the stated problem of texture reconstruction it
is necessary to explore the entire mesh surface (or at least visible in the available set of views) to
produce the most complete and accurate texture.

One of the earliest works on viewpoint selection proposes using angle between viewing
direction and surface normals of a 3D model [13] as a measure. In [14] authors additionally
incorporate total number of visible polygons and their projected area as a viewpoint quality
measure, weighing contributions from different factors. However, it’s unclear how to determine
good weights.

Several measures use projected area of polygons to compute information theoretic quantities
including entropy [15], relative entropy (Kullback—Leibler divergence) [16] and mutual informa-
tion [17, 18]. Among these measures projected area entropy [15] and mutual information [17]
found the most applications in different fields as reported in [5]. It is also worth noting that in [12]
authors propose an algorithm for selecting a set of views covering all polygons using projected
area entropy[15].

In [19] authors propose several new entropy-based measures using quantities other than
projected area for its computation, including depth, field data and shading coefficients. This work
deals specifically with scientific visualization applications.

In [20] depth variation and depth distribution entropy are used for selecting best views to
demonstrate 3D models of museum pieces. Authors also propose an algorithm for selecting a set
of views. However, their goal is to select a small representative set of views (in particular, four
views) best suited for human perception. Which does not necessarily coincide with the stated
goal of view selection in inverse rendering where every polygon should be visible at least in a
single view.

In our work we implement viewpoint entropy [15] and viewpoint mutual information [17]. We
also propose a new measure which uses texture area covered by polygons.
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3. Proposed method

3.1. Viewpoint quality measures

First base measure we implement is viewpoint entropy [15, 12]. It is based on the projected area
of a 3D scene given a particular viewpoint and is defined as follows:

VEW) = - i %) g ) (1)
=0 a;(v) " ai(v)

where N is the number of polygons in the 3D model, a,(v) is projected area of polygon z from
viewpoint v and a,(v) is projected area of the whole 3D model from viewpoint v.

Ratio aé:i is proportional to the cosine of the angle between normal to polygon z and the
inverse viewing direction (thus, it incorporates measure proposed in [13]). At the same time, this
ratio is inversely proportional to the squared distance between the camera and polygon z. So,
Zi‘g will increase as polygon z gets closer to the camera and as polygon’s normal aligns with the
inverse viewing direction.

Another base measure we use in our experiments is viewpoint mutual information (VMI) [17]:
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where V is the set of all views.

Authors of this viewpoint quality measure [17] state that VMI will have higher values for
views which are highly coupled with, for example, a small number of polygons with low average
visibility. And lowest values correspond to representative views. But in our case we are actually
interested in finding views which would cover all polygons in the model and selecting views
which contain polygons not visible from other viewpoints can be beneficial. Thus, we assume
higher VMI values as better for our purpose.

As a modification of (1) we propose "texture area entropy" viewpoint quality measure:

VEtexarea(V) Z = lOg_ (4)

where b, is the area of the texture (which is being reconstructed) that is used by polygon z, b,
is the total texture area used by polygons of the model and N, is the number of polygons visible
from viewpoint v.

This measure will have a higher value for views with larger visible texture area. Thus with
texture area entropy we aim to select views that contribute the most to the texture we want to
reconstruct with inverse rendering. Note that texture area may not correlate with polygon area as
it depends entirely on texture coordinate parametrization of the 3D model. Since b, and b, do not
depend on a view, their values can be computed only once.
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3.2. Viewpoint selection algorithm

For accurate texture reconstruction we need a set of views of a target 3D object such that every
polygon would be visible at least in a single view. However, we must take into account that a
set of possible views is defined by image acquisition setup. Real camera has its position and
orientation (relative to the 3D object being captured) restricted, unlike virtual camera which has
no physical size. Thus, we formulate the problem as follows: select a subset of N views from the
set of all available M views such that each polygon z that is visible in at least one view of M, is
also visible in at least one view of N.

To solve it we use an algorithm based on [12]. We select the best view depending on the quality
measure being used and mark all polygons visible in that view as visited. Then we compute
measures again excluding all visited polygons and continue the process until all polygons are
visited.

