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Abstract  
The present paper explores the questions of development and practical application of the 
constructive method of geometric modeling. In particular, the paper justifies possibility of solution 
to the inverse problem of cyclographic mapping of a curve of space R3, i.e. reconstruction of a 
spatial curve given its cyclographic projection. It is proven that knowing either orthogonal and one 
of the two branches of the cyclographic projection of a curve of space R3 in plane z = 0, or both of 
its branches, is sufficient to determine a curve of space. The spatial curve, its orthogonal and 
cyclographic projections have common parameterization, which allows one to establish point-to-
point bijection between these three elements and perform solutions of the direct and the inverse 
problems of cyclographic modeling of a spatial curve. The paper formulates and establishes theses 
justifying the possibility of analytic solution of practical tasks of cyclographic modeling, for 
example, cutting tool trajectory calculation for high-precision pocket machining of machine-
building products on NC units. The algorithm for solution to the inverse problem is demonstrated 
on examples. 
 
Keywords  1 
Cyclographic mapping, medial axis, medial transformation axis, inverse task, α-shell, vertex points 
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1. Introduction 

Cyclographic modeling of geometric objects is based on bijection that is established, in its simplest 
form, between a multitude of points R3 and a multitude of cycles in plane z = 0 [1,2]. Presently, due to 
the high technology level of computer graphics and CAD, the cyclographic method, while complex and 
approximate in manual constructive realization, is more and more successful at finding application in 
theoretic geometric studies [1,2] as well as in practical solutions to the problems of geometric optics 
[1,3,4], road surface form design [2,3], surface processing in mechanical engineering [3,5], etc. 

The theory of cyclographic modeling of a spatial curve studies the direct and the inverse problems 
of modeling. The direct problem consists in construction of cyclographic projection of a given spatial 
curve [1,2,3], while the inverse problem constitutes spatial reconstruction of a curve given its 
cyclographic projection [2,4]. Combined, a curve of space R3, its orthogonal and cyclographic 
projections in plane z = 0 form a triad of geometric elements, where knowing any two elements out of 
three is necessary and sufficient to define the unknown third element [4]. Elements of the triad have 
common parameterization, which allows one to establish point bijection between the elements and solve 
both direct and inverse problems. 

The inverse problem is often applied in formation of equidistant curves used as cutting tool 
trajectories in pocket surface machining on NC units [3,5,6]. Its existing solutions are performed 
directly in plane z = 0 through methods based on approximate calculus [7,8,9,10]. 

2. Inverse problem of cyclographic modeling of a spatial curve 

In order to fully understand the inverse problem of cyclographic modeling of a spatial curve, let us 
consider geometric scheme of construction of its cyclographic projection (Figure 1). A spatial curve 
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( ) ( ( ), ( ))p t x t y t=  with parameter t is correspondent to a triad of lines on plane z = 0: an orthogonal 
projection 1( )p t , a cyclographic projection 1( )Сp t  and 2 ( )Сp t . Here ( )p t  is the prototype, while the 
pair of elements of the triad 1( )Сp t  and 2 ( )Сp t  constitute the image of the curve ( )p t  in cyclographic 
representation. The direct problem of modeling, i.e. 1 2( ) ( ( ), ( ))С Сp t p t p t→ , is considerably more 
thoroughly studied in scientific publications than the inverse problem 1 2( ( ), ( )) ( )С Сp t p t p t→ . In 
particular, if 1 2( ( ) ( )) ( )С С Сp t p t p t=  is a closed curve, which is the case in the relevant problem of 
cutting tool trajectory calculation in pocket machining, the urgent question is whether it is at all possible 
to calculate the geometric object fundamental for such calculation – the line ( )p t . Justification of this 
possibility consists in selecting an appropriate method of division of the closed contour ( )Сp t  into 
segments 1( )Сp t  and 2 ( )Сp t . Obviously, such division must engage the vertex points of the contour 

( )Сp t affecting its geometry. 
The objective of this study consists in development of new algorithms of inverse task solution based 

on cyclographic mapping of a spatial curve, simpler and more computationally available compared to 
the algorithms currently known. 

 

 
Figure 1: Cyclographic projection of curve ( )p t  generation scheme 

2.1. Theory 

Let us consider the theoretical aspects of solution of the inverse problem of cyclographic modeling 
of a spatial curve. The theory is based on the following statements. 
Statement 1. For any simple closed plane curve there is a unique spatial curve to which the first curve 
serves as a cyclographic projection.  

