
GraphiCon 2022 Графические информационные системы и иммерсивные технологии на стадиях ЖЦ продукта

19–22 сентября 2022, Рязань, Россия 1137

External Control of ParaView Visualization 
 
Oleg Kovalevskiy 1, Marwan Charara 1 and Michel Cancelliere 2 
  
1 Aramco Research Center, Aramco Innovations LLC, Leninskie Gory 1-75b, Moscow, 119234, Russia 
2 Saudi Aramco, Dhahran, Saudi Arabia 

 
Abstract  
3D visualization is essential for many industrial applications. For instance, in the oil and gas 
industry, the visualization of reservoirs and their associated wells helps petroleum engineers to 
develop exploration and production strategies. For that purpose, there are integrated domain-
oriented commercial software solutions. However, their 3D visualization part has significant 
limitations due to their closed source nature and dedicated domain. An alternative is to use general 
purpose open-source visualization platform such as ParaView. The challenge is to be used 
seamlessly in combination with in-house data management system which needs an integration 
effort. Embedding one application into another requires significant effort of programing, especially, 
when the technology stack of the data management application is different from the one ParaView 
is built on. In this study we present the solution of using ParaView along with a hypothetical 
corporate data-management application without embedding one into another. The inter-process 
communication protocol is based on ParaView Python API. The proposed approach allows using 
the full power of ParaView and data management application with minimal integration efforts. 

 
Keywords  1 
Scientific visualization, 3D, ParaView, GUI, inter-process communication, python. 

1. Introduction 

In many cases 3D visualization is essential to understand data. For example, in oil and gas domain 
visualization of reservoir and wells helps petroleum engineers to develop exploration and production 
strategy. The market offers integrated domain-oriented software suits for those purposes. However, 
commercial solutions might not cover all the demands of the users in terms of data management. It is 
quite common when there is custom data management system covering critical business processes of 
the company. If this system lacks 3D visualization, commercial visualization software most likely will 
not help. First, it might have proprietary data format which is enclosed, meaning that it is impossible to 
create datafiles without using that software. Second, even if loading data is not an issue, the 
visualization feature set is limited and most likely not extendable due to closeness nature of those 
applications. Third is performance: 3D visualization is usually not a feature of primary focus for the 
business-domain oriented commercial applications, so it is unlikely that they will have visualization 
part designed for scalability and high performance in case of big datasets.  

ParaView is an open-source cross-platform general purpose visualization suite (Figure 1). In some 
cases, it can be a good alternative to visualizers of commercial packages. It has been developed by 
Kitware Inc. for more than since 2000. The core is VTK (visualization toolkit) – open-source SDK for 
high-performance cross-platform 3D visualization applications from the same vendor [1]. Desktop 
version of ParaView written with C++ is the most feature rich application of the whole variety [2].  It 
supports quite large number of formats – more than 100. The user can load datasets from files or create 
new objects using means of the application. Once the dataset is loaded or created it can be further 
modified in the application and saved later into a new datafile. New dataset can also be created by 
applying a filter. There are more than 200 filters in ParaView including slicers, thresholds, isosurfaces 
and many others. If standard filters or sources are not sufficient, it is possible to extend them by using 

                                                      
GraphiCon 2022: 32nd International Conference on Computer Graphics and Vision, September 19-22, 2022, 
Ryazan State Radio Engineering University named after V.F. Utkin, Ryazan, Russia 
EMAIL: oleg.kovalevskiy@aramcoinnovations.com (O. Kovalevskiy); marwan.charara@aramcoinnovations.com (O. Charara) 
ORCID: 0000-0003-2537-0035 (O. Kovalevskiy); 0000-0002-8343-5135 (M. Charara); 0000-0002-0612-0148 (M. Cancelliere) 

 
©  2022 Copyright for this paper by its authors. 
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).  

 



Graphic Information Systems and Immersive Technologies in the Product Life Cycle Stages GraphiCon 2022

1138 19–22 September 2022, Ryazan, Russia

python plugins [3]. Such extension does not even require recompiling ParaView. Another major feature 
of ParaView is that it is designed for performance and scalability. It can be used in client-server mode 
where the server part can run in multi-processing mode on a powerful node or even on a cluster, while 
the client part displays the resulting visualization on the ordinary user’s machine [4]. This feature is 
quite important when business domain deals with large datasets and oil reservoirs are good example of 
those [5]. The last, but not least, a very useful functionality of ParaView is its Python Shell which allows 
script commands as a more flexible alternative to GUI controls [6]. The python API scripting is highly 
facilitated by the tracing functionality of GUI controls during manipulation.  