Algorithm 1: Selection of N views
Data: V - set of all views, Z - set of all polygons visible in V, VQ - quality measure
Result: M - subset of views

1 0« @;
2 M« @
3 while Q # Z do
4 measures «— @,
5 forall v € V do
6 forall z € Z do
7 if z ¢ O then
8 m «— ComputeQualityMeasure(VQ,v, 2);
9 measures|v] « m;
10 end
11 end
12 end
13 view «— GetBestView(V Q, measures);
14 forall z € Z do
15 if z is visible in view then
16 ‘ 0« zUQ;
17 end
18 end
19 M — viewU M
20 end

For viewpoint entropy measure the condition in line 7 for the above algorithm is changed to
include only polygons with big enough relative projected area (as proposed in [12]):

22 QA100% — & 590 (5)

max_area;

where a, is projected area of polygon z and max_area, is maximum projected area of polygon z
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among the set of all views V.

3.3. Rendering pipeline

To evaluate the proposed approach we generate synthetic data with forward rendering and then
use it for inverse rendering. Our rendering pipeline is built around Mitsuba3 rendering system[4].
The scheme of the pipeline is presented in fig. 2

! v
Material Forward All views _
(ground truth textures) rendering image set -:
|
|
3D model I
|
|
e Inverse Viewpoint )
Lighting > rendering ¢ selection (alg. 1) :
Camera |
v v
Scene Reconstructed PSNR
textures evaluation
v I
All views (with
rgggg?i:% — reconstructed _

textures)

Figure 2: Rendering pipeline scheme used to perform experimental evaluation. 3D model is
rotated 360 degrees with 10 degree step in two positions yielding 72 views in total.

Our 3D scene recreates a simple real-life image acquisition setup with a 3D object placed in
the center of a turntable (fig. 1) and camera looking at it from above at around 45 degrees angle.
We first render a set of images representing all possible views of a 3D model which consists of
72 images - 360 degrees rotation with 10 degree step for 2 positions of a model on the turntable
(standing and lying on one of the sides). Forward rendering is conducted with known material
model (including textures) and lighting conditions.

For the experimental evaluation we chose three 3D models of increasing complexity (fig. 3).
Material models are lambertian diffuse with single "reflectivity" texture parameter and principled
model with "base_color" and "roughness" texture parameters.

Next, a subset of all possible views is chosen using algorithm 1 and passed on to the inverse
rendering stage. To isolate the problem of texture reconstruction we set position and orientation
of the camera and the 3D model as they were during the forward rendering stage. Lighting
conditions also stay the same. Textures are initialized as uniform gray and act as optimization
target for the inverse rendering stage.
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Figure 3: 3D models used for testing in two positions on the virtual turntable. Horse model was
rendered with diffuse material and principled material with glossy specular component.

Inverse rendering is performed using Mitsuba3 "reparameterized direct integrator”. As a loss
function for diffuse material we use L; distance between target and rendered images clamped
to (0, 1). And for principled material with glossy specular reflections we use L; distance with
log-encoding pixels as in [21] to reduce the influence of highlights. We also add smoothing
regularization term for textures which are being optimized:

A=2ax Z(Ia[i + 1, j1 = ali, jll + leli, j + 11 = ali, jl) (6)
i.j

where ali, j] is the value of the (i, j) pixel in the texture and A is some small constant value
(around 0.01 in our case with texture resolution equal to 1024 x 1024 ).

Inverse rendering stage outputs optimized textures which are then used to perform forward
rendering of all 72 views of a 3D model once again. Finally, these rendered images with
reconstructed textures are compared to images obtained during the first forward rendering stage
with ground truth textures.

3.4. Results and discussion

Described pipeline was executed 12 times - for all 4 scenes (fig. 3) and each quality measure (VE,
V Eexareas VMI). In each scenario we measured PSNR for all views (table 1), inverse rendering
time (fig. 7) and size of the subset of images produced by viewpoint selection algorithm (table 2).

Results show that viewpoint measures demonstrate PSNR values comparable to each other
in most cases. Only notable differences are lower values for VE,. 4., On avocado model and
for VMI on bunny model. On avocado model VE . 4. shows PSNR values smaller than other
measures, but still around 50 in the worst case. Resulting textures and rendered images are almost
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Figure 4: Left - texture reconstructed from views selected by V E e 4req measures and algorithm
1, right - ground truth texture.

Figure 5: Bunny model rendered with A) texture reconstructed on views selected with VE,. 4req

measure and algorithm 1; B) texture reconstructed on all views; C) texture reconstructed on views
selected with VM1 measure and algorithm 1; D) texture reconstructed from all views

identical (fig. 4). On bunny model low PSNR value for VMI measure is likely caused by the
fact that some parts of the model (in particular, ears) are not well lit in all views. This leads to
appearance of non-reconstructed areas of the target texture even when all 72 views were used
(fig. 5, A and B). Because views with well lit ear parts of the model were not chosen with VM
measure the target texture had significant missing areas in that part (fig. 5, C and D).

