GraphiCon 2022 I'paguueckue ungpopmayuonisie cucmemvl u UMMepcusHvle mexuoarocuu Ha cmaousax K1 npooykma

External Control of ParaView Visualization

Oleg Kovalevskiy /, Marwan Charara / and Michel Cancelliere

! Aramco Research Center, Aramco Innovations LLC, Leninskie Gory 1-75b, Moscow, 119234, Russia
2 Saudi Aramco, Dhahran, Saudi Arabia

Abstract

3D visualization is essential for many industrial applications. For instance, in the oil and gas
industry, the visualization of reservoirs and their associated wells helps petroleum engineers to
develop exploration and production strategies. For that purpose, there are integrated domain-
oriented commercial software solutions. However, their 3D visualization part has significant
limitations due to their closed source nature and dedicated domain. An alternative is to use general
purpose open-source visualization platform such as ParaView. The challenge is to be used
seamlessly in combination with in-house data management system which needs an integration
effort. Embedding one application into another requires significant effort of programing, especially,
when the technology stack of the data management application is different from the one ParaView
is built on. In this study we present the solution of using ParaView along with a hypothetical
corporate data-management application without embedding one into another. The inter-process
communication protocol is based on ParaView Python API. The proposed approach allows using
the full power of ParaView and data management application with minimal integration efforts.

Keywords
Scientific visualization, 3D, ParaView, GUI, inter-process communication, python.

1. Introduction

In many cases 3D visualization is essential to understand data. For example, in oil and gas domain
visualization of reservoir and wells helps petroleum engineers to develop exploration and production
strategy. The market offers integrated domain-oriented software suits for those purposes. However,
commercial solutions might not cover all the demands of the users in terms of data management. It is
quite common when there is custom data management system covering critical business processes of
the company. If this system lacks 3D visualization, commercial visualization software most likely will
not help. First, it might have proprietary data format which is enclosed, meaning that it is impossible to
create datafiles without using that software. Second, even if loading data is not an issue, the
visualization feature set is limited and most likely not extendable due to closeness nature of those
applications. Third is performance: 3D visualization is usually not a feature of primary focus for the
business-domain oriented commercial applications, so it is unlikely that they will have visualization
part designed for scalability and high performance in case of big datasets.

ParaView is an open-source cross-platform general purpose visualization suite (Figure 1). In some
cases, it can be a good alternative to visualizers of commercial packages. It has been developed by
Kitware Inc. for more than since 2000. The core is VTK (visualization toolkit) — open-source SDK for
high-performance cross-platform 3D visualization applications from the same vendor [1]. Desktop
version of ParaView written with C++ is the most feature rich application of the whole variety [2]. It
supports quite large number of formats — more than 100. The user can load datasets from files or create
new objects using means of the application. Once the dataset is loaded or created it can be further
modified in the application and saved later into a new datafile. New dataset can also be created by
applying a filter. There are more than 200 filters in ParaView including slicers, thresholds, isosurfaces
and many others. If standard filters or sources are not sufficient, it is possible to extend them by using

GraphiCon 2022: 32nd International Conference on Computer Graphics and Vision, September 19-22, 2022,

Ryazan State Radio Engineering University named after V.F. Utkin, Ryazan, Russia

EMAIL: oleg.kovalevskiy@aramcoinnovations.com (O. Kovalevskiy); marwan.charara@aramcoinnovations.com (O. Charara)
ORCID: 0000-0003-2537-0035 (O. Kovalevskiy); 0000-0002-8343-5135 (M. Charara); 0000-0002-0612-0148 (M. Cancelliere)

© 2022 Copyright for this paper by its authors.
BY Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

19-22 cenmsabpsa 2022, Pasanw, Poccus 1137

Graphic Information Systems and Immersive Technologies in the Product Life Cycle Stages

python plugins [3]. Such extension does not even require recompiling ParaView. Another major feature
of ParaView is that it is designed for performance and scalability. It can be used in client-server mode
where the server part can run in multi-processing mode on a powerful node or even on a cluster, while
the client part displays the resulting visualization on the ordinary user’s machine [4]. This feature is
quite important when business domain deals with large datasets and oil reservoirs are good example of
those [5]. The last, but not least, a very useful functionality of ParaView is its Python Shell which allows
script commands as a more flexible alternative to GUI controls [6]. The python API scripting is highly
facilitated by the tracing functionality of GUI controls during manipulation.