 

 
 
Figure 1: ParaView desktop general overview 

 
If it is required to have a 3D visualization in a Data Management Application (DMA), ParaView 

can be a good choice. However, the strategy for integration is not straightforward. If the DMA is created 
using the same technology stack as ParaView, it is theoretically possible to embed one into another. 
However, it will require to understand the architecture of ParaView codebase (which is huge), to 
implement and to test the integrated solution, and finally, to ensure handling versions upgrade. In most 
cases, such approach will require too much effort to be practical. In case when DMA is written with 
something different from C++, the difficulty of such embedment increases even more.  Another option 
which is the main topic of this paper is to use both existing Data Management Application and ParaView 
as two different executables and to enable communication between them, so that the visualizer can 
receive commands from DMA, execute them, display the result, and, optionally, send the reply back to 
the calling application.  

2. Visualization in ParaView with GUI and Python Shell  

For better understanding we will illustrate the common visualization use-cases which can be handled 
in ParaView GUI and its Python Shell by using a case example of the Johansen Dataset reservoir model 
which is publicly available [7]. 

Loading a dataset in ParaView is straightforward: Main Menu  File  Open  (select file). When 
it is loaded, making it visible in Pipeline Browser will invoke rendering (Figure 2). 

 



GraphiCon 2022 Графические информационные системы и иммерсивные технологии на стадиях ЖЦ продукта

19–22 сентября 2022, Рязань, Россия 1139

 
 
Figure 2: Loading a dataset in ParaView using GUI controls 

 
It is also possible to load a dataset using ParaView Python Shell (Figure 3). The script to do this looks 
as follows: 
 

from paraview.simple import * 
formation_source = XMLUnstructuredGridReader(registrationName=’…’, FileName=[…]) 
formation_display = Show(formation_source) 
GetActiveView().ResetCamera() 
Render() 

 
 

 
 
Figure 3: Loading a dataset in ParaView using Python Shell 

 



Graphic Information Systems and Immersive Technologies in the Product Life Cycle Stages GraphiCon 2022

1140 19–22 September 2022, Ryazan, Russia

To find these python commands one can go to online documentation [6] or use GUI actions tracing 
from Main Menu  Tools  Start Trace.  
Default solid coloring can be easily edited in Properties panel and changed to the coloring related to 
one of the arrays in the dataset, for example POROSITY in our case. Also, it is possible to change scale 
in Transforming part. As our dataset has rather flat structure – the size in X and Y dimensions is much 
larger than in Z dimension, it is worth to change Z scale, for example, to 20 to have better insight into 
the layers of this formation (Figure 4). 
 

 
 
Figure 4: Changing scale and coloring of the dataset 

 
Python equivalent of these actions is: 
 

ColorBy(formation_display, ('CELLS', 'POROSITY')) 
formation_display.Scale = [1.0, 1.0, 20.0] 

 
For further enhancements of formation representation in terms of interior structure visibility it is 
possible to make the object semi-transparent. Again, it can be changed in the Properties panel or with 
short python command: 
 

formation_display.Opacity = 0.33 
 

Also, to distinguish the layered structure of the formation dataset it is possible to use Threshold 
filter. We’ll use POROSITY as a base property for threshold and make it inverted with range from 0.2 
to 0.3. It will make highly permeable middle layers hidden while keeping less permeable layers visible, 
indicating the barriers. Displaying grid by using ‘Surface With Edges’ representation type will help to 
underline the curvatures of the layers. And original semi-transparent dataset shown on top of the 
threshold will help to display initial borders (Figure 5). 
 
To apply a threshold filter using Python Shell: 
 

threshold_source = Threshold() 
threshold_source.Scalars = ['CELLS','POROSITY'] 
threshold_source.ThresholdRange = [0.2, 0.3] 
threshold_source.Invert = True 
threshold_display = Show(threshold_source) 
threshold_display.Scale = formation_display.Scale 



GraphiCon 2022 Графические информационные системы и иммерсивные технологии на стадиях ЖЦ продукта

19–22 сентября 2022, Рязань, Россия 1141

Show(formation_display) 
threshold_display.SetRepresentationType('Surface With Edges') 

 
 

 
 

Figure 5: Changing opacity and adding property-based threshold filter 
 

Now when the formation is loaded and visualized properly it’s time to add wells. It is possible to 
load them from ParaView-compatible file, but they can also be created right in the app as a new 
Geometric Shapes. For this, we need to use Main Menu  Sources  Geometric Shapes  Poly Line 
Source. Then it is required to input XYZ coordinates of the points into the table in Properties panel. To 
make it look like a pipe, need to enable Render Lines As Tubes setting and set Line Width = 10.  