Let us verify this statement. A simple closed plane curve ( ) ( ( ), ( ))c c cp t x t y t= , 0T t T≤ ≤  in plane
0z =  is given. Let us divide this curve into two segments: 

1 1 11 1 1( ) ( ( ), ( ))c c cp t x t y t= , 01 1 1T t T≤ ≤  and 

2 2 22 2 2( ) ( ( ), ( ))c c cp t x t y t= , 02 2 2T t T≤ ≤ . Obviously, there is more than one method of such division; the 
guidelines to optimal division will be considered later. For each of the curve segments let us construct 
evolutes

1 1 11 1 1( ) ( ( ), ( ))e e ep t x t y t=  and 
2 2 22 2 2( ) ( ( ), ( ))e e ep t x t y t=  through the equations known in 

differential geometry 

1 1 1

1

1 1 1
1

1( ) ( ) ( )
( )e с с
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p t p t n t
k t

= + , 
2 2 2
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2 2 2
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1( ) ( ) ( )
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с

p t p t n t
k t

= + , 
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where 
iсk  represents curvature, 

iсn  represents normal, i = 1,2. 
For each of the evolutes let us construct a spatial image: 

   
( )
( )

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

2 2
1 1 1 1 1 1 1 1

2 2
2 2 2 2 2 2 2 2

( ) ( ), ( ), ( ) ( ( ) ( ) ( ( ) ( ) ) ,

( ) ( ), ( ), ( ) ( ( ) ( ) ( ( ) ( ) ) .

E e e e c e c e

E e e e c e c e

p t x t y t z t x t x t y t y t

p t x t y t z t x t x t y t y t

= = ± − + −

= = ± − + −
 (1) 

Then let us construct the respective α-surfaces [1]: 

    1 1 1 1

2 2 2 2

1 1 1 1 1 1

2 2 2 2 2 2

( , ) ( ) ( ( ) ( )),

( , ) ( ) ( ( ) ( ))
E c E

Е c Е

P t l p t l p t p t

P t l p t l p t p t
α

α

= + −

= + −
,     (2) 

The equations for α-surfaces 
1

Pα  
and 

2
Pα  in combination define the curve of intersection 

1 2
P Pα α  

that constitutes the MAT curve. Indeed, we can see that the cyclographic projections of the curve of 
intersection 

1 2
P Pα α belonging to the surfaces 

1
Pα  and 

2
Pα are the respective curves 

1cp  and 
2cp  in 

plane z = 0. The orthogonal projection of the curve of intersection 
1 2

P Pα α  is the curve 1p . In the 

geometric scheme of cyclographic surface formation the curve 1p  is a multitude of centres of all 
possible cycles tangent to the curves 

1cp  and 
2cp  simultaneously. Therefore the multitude of cycles 

inscribed into a domain of plane z = 0 bounded by curves  
1cp  and 

2cp constitutes a cyclographic image 

of a multitude of points of curve of intersection 
1 2

P Pα α  in plane z = 0. Since every α-surface is unique, 

as follows from the geometric scheme of cyclographic mapping 
1 1cp Pα→ , 

2 2cp Pα→ , there can be 

only one pair of surfaces 
1

Pα  and 
2

Pα , and only one curve of intersection 
1 2

P Pα α . 

Therefore the curve 
1 2

P Pα α is a line of space R3 to which the given curve ( )cp t  serves as a 
cyclographic projection. 

It is worth noting that in the general case the solution of the system of equations for the curves of 
intersection of α-surfaces 

1 1 1( , )P t lα  and 
2 2 2( , )P t lα  is not analytic unlike the solution to the problem of 

punctual construction of the curve of intersection 
1 2

P Pα α  defined as a discrete multitude of points of 
intersection of straight generatrices of one of the α-surfaces with the other [2]. 

It is preferable to perform division of the curve ( )cp t , that constitutes a simple closed convex 
contour ( )∂ Ω  of a domain of plane z = 0, using the vertex points of the curve ( )cp t . The division of 
the closed contour is based on the theorem of four vertices of a simple plane curve [11], i.e. any smooth 
simple closed curve in Cartesian plane has at least four vertices. This theorem is true for both convex 
and non-convex closed contours. The vertices of a smooth plane curve are the extremum points of its 
curvature. In the general case, when the curvature function has no degenerated points of curvature, i.e. 
the points where the second derivative is equal to zero, the closed curve has an even number of vertices 
with alternating maximum and minimum curvature values. 

Statement 2. For an open-ended simple plane curve there exists a multitude of spatial curves for 
which the first curve serves as a cyclographic projection. 

Let ( )cp t  be an open-ended simple curve in plane z = 0 as shown on Figure 2, left. Let us construct 
its evolute ( )ep t  and its spatial image ( )Ep t  defined by parametric equations (1). Let us now construct 
an α-surface defined by parametric equations, e.g. (2), see figure 2, right. Obviously, the cyclographic 
image in plane z = 0 of any possible curve belonging to the α-surface is one and the same line ( )cp t . 