ParaView 5.2.0-RC2-29-g7b25328 64-bit

Flle Edit View Sources Filters Tools Catalyst Macros Help
pE B » 2 FERN KAPDMHB rme 0 imax is 9
B & 25 5F 8| o Velodty ~ [Magnituc + | |Surface C BB s cibiir iz @ ® 2@ @ (G eucies BUGlME0s BUGLeBssh Showallamays berk extractslocks generatestatics link_center of_retation
ls] O = 26 o8 e o
I90DRPOE2LE GCetwH
Pipeline Browser B8 [Olayout 12 | + Color Map Editer 2%
H builtin. & LR T \ »RenderViewl I E D/ = & &] ParallelCoordinatesViewl M |8 D /@& earch i@
@ @b heooo Array Name: Velocity
| Plotoatal
vatze agrinsss Lock Data Range
2 =@ continuum 000" i s
ey nterpret Values As Categories
- S Rescale On Visibility Change
@ Mapping Data
o o paricles 000+
@ | @ MaskPointsl €
@ l@cooe t
-
e
-
Properties Information Data
Properties T Use log scale when mapping data to colors
 Delete: 7 Enable opacity mapping for surfaces
E a Coler Mapping Parameters.
ColorSpace sy -
= Properties (slice1) 2o &4l
@ Nan Color
Slice Type Flane =
Calor Discratization
Plana Parametors T
Shom Hane humber Of Table £
arigin |20.258540518188 0 4.2915344238281 Values
Nommal 1 o 0 222 5
Note: Usa P to pick ‘Origin’ on mesh or ‘Ctrl+P" to snap
to the clasest mesh paint
X Normal Camera Normal
o Vetocy_Megniude Ay Ox547520_togni
2 Normal spreadsheetview (W[E|DJB®
et e oorl Showing | rbe.000* ~ Attribute: Foint Data ~ Precision: 62| (x| /L) &
sl Ioi it Rk Point D Armay Ox48easan Normals Velocity
ofset | o o 1287 402539 197151 0618608 0308582 0.722566 0500466 00254211 0.0579423
P 12.87 445314 162474 0585101 0524181 0854203 0508512 003508 00538552
Crinkle slice
4 Triangulate the siice 2 |2 1256 109750 157154 070404 0215272 0.626757 040828 00172087 0.0556805
Value Range: [-24.3334, 24.3334) s 3 1m a5z 0363016 0718682 0453617 057705 0499956 oooe3es 00z8BAIS
= %, s 1210 501124 0337676 0556874 0743904 0.369456 0.486585 000438975 00334748
=) s s 178 482927 00652181 0648788 0715937 0257892 0495815 00150577 00786568
20 Lo anua auman saeses nesiens nazesn aercane ncnana anszania aninan

Figure 1: ParaView desktop general overview

If it is required to have a 3D visualization in a Data Management Application (DMA), ParaView
can be a good choice. However, the strategy for integration is not straightforward. If the DMA is created
using the same technology stack as ParaView, it is theoretically possible to embed one into another.
However, it will require to understand the architecture of ParaView codebase (which is huge), to
implement and to test the integrated solution, and finally, to ensure handling versions upgrade. In most
cases, such approach will require too much effort to be practical. In case when DMA is written with
something different from C++, the difficulty of such embedment increases even more. Another option
which is the main topic of this paper is to use both existing Data Management Application and ParaView
as two different executables and to enable communication between them, so that the visualizer can
receive commands from DMA, execute them, display the result, and, optionally, send the reply back to
the calling application.