To add labels with well names, we create new Text objects from Sources Annotation. It is required 
to define the content – well name, and the position - at the top of the well. Also, it is possible to adjust 
font size and other parameters for more adequate representation (Figure 6).  
 
Equivalent python code is: 
 

well_source = PolyLineSource(registrationName = 'Well_1') 
well_source.Points = [513000,6690000,0,513000,6690000,3200] 
well_display = Show(well_source) 
well_display.Scale = formation_display.Scale 
well_display.RenderLinesAsTubes = True 
well_display.LineWidth = 10 

 
 
label_source = Text(registrationName='Label Well_1') 
label_source.Text = 'Well_1' 
label_display = Show(label_source) 
label_display.TextPropMode = 'Billboard 3D Text' 
label_display.BillboardPosition = [513000.0, 6690000.0, 0.0] 
label_display.FontSize = 50 
label_display.Bold = 1 
label_display.Justification = 'Center' 
 

For the second well the code is very similar with the only difference in its name and geometry. 
 
 



Graphic Information Systems and Immersive Technologies in the Product Life Cycle Stages GraphiCon 2022

1142 19–22 September 2022, Ryazan, Russia

 
 
Figure 6: Adding wells as Poly Line sources and their labels as Text sources 

3. Integration with Data Management Application  

We have just reviewed how to load a formation dataset form file in ParaView-compatible format 
and how to create wells objects with manual input of properties. In real situation data may be stored in 
a database or in the files of the format oriented to the business systems, most likely different from what 
is required by ParaView. So, to make a visualization of the real data it needs to be converted into 
visualization-friendly format and stored on the same machine where ParaView is. If we think about 
wells, there can be hundreds of them in one formation. Of course, manual creation and data input as 
demonstrated above is not practical at all. I order to automate this it is possible to create python macros 
based on the scripts demonstrated above and then call them.  

 
def load_dataset(file_path): 
    import os 
    dataset_name = os.path.splitext(os.path.basename(file_path))[0] 
    formation_source = XMLUnstructuredGridReader(dataset_name, [file_path]) 
    formation_display = Show(formation_source) 
    GetActiveView().ResetCamera() 
    Render() 
 
def create_well(pad_name, well_name, trajectory): 
    well_source = PolyLineSource(registrationName = well_name + ' (' + pad_name +')') 
    well_source.Points = trajectory 
    ...  
 
def change_z_scale(value): 
        ... 
... 
 

However, this approach also has some disadvantages. Manual input of the input parameters to those 
macros will lead to regular errors. Also, petroleum engineers might feel uncomfortable working with 
python code as they are usually not professional programmers. On the other hand, if there is some data 
management system with at least basic GUI it is possible to manage those python macros using that 
app. Let’s consider for definiteness that we have such system and it's a Windows desktop application 
created with C# WinForms [8] (Figure 7).  



GraphiCon 2022 Графические информационные системы и иммерсивные технологии на стадиях ЖЦ продукта

19–22 сентября 2022, Рязань, Россия 1143

 
 

Figure 7: Simplified example of hypothetical oilfield Data Management Application (DMA) 
 

When user interacts with this application, he selects some objects, reviews or edits their properties, 
makes some statistical analysis, or even runs a simulation. However, it would be nice to enable 3D 
visualization that can be quickly invoked from this application. It will be possible if we find a way to 
send python script from the DMA to ParaView.  

There are different ways to do that and the simplest one is using means of operating system to capture 
the ParaView Python Shell window handle and then send keys to it as if user input those keys there 
directly. To implement Python Shell window capture we employ user32.dll– a Windows system library 
containing operating system management functions for message handling, timers, menus, and 
communications [9]. Though user32.dll is a native library it can be used from C# code if its methods 
are decorated with DLLImportAttribute [10]. Methods from that DLL help to find a ParaView 
application in the list of running processes and then identity Python Shell window and get its handle. 
Once window handle is captured, we can use SendKeys.Send method from System.Windows.Forms 
namespace to transfer messages from C# application to that Python Shell window [11] (Figure 8).  

 

 
 

Figure 8: Example of inter-process message exchange 
 



Graphic Information Systems and Immersive Technologies in the Product Life Cycle Stages GraphiCon 2022

1144 19–22 September 2022, Ryazan, Russia

Using this mechanism now we can send our oilfield visualization commands. For example, when 
user ticks Formation checkbox, ParaView loads it from file.  
 