Conclusions: 
1. Introduction of a functional dependence l = f(t), where f(t) is the function of homeomorphic 

mapping I L↔ , where 0:[ ]I T t T≤ ≤ , 0:[ ]nL l l l≤ ≤ , into the equation (2) singles out a curve of the 
α-surface (2) for which the given curve ( )cp t  serves as a cyclographic projection. Obviously, the 
function f(t) is not unique. 
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2. Introduction of an additional simple open-ended curve 1( )p ω  of plane z = 0 as an orthogonal 
projection of a certain curve on the α-surface (2) lets us define a single curve of space for which ( )cp t  
serves as a cyclographic projection. This follows from the mentioned properties of a triad of curves 

1( )p t , 
1cp , and 

2cp . 
Consequently, under these conditions the inverse problem of cyclographic mapping for the case of 

open-ended curve can be formulated as follows: it is required to construct a curve given its open-ended 
(incomplete) cyclographic and orthogonal projections in plane z = 0. In this task the spatial curve fulfills 
the role of an image, while the pair of curves in plane z = 0 serve as the prototypes of reverse 
cyclographic mapping. 

 
 

Figure 2: α-surface formation 

 
Let us consider the parametric equations ( )c cx x t= , ( )c cy y t=  for cyclographic mapping [2, 7] of 

a spatial curve ( ) ( ( ), ( ), ( ))p t x t y t z t= , 0T t T≤ ≤ . It can be noted that at 0D > , where 
2 2 2( ( )) ( ( )) ( ( ))D x t y t z t′ ′ ′= + − , the cyclographic image ( ) ( ( ), ( ))c c cp t x t y t=  includes two real 

components 
1
( )cp t  and 

2
( )cp t  that can either connect generating a closed curve in plane 0z = , or not 

connect and remain mutually dependent with respect to parameter t. It is irrelevant here that the 
orthogonal projection 1( ) ( ( ), ( ))p t x t y t=  of the curve ( )p t  is a single-parameter multitude of centres 
of cycles with envelope ( )cp t . The curves 1( )p t , 

1
( )сp t , 

2
( )сp t  in plane 0z =  form a triad where, as 

pointed out above, any curve is unambiguously determined by the other two [4]. The particularities of 
geometric construction of form generation of the curve ( )cp t  and the mutual parametric dependence of 
the specified curves of the triad need to be considered in solution of both direct ( ) ( )cp t p t→  and 
inverse ( ) ( )cp t p t→  problems of cyclographic modelling. Reasoning from the above general 
particularities and properties of geometric construction of cyclographic modelling of a spatial curve, let 
us consider the possibility of solution to the inverse problem given ( )cp t  in the form of a simple closed 
convex curve. In the theory of the inverse problem ( ) ( )cp t p t→ , it is conventional to name the curve 

( )p t  ‘MAT’ (Medial Axis Transformation), and its orthogonal projection 1( )p t  ‘MA’ (Medial Axis) 
[6,7,8]. In the modern studies the solution of the direct and the inverse problems is performed in plane 

0z =  with application of various apparatus and technologies of geometric and mathematical modelling 
[5, 7, 8, 9, 10]. The existing solutions are generally performed with scheme ( )cp t MA MAT→ →  and 
based on approximate calculations. 

In the present paper a different approach to solving the considered inverse task is proposed. This 
approach is based on the most simple computations for the problem and application of the space 3R . 
Let us consider the examples. 
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2.2. Results of experiments 

Example 1. A given boundary contour of a domain ( )∂ Ω  is given in the form of an ellipse, see 
Figure 3. It is required to determine the MAT curve. 

Let us divide the contour ellipse into two segments 
11( )pp t  and 

22 ( )pp t , and express their parametric 
equations 

1 1 1 11( ( ), ( ))p p p pp x t y t  and 
2 2 2 22 ( ( ), ( ))p p p pp x t y t . They are of the following form: 

1 1

1 1 1

1 1

2 2

2 2 2

2 2

2

1 1 1 12 2

2

2 2 2 22 2

2 1
, , 1 1, 4, 2;

1 1

2 1
, , 1 1, 4, 2.