2. Visualization in ParaView with GUI and Python Shell

For better understanding we will illustrate the common visualization use-cases which can be handled
in ParaView GUI and its Python Shell by using a case example of the Johansen Dataset reservoir model
which is publicly available [7].

Loading a dataset in ParaView is straightforward: Main Menu = File = Open =2 (select file). When
it is loaded, making it visible in Pipeline Browser will invoke rendering (Figure 2).

1138

GraphiCon 2022

19-22 September 2022, Ryazan, Russia

GraphiCon 2022 I'paguueckue unghopmayuonHble Cucmemsl u UMMEPCUGHble mexHoro2uu Ha cmaousx KL npodyxma

£ Losd State..
& Savesute..
o Seve Catalyst State..

8 Seve Screenshot
. Expont Scene...
4 Save Animation.
4, Save Extacts.
Save Geomely.
Load Path Tracer Material...
(54 Losd Window Arangerent..
e n

indow Arangement.
@ Comnect..
0 Disconnect

5] Est

Figure 2: Loading a dataset in ParaView using GUI controls

It is also possible to load a dataset using ParaView Python Shell (Figure 3). The script to do this looks
as follows:

from paraview.simple import *

formation source = XMLUnstructuredGridReader (registrationName='..", FileName=[..])
formation display = Show(formation source)

GetActiveView () .ResetCamera ()

Render ()
W ParaView 5.9.1 = 3 z
file Edit View Souces Fiters Extractors Tools Catalyst Macros Help
K¥adbbdare? DRASNES()
Byt s1 | +

® B oo | = &S A WAL= Renderviewl A=

riiame='Formatica 1°, FileName=(r'C:\graphicen\Formation 1.veu'l)

Run Saript Clear. Reset

Figure 3: Loading a dataset in ParaView using Python Shell

19-22 cenmsbps 2022, Pazanw, Poccus 1139

Graphic Information Systems and Immersive Technologies in the Product Life Cycle Stages GraphiCon 2022

To find these python commands one can go to online documentation [6] or use GUI actions tracing

from Main Menu 2 Tools =2 Start Trace.
Default solid coloring can be easily edited in Properties panel and changed to the coloring related to

one of the arrays in the dataset, for example POROSITY in our case. Also, it is possible to change scale
in Transforming part. As our dataset has rather flat structure — the size in X and Y dimensions is much

larger than in Z dimension, it is worth to change Z scale, for example, to 20 to have better insight into

the layers of this formation (Figure 4).

X

(M0 Paraview 5.1 - 0 x

Fle Edit View Sources Fiters Extractors Tools Catalyst Macros Help

BoCKOCE OPRCHY s | |1

Transforming
Transiation

XadEL AL P 1 Glkowss®L)

@FReset | % Dekto

Scale

0
1 20
T

Origin

Coordin
Scale Method

Miscallaneous

v Pickabie
Trar
Use Shader Replacements

Nonines —
Subdnision Level

Block Cokrs
Distinct Values

Use Data Farttions
Ray Tracing
Scaling Mode Al Approxamate
Material None.

Data Axes Gnid Edn

Masimum Number
Of Labels

Annotations

o
1
T
0] 0

e SN | s Auto Shit Scale

nguiate

ar

12

100

Figure 4: Changing scale and coloring of the dataset

Python equivalent of these actions is:

ColorBy (formation display, ('CELLS', 'POROSITY'))
formation display.Scale = [1.0, 1.0, 20.0]

For further enhancements of formation representation in terms of interior structure visibility it is
possible to make the object semi-transparent. Again, it can be changed in the Properties panel or with
short python command:

formation display.Opacity = 0.33

Also, to distinguish the layered structure of the formation dataset it is possible to use Threshold

filter. We’ll use POROSITY as a base property for threshold and make it inverted with range from 0.2
to 0.3. It will make highly permeable middle layers hidden while keeping less permeable layers visible,
indicating the barriers. Displaying grid by using ‘Surface With Edges’ representation type will help to
underline the curvatures of the layers. And original semi-transparent dataset shown on top of the
threshold will help to display initial borders (Figure 5).