 
 
Figure 9: Invocation of dataset visualization from DMA GUI 
  

In this example it is assumed that datasets are stored in *.vtu files – ParaView Unstructured Grid 
format. But if they are not, one can add an action to convert the data into this format and store it in temp 
file. The C# code in this example is simplified. In real implementation it would first check if the dataset 
is already loaded. Checking/Unchecking will be corresponding to Show() and Hide() actions in 
visualizer. 

Wells can be visualized using similar approach (Figure 10). 
 

 
Figure 10: Invocation of wells visualization from DMA GUI 
 



GraphiCon 2022 Графические информационные системы и иммерсивные технологии на стадиях ЖЦ продукта

19–22 сентября 2022, Рязань, Россия 1145

The default visualization of the formation and wells here is not very representative, so we might want 
to change it as before by adjusting Z-scale, using property-based coloring, transparency, threshold, line 
width and font size. We can do it in ParaView GUI, but in this case we’ll need to edit several properties 
of each object individually. If there are few formations, and few hundreds of wells it will be very time 
consuming and error prone. As an alternative we can configure manipulation of those parameters from 
our Data Management App. We’ll add visualization control panel (Figure 11). 
 

 
 
Figure 11: Invocation of visualization parameters adjustment from DMA GUI 
 
At this point we stop with visualization commands examples. But there is one important thing left. 
Sometimes getting response from the visualizer into the GUI might be required (Figure 12). And there 
is a way to enable this in current configuration. The simplest will be to transfer backward messages 
using files. Python scripts sent to ParaView should contain a code writing those messages to the file, 
while DMA should run and infinite loop monitoring for that file change. 

 
Figure 12: File-based mechanism of getting visualizer response 



Graphic Information Systems and Immersive Technologies in the Product Life Cycle Stages GraphiCon 2022

1146 19–22 September 2022, Ryazan, Russia

4. Conclusion 

3D visualization can significantly improve data management in different business processes. Though 
it might seem difficult to implement a feature-rich visualization into in-house system or even impossible 
to efficiently integrate with existing commercial visualizers, there still is at least one solution. In this 
study we have demonstrated an easy way of using such a powerful 3D visualization system as ParaView 
in conjunction with hypothetical custom Data Management Application. Python API of ParaView 
makes it possible to program visualization scenarios as python scripts. To pass those scripts here we 
use manipulation of windows handles and keystrokes simulations. However, this is not the only method, 
and it might have some disadvantages, it allows using ParaView as it is, without introducing any 
modifications in its source code and compiling it. We have also demonstrated a way to receive a reply 
form visualizer using shared file. 

5. References 

[1] Kitware Inc. VTK User's Guide. paperback edition, 3 2010. ISBN 978-1930934238.  
[2] Kitware Inc., ParaView guide. URL: https://docs.paraview.org/en/latest. 
[3] The ParaView Community, ParaView / Plugin HowTo. URL: 

https://www.paraview.org/Wiki/ParaView/Plugin_HowTo. 
[4] The ParaView Community. Setting up a ParaView server. URL: 

http://www.paraview.org/Wiki/Setting_up_a_ParaView_Server. 
[5] P. Novikov, D Sabitov, N. Bukhanov, M. Charara, M. Cancelliere, F. Rashed, & A. Baiz. (2022). 

Efficient Visualization Methods for Large Scale Reservoir Models. Conference Proceedings, 83rd 
EAGE Annual Conference & Exhibition, 2022(1), 1–5. https://doi.org/10.3997/2214-
4609.202210139. 

[6] Kitware Inc., ParaView python online documentation. URL:  https://kitware.github.io/paraview-
docs/latest/python/paraview.simple.html. 

[7] G.T. Eigestad, H. K. Dahle, B. Hellevang, F. Riis, W.T. Johansen, and E. Øian. Geological 
modeling and simulation of CO2 injection in the Johansen formation. URL: 
https://doi.org/10.1007/s10596-009-9153-y.  

[8] Microsoft corp., Create a Windows Forms app in Visual Studio with C# URL: 
https://docs.microsoft.com/en-us/visualstudio/ide/create-csharp-winform-visual-studio?view=vs-
2022. 

[9] Microsoft corp. Identifying Functions in DLLs. UrL: https://docs.microsoft.com/en-
us/dotnet/framework/interop/identifying-functions-in-dlls. 

[10] Microsoft corp. Consuming Unmanaged DLL. URL: Functionshttps://docs.microsoft.com/en-
us/dotnet/framework/interop/consuming-unmanaged-dll-functions. 

[11] Microsoft corp., System.Windows.Forms Namespace. URL: https://docs.microsoft.com/en-
us/dotnet/api/system.windows.forms?view=windowsdesktop-6.0. 

 

https://docs.paraview.org/en/latest/