For the horse model all viewpoint selection measures produce large subsets of images (75%
of all views) but at the same time achieve high PSNR values which are also slightly better than
using all views for reconstruction (table 1, fig. 6) while still saving time. Visualized differences
between images rendered with reconstructed texture and ground-truth texture (fig. 6) show that
largest differences appear mostly in the shadowed areas of the model and at the bottom part of
the base even when using all views. This is consistent with the results for the bunny model - not
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Figure 6: View with the lowest PSNR value for the horse model with diffuse material. Top
row: horse model rendered with texture reconstructed on views selected with proposed V Etexarea
measure and algorithm 1 (left), ground-truth texture (right), image difference x10 (center). Bottom
row: horse model rendered with texture reconstructed on all 72 views (left), ground-truth texture
(right), image difference x10 (center).

well lit parts of the model are badly reconstructed. Also note that in the example shown on fig.
6 difference for all views is larger than for smaller number of views selected with the proposed
measure.

In case of glossy specular material time saves are more significant as inverse rendering is more
computationally expensive in this case (we optimize two textures). Thus, for more complex
material models and more optimized parameters using viewpoint selection methods may be
especially beneficial. Rendered images for different iterations of reconstruction process with the
proposed measure for glossy material are shown on fig. 1.

Overall, using viewpoint selection measures allows to reduce number of images for texture
reconstruction by 25-89% (table 2) depending on the complexity of the 3D model. All three
measures we implemented show very similar reconstruction quality (table 1) with VE being
the most consistent. We also compared measures using quantity incorporating both quality and
time (table 3). It clearly shows that in every case using VE or VE.,4req 1S much better than just
using all available views with VE being the best measure overall. VM1 is worse than other tested
measures, losing to all views in the case which was described earlier.

4. Conclusion

Our goal was to demonstrate feasibility of using viewpoint selection methods in the field of
inverse rendering. To do this we implemented two widely used viewpoint quality measures and
also proposed a new one. We carried out experimental evaluation on several 3d models with
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Table 1
Average PSNR and standard deviation for different viewpoint quality measures. PSNR is com-
puted between view rendered with reconstructed textures and with ground truth textures (fig. 2)

Scene VE VE exarea(OUTS) VMI All views
avocado 56.2 +3.1 548 +49 56.5+40 592+27
bunny 494 +34 494 +34 445+72 519+£26

horse-diffuse  56.6 + 2.4 56.6 +2.4 56.6+2.4 56.5=+28
horse-specular 45.0 + 3.4 450+33 450+33 452+32

Table 2
Number of views selected for different viewpoint quality measures
Scene VE VEiaea(ours) VMI All views
avocado 8 8 10 72
bunny 31 31 31 72
horse-diffuse 54 55 54 72
horse-specular 54 55 54 72
Table 3
Comparison of viewpoint quality measures by quality and performance, m, where MS E is

mean squared error between image rendered with reconstructed texture and image rendered with
ground truth texture.

Scene VE VE oxarea(lours)y — VMI  All views
avocado 390.05 283.91 363.88 91.87
bunny 21.95 20.24 6.93 16.59
horse-diffuse 60.68 62.48 59.03  50.05
horse-specular 3.63 3.58 3.54  2.84

different materials. From the experiments we found that viewpoint selection methods can be used
to reduce inverse rendering execution time by 20-89% depending on complexity of a 3D model
(fig. 7) in turntable-based image acquisition setup. At the same time, reconstruction quality is
maintained in most cases, special care needed for models with parts which are not well lit in
most views. All measures we tested show similar performance with viewpoint entropy (VE)
achieving consistently good results in all cases (table 3). Our measure VE;.y4req 1S a close second
and has a small advantage in computational costs of the measure itself - data used by it needs
to be computed only once for the whole process of selecting N views, while for VE everything
needs to be recalculated N times. We assume that proposed measure VE,. ., achieves better
results for cases with complex geometry and prominent texture as V E;..ure, 1S directly dependent
on texture mapping of a 3D model.

As future work, experiments with real data are needed to further prove viability of viewpoint
selection methods in inverse rendering. It would also be interesting to explore other viewpoint
quality measures. Especially those that incorporate information on how well lit is the particular
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Figure 7: Inverse rendering execution time for different viewpoint quality measures. RTX 2070
Super, 150 iterations, rendering resolution 1024 x 1024, target texture resolution 1024 x 1024.

polygon. Another possible research direction is associated with exploring how several different
views of the same polygon influence reconstruction of reflective materials.
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