To apply a threshold filter using Python Shell:

threshold source = Threshold()

threshold source.Scalars = ['CELLS', 'POROSITY']
threshold source.ThresholdRange = [0.2, 0.3]
threshold source.Invert = True

threshold display = Show(threshold source)
threshold display.Scale = formation display.Scale

1140

19-22 September 2022, Ryazan, Russia

GraphiCon 2022 Ipaghuueckue ungopmayuonusie cucmemsl u UMMepCcugHbvie mexronozuu Ha cmaouax KL npooykma

Show (formation display)
threshold display.SetRepresentationType ('Surface With Edges')

I Poraview 5.1 T8 x
Fle Edt View Sources Fiters Exractors Tools Catalyst Macros Help
XKeadgduel LRRewERD
Pipeline Browser B® | Miayout #18 | +
N b L RN IR FEET Y TRV E Renderviews |11 | ®
@ @ Formation_1
a

Properties =k
Aoply | @Reset || % Delete ?
Search ... (use Esc to clear text)
= Properties (Threshold1) = Slhf
Scalars| & porosITY -
Minimum e— 02 =
Maximum em— - (0.3 =
V! All Scalars
Use Continuous Cell Range
V] Invert
= Display (UnstructuredGridi Clld
Representation | syrface With Edges =
Coloring
£ POROSITY -
s Edit & =s|s/ <8 @
oo — 32001
V' Map Scalars —03
V| Interpolate Scalars Before Mapping
Styling

Opacity —f

Point Size 2

]
o]
&
9]
&

Line Width 1
Render Lines As Tubes
Render Points As Spheres
Lighting
Interpolation | Gouraud

Specular b %

Figure 5: Changing opacity and adding property-based threshold filter

Now when the formation is loaded and visualized properly it’s time to add wells. It is possible to
load them from ParaView-compatible file, but they can also be created right in the app as a new
Geometric Shapes. For this, we need to use Main Menu = Sources 2 Geometric Shapes =2 Poly Line
Source. Then it is required to input XYZ coordinates of the points into the table in Properties panel. To
make it look like a pipe, need to enable Render Lines As Tubes setting and set Line Width = 10.

To add labels with well names, we create new Text objects from Sources 2 Annotation. It is required
to define the content — well name, and the position - at the top of the well. Also, it is possible to adjust
font size and other parameters for more adequate representation (Figure 6).

Equivalent python code is:

well source = PolyLineSource (registrationName = 'Well 1'")
well source.Points = [513000,6690000,0,513000,6690000,3200]
well display = Show(well source)

well display.Scale = formation display.Scale

well display.RenderLinesAsTubes = True

well display.LineWidth = 10

label source = Text (registrationName='Label Well 1'")
label source.Text = 'Well 1'

label display = Show(label source)

label display.TextPropMode = 'Billboard 3D Text'

label display.BillboardPosition = [513000.0, 6690000.0, 0.0]
label display.FontSize = 50

label display.Bold = 1

label display.Justification = 'Center'

For the second well the code is very similar with the only difference in its name and geometry.

19-22 cenmsabps 2022, Psazanv, Poccus 1141

Graphic Information Systems and Immersive Technologies in the Product Life Cycle Stages GraphiCon 2022

M ParsView 5.1 - 8 x
Ele Edit View Sources Fiters Extractors Tools Catalyst Macros Help
Xeadgdua? tRLSwERQ
Pipeine srowser % [Mlayout #1® | +
8 buitin: CEIIELIEEREEE R EEE E A AL 2 RenderView1 =]}
@ @ Fomation_1
*
@ L@well_1 (Pad_1)
@ - Label Well 1 (Pad_1)
@ F@wel2 (Pad_1)
@ L Label well 2 (ad_1)
Properties k]
Aoply | @Reset | % Delete
Search .. (use Escto dlear text)
= Properties (Threshold1) cla}l
Scalars| ¢ poRosITY -
Minimum e 02 ~
S
Maximum em— - (0.3
VI All Scalars
Use Continuous Cell Range
V] Invert
= Display (UnstructuredGridi Cl
Representation | syrface With Edges hd
Coloring
¥ POROSITY
B Edit & =) s s) e8| R
Scalar Coloring
V| Map Scalars
V| Interpolate Scalars Before Mapping
Styiing
Opacty —— 1 ~
Line Width n §
Render Lines As Tubes
Render Points As Spheres
Lighting
Interpolation | Gouraud
Specular o -

Figure 6: Adding wells as Poly Line sources and their labels as Text sources

3. Integration with Data Management Application

We have just reviewed how to load a formation dataset form file in ParaView-compatible format
and how to create wells objects with manual input of properties. In real situation data may be stored in
a database or in the files of the format oriented to the business systems, most likely different from what
is required by ParaView. So, to make a visualization of the real data it needs to be converted into
visualization-friendly format and stored on the same machine where ParaView is. If we think about
wells, there can be hundreds of them in one formation. Of course, manual creation and data input as
demonstrated above is not practical at all. I order to automate this it is possible to create python macros
based on the scripts demonstrated above and then call them.

def load dataset(file path):
import os
dataset name = os.path.splitext (os.path.basename (file path)) [0]
formation source = XMLUnstructuredGridReader (dataset name, [file path])
formation display = Show(formation source)
GetActiveView () .ResetCamera ()
Render ()

def create well (pad name, well name, trajectory):
well source = PolyLineSource (registrationName = well name + ' (' + pad name +')")
well source.Points = trajectory

def change z scale(value):

However, this approach also has some disadvantages. Manual input of the input parameters to those
macros will lead to regular errors. Also, petroleum engineers might feel uncomfortable working with
python code as they are usually not professional programmers. On the other hand, if there is some data
management system with at least basic GUI it is possible to manage those python macros using that
app. Let’s consider for definiteness that we have such system and it's a Windows desktop application
created with C# WinForms [8] (Figure 7).

1142 19-22 September 2022, Ryazan, Russia

GraphiCon 2022 I'paguueckue ungopmayuonisie cucmemovl U UMMepCcusHvle mexnoarocuu Ha cmaousax K1 npooykma

ol Data Management System .Net - [m] x

File Edit View Visualization Help | Say "Hello"!

Oifcids = 250
= [ZOtfield 1 ~ Misc
Depth_Max 3456 200
Depth_Min 2345
X_Max 5678
150
X_Min 1234 0
Y_Max 2000
_ Y_Min 1000 100
¢ [CIFomation_11
i [[JAnother_Formation
‘.. Very_Good_Fomation 50
h_Max
Depth_| N [
400 0 10D 200 300 400 500 60D
Wells MD TVD Inclination * 12
]
100 59 10
200 199
300 290 8
400 380
6
Lwell_345 500 450
300 290 4 |
400 380
500 470 21 |
600 560
700 650 . 0-
-1 0 1 2 3 4 5 6
€ >

Figure 7: Simplified example of hypothetical oilfield Data Management Application (DMA)

When user interacts with this application, he selects some objects, reviews or edits their properties,
makes some statistical analysis, or even runs a simulation. However, it would be nice to enable 3D
visualization that can be quickly invoked from this application. It will be possible if we find a way to
send python script from the DMA to ParaView.

There are different ways to do that and the simplest one is using means of operating system to capture
the ParaView Python Shell window handle and then send keys to it as if user input those keys there
directly. To implement Python Shell window capture we employ user32.dll- a Windows system library
containing operating system management functions for message handling, timers, menus, and
communications [9]. Though user32.dll is a native library it can be used from C# code if its methods
are decorated with DLLImportAttribute [10]. Methods from that DLL help to find a ParaView
application in the list of running processes and then identity Python Shell window and get its handle.
Once window handle is captured, we can use SendKeys.Send method from System. Windows.Forms
namespace to transfer messages from C# application to that Python Shell window [11] (Figure 8).

S Dsta Management System et - o x i PacaView 59.1 = B X
HR Efa Vi Vmaicn Elle Edit View Sources Filters Extractors Iools Catalyst Macros Help

Ot | [N 7 o gx e g 1 O

= Ciowed = b o I L3 U0 0 I SR AR

+ Clomed2 Depth Mk 56
Desth_Vg 245 Blayout#1@ | +

A q A [B]0 4 8 i vRenderviews A=

SR

™ bcnaton A

& P 1
© [JPad_2

19

£
450

an

650

i
§§§§§§§§§si§ I

> print(""Hello" from .Net app!')

private void sayHelloButton_Click(object sender, Eventirgs e)

IntPtr pythonshellWindowtandle = FindPythonshellwindow();
SetForegrounduindow(pythonshelluindowtandle) ; -
System.Windows . Forms . SendKeys.Send("print+{9}"+ Hello+' from .Net app!'+{e}\r"); Run Script Clear Resat

}

Figure 8: Example of inter-process message exchange

19-22 cenmsabps 2022, Psazanv, Poccus 1143

Graphic Information Systems and Immersive Technologies in the Product Life Cycle Stages

GraphiCon 2022

Using this mechanism now we can send our oilfield visualization commands. For example, when
user ticks Formation checkbox, ParaView loads it from file.

& Data Management System et - o x
Fle Edit View Visualization Help | Say "Helo'l
Offields i:_ 2 l 261
~ Misc
Depth Max 3458 20
Depth Mn 235
OFommation_3 X_Max 5678 150
O Formjation_¢ X_Min 1234
[JFomation_5 ¥_Max 2000 100
5 [Oifield 24 ¥_Min 1000
Depth_Max -

10 0 100 200 300 400 500 600

Wels [0 ™ wainzion A|[12
@[JPad_1 1]
i [JPad_2 100 ™ 10
0 199 8
300 0
0 380 T
500 450 4 —
30 [0 ol |
w0 320 o
|5 | 1 0 1 2 3 4 5 &
< >

private void oilfieldsTreeView AfterCheck(object sender, TreeViewEventArgs e)

{

if (e.Node.Parent != null && e.Node.Checked)

string oilfieldName = e.Node.Parent.Text;

string formationName = e.Node.Text;

string filePath = GetDatasetFilePath(cilfieldName, formationName);
SendTextToPythonShell("load_dataset('" + filePath + "')");

M ParaView 59.1 =] x

File Edit View Sources Filters Extractors Tools Catalyst Macros Help

XXadb b dape? il cwE®L)

Oleyout £12 | +
5 @ » [= &) VU@

>>> load dataset('C:\graphicon\Oilfield 1\Formation_l.vtu')

Run Script Clear Reset

Figure 9: Invocation of dataset visualization from DMA GUI

In this example it is assumed that datasets are stored in *.vtu files — ParaView Unstructured Grid
format. But if they are not, one can add an action to convert the data into this format and store it in temp
file. The C# code in this example is simplified. In real implementation it would first check if the dataset
is already loaded. Checking/Unchecking will be corresponding to Show() and Hide() actions in
visualizer.

Wells can be visualized using similar approach (Figure 10).

Data Management System Net - [u} X
([Fomation_3 X Max 5678
[JFomation_2 X M 124
ClFomation_5 ¥ Max 2000 100
 [Joifeid 2 Y_n 1000
Depth_Max
MD ™D Incination ~
0
100 99
0 159
£ 20
400 380
500 450
30 20
400 380
500 40 v
< >
private void wellTreeView AfterCheck(object sender, TreeViewEventargs e)

if (e.Node.Parent != null 82 e.Node.Checked)

string padiame = e.Node.Parent.Text;
string wellName = e.Node.Text;
xvZ[] trajectory = GetTrajectory(padame, wellName);
string trajectotystring = GetTrajectoryString(trajectory);
SendTextToPythonShell(

“create_well('" + padame + ™*, "

+ welllame + "', " & trajectotyString + ")");

I Paraview 59.1 = o x
file Edt View Sources Fifters Extractors Tools Catalyst Macros Help
XidpRidaue? bEkSeE*
Blayout 21@ | +

% @ 0 Q S T »| =]=]]

>>> load_dataset ('C:\graphicon\Oilfield 1\Formation_l.vtu')

>>>

>>> create_well('Pad_1', 'Well 1', [513000, €690000, 0, 513000, €690000,
3200))

>

>>> create well('Pad_1', 'Well 2', [$33000, €670000, O, 533000, 6671000,

2500, $33000, €671000, 2500, 530000, €674000, 2700, 526000, €678000, 2750,
518000, €686000, 2750])

Run Script Clear

Figure 10: Invocation of wells visualization from DMA GUI

1144

19-22 September 2022, Ryazan, Russia

GraphiCon 2022 I'paguueckue unghopmayuonHble Cucmemsl u UMMEPCUGHble mexHoro2uu Ha cmaousx KL npodyxma

The default visualization of the formation and wells here is not very representative, so we might want
to change it as before by adjusting Z-scale, using property-based coloring, transparency, threshold, line
width and font size. We can do it in ParaView GUI, but in this case we’ll need to edit several properties
of each object individually. If there are few formations, and few hundreds of wells it will be very time
consuming and error prone. As an alternative we can configure manipulation of those parameters from
our Data Management App. We’ll add visualization control panel (Figure 11).

#F Data Management System .Net - o X B ParaView 58.1 = o X
File Edit View| Visuslization | Help Say "Hello"l File Edit View Sources Filters Extractors Tools Catalyst Macros Help
Offelds = | % . S " N c &
= oroaa H | Maditr g2 1o Gk S W ®L)
A Fomtion_1 ‘ v 56 """j Clayout 18 +
{0 Fomation_2. 4 Depth_bin 2341 6 2 i ‘ E =
[30 - ALy ® 4 A » =
Blrmsin1[48 Visusizaton Net - o x s AT Redey il
[JFomation_5
- well_1
25 @ B] Well_2 ell_
0 100 200 300 400 500 600
Wels. Formation
SEgPa Opacty] B B
Swel_2
T Colorby [POROSITY 5
Threshold |POROSITY ~| 02 2|03 & [hvet
Wel
Ppedoncer 5
Label size [} I
Python Shell [~ |

*, 0.2, 0.3], Invert=True)

change_pipe_diam(*Pad_1'
change_label size('Pad i', 'Well_
change_label_size('Pad_1', 'Rell_2', 30)
> |

0.25
0.2
e}
= 0.15

— 1.0e01

Run Script Clear Reset

Figure 11: Invocation of visualization parameters adjustment from DMA GUI

At this point we stop with visualization commands examples. But there is one important thing left.
Sometimes getting response from the visualizer into the GUI might be required (Figure 12). And there
is a way to enable this in current configuration. The simplest will be to transfer backward messages
using files. Python scripts sent to ParaView should contain a code writing those messages to the file,
while DMA should run and infinite loop monitoring for that file change.

5 Data Management System Net - o x M ParaView 5.9.1 - a x

Fle Edt View Visualzation Help | Say el

| Ele Edit view Sources Fiters Extractors Jools Catalyst Macros Help

e A =0 | = z
il e madbbddLe? LRk wERL
2 Feenation_1 Depth_Max 3456 200 i |
H;m'é m" @ Visualization Net = o x Ollayout s1% | +
Diemans s e PR B o@ o= E AL S LA »Renenien [1B]E[®
5 CJokad 2 Vi ey - L
. Well_2 Well_1
e
Viels w0 ™ Opscty [] on Ml
= E4Psd_1 0
ra—r i [T

Number of cells in threshold is: 120797

I OK l

Checking file in the infinite loop

graphicon — B x 5 Rl e (' Tnzesnoldi’)
aata_info = chresnold.GecDatalnformacion ()
num_cells = deta_info.GecNurber0ZCells
« v 4 1 « Windows(C) > graphict v e Search graphicon B - <
with open(r'C:\graphicon\outpuc.zxt', 'w') as f:

| | — f.wrice('Number of cells in threshold is: ' + str(num_cells))

Oiffield_1 Formation_1.vtu output.tet

Run Script Clear Reset

3items 1 item selected 42 bytes =[] x

Figure 12: File-based mechanism of getting visualizer response

19-22 cenmsbps 2022, Pazanw, Poccus 1145

Graphic Information Systems and Immersive Technologies in the Product Life Cycle Stages GraphiCon 2022

4. Conclusion

3D visualization can significantly improve data management in different business processes. Though
it might seem difficult to implement a feature-rich visualization into in-house system or even impossible
to efficiently integrate with existing commercial visualizers, there still is at least one solution. In this
study we have demonstrated an easy way of using such a powerful 3D visualization system as ParaView
in conjunction with hypothetical custom Data Management Application. Python API of ParaView
makes it possible to program visualization scenarios as python scripts. To pass those scripts here we
use manipulation of windows handles and keystrokes simulations. However, this is not the only method,
and it might have some disadvantages, it allows using ParaView as it is, without introducing any
modifications in its source code and compiling it. We have also demonstrated a way to receive a reply
form visualizer using shared file.

5. References

[1] Kitware Inc. VTK User's Guide. paperback edition, 3 2010. ISBN 978-1930934238.

[2] Kitware Inc., ParaView guide. URL: https://docs.paraview.org/en/latest.

[3] The ParaView Community, ParaView / Plugin HowTo. URL:
https://www.paraview.org/Wiki/ParaView/Plugin HowTo.

[4] The ParaView Community. Setting up a ParaView server. URL:
http://www.paraview.org/Wiki/Setting up a ParaView_Server.

[5] P. Novikov, D Sabitov, N. Bukhanov, M. Charara, M. Cancelliere, F. Rashed, & A. Baiz. (2022).
Efficient Visualization Methods for Large Scale Reservoir Models. Conference Proceedings, 83rd
EAGE Annual Conference & Exhibition, 2022(1), 1-5. https://doi.org/10.3997/2214-
4609.202210139.

[6] Kitware Inc., ParaView python online documentation. URL: https://kitware.github.io/paraview-
docs/latest/python/paraview.simple.html.

[7] G.T. Eigestad, H. K. Dahle, B. Hellevang, F. Riis, W.T. Johansen, and E. Qian. Geological
modeling and simulation of CO2 injection in the Johansen formation. URL:
https://doi.org/10.1007/s10596-009-9153-y.

[8] Microsoft corp., Create a Windows Forms app in Visual Studio with C# URL:
https://docs.microsoft.com/en-us/visualstudio/ide/create-csharp-winform-visual-studio?view=vs-
2022.

[9] Microsoft corp. Identifying Functions in DLLs. UrL: https://docs.microsoft.com/en-
us/dotnet/framework/interop/identifying-functions-in-dlls.

[10] Microsoft corp. Consuming Unmanaged DLL. URL: Functionshttps://docs.microsoft.com/en-
us/dotnet/framework/interop/consuming-unmanaged-dll-functions.

[11] Microsoft corp., System.Windows.Forms Namespace. URL: https://docs.microsoft.com/en-
us/dotnet/api/system.windows.forms?view=windowsdesktop-6.0.

1146 19-22 September 2022, Ryazan, Russia

https://docs.paraview.org/en/latest/