1 1

p p
p p p

p p

p p
p p p

p p

t t
x a y b t a b

t t

t t
x a y b t a b

t t

−
= = − ≤ ≤ = =

+ +

−
= = − − ≤ ≤ = =

+ +

 

Since an ellipse has four vertices, let us further divide each of the segments 
11( )pp t  and 

22 ( )pp t  into 

two elementary segments with respect to parameters  
1pt  and 

2pt , as shown on figure 3: 

1 1 21 1 2 1 2( ) ( ) ( ),  1 0,  0 1 p с сp t p t p t t t= − ≤ ≤ ≤ ≤ − , 

  2 3 42 3 4 3 4( ) ( ) ( ),   1 0,   0 1p с сp t p t p t t t= − ≤ ≤ ≤ ≤ − . 
Let us then determine the equations for elementary segments ( )

iс ip t  between points Ti and Ti+1, 
where Ti is the vertex of the curve serving as the initial point of an elementary segment of the ellipse, 
Ti+1 is the next vertex of the curve serving as the final point of an elementary segment of the ellipse. 
The elementary segments are formed as follows: 

1 1 1
( ), 1 0с p pp t t− ≤ ≤  and 

2 1 1
( ),0 1;с p pp t t≤ ≤  

3 2 2
( ), 1 0с p pp t t− ≤ ≤  and 

4 2 2
( ),0 1с p pp t t≤ ≤ , where tTi ≤ 

ipt ≤ tTi+1;  ti  is the current parameter of the 
segment TiTi+1; ti = (1– λ)∙tTi+ λ tTi+1;  0 ≤ λ ≤ 1. The equations for the four elementary segments of an 
ellipse are of the following form: 

1 1 1

2 2 2

3 3 3

4 4

2
1 1

1 12 2
1 1

2
2 2

2 22 2
2 2

2
3 3

3 32 2
3 3

4

8 1( ) :      , ,0 1;
1 1

8(1 ) 2((1 ) 1)( ) :      , ,0 1;
(1 ) 1 (1 ) 1

8(1 ) 2(1 (1 ) )( ) :      , ,0 1;
(1 ) 1 (1 ) 1

( ) :      

c c c

c c c

c c c

c c

t tp t x y t
t t

t tp t x y t
t t

t tp t x y t
t t

p t x

−
= = ≤ ≤

+ +

− − +
= = ≤ ≤

− + − +

− − −
= = − ≤ ≤

− + − +

=
2

2 2
4

42 2
4 4

2(1 )8 , ,0 1.
1 1c

tt y t
t t

−
= − ≤ ≤

+ −

 

Let us now express the parametric equations for spatial images of evolutes 
1 1( )Ep t , 

2 2( )Ep t , 
3 3( )Ep t , 

and  
4 4( )Ep t  of the elementary segments ( ), 1,2,3,4

iс ip t i =  (see Figure 4) based on the equations E ex x=

, E ey y= , 2 2( ) ( )E c E c Ez x x y y= − + − , where ( ), ( )e ex t y t  are the parametric equations for an 

elementary segment evolute. Let us proceed with formation of α-surfaces 1 1 1( , ),P t lα 2 2 2( , )P t lα , 

3 3 3( , )P t lα , and 4 4 4( , )P t lα  on the basis of the general α-surface equation 

1
( , ) ( ) ( ( ) ( ))c E cP l t p t l p t p tα = + −  with certain parametric expressions for coordinates for each of the α-

surfaces. 
Technically, the line of intersection of two parametrically defined α-surfaces is acquired by solution 

of a system of three equations in four unknown. In the considered case the intersecting α-surfaces are 

1 1 1 11 1 1 1 1 1( ( , ), ( , ), ( , ))P x t l y t l z t lα α α α=  and 
4 4 4 44 4 4 4 4 4( ( , ), ( , ), ( , ))P x t l y t l z t lα α α α= . In order to acquire the line of 

their intersection, it is required to express the four unknown parameters 1 1 4, ,t l t , and 4l , through one of 
the two unknown parameters l1 and l4: 
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y t l y t l

z t l z t l

α α

α α

α α

 =
 =
 =

 

 

 
 

Figure 3: Boundary contour ( )∂ Ω  - an ellipse of 
four elementary segments

1 2 3 41 2 3 4( ) ( ) ( ) ( )c c c cp t p t p t p t    
 

Figure 4: Spatial image of evolute of an ellipse 

 
Since we consider the intersection of two ruled surfaces, the solution of the system of equations can 

be performed by finding functional dependencies of parameters of the system of equations. For 
example, let us first find the function of parameter 1l , namely 1 1 4 4( , , )l t t l , from the equation 

1 1 1 4 4 4 ( , ) ( , )z t l z t l=  with the aid of symbolic calculus feature of Maple software. Then, also through 
Maple software, let us determine the functional dependence of parameter 4l , namely 4 1 4( , )l t t , from the 

equation 1 1 1 1 4 4 4 4 4( , ( , , )) ( , )y t l t t l y t l= . Then we express the function of parameter 4t  by solving a 

system of equations 1 1 1 4 4 4( , ) ( , )x t l x t l= , where 1 1 4 4( , , )l t t l  and 4 1 4( , )l t t  are the parameter functions. This 
is the way we acquire the parameter functions 4 1 1( , )l t l ,  4 1 1( , )t t l , and 1 1 4 4( , , )l t t l . By substitution of 
the parameter function 1 1 4 4( , , )l t t l  into the equation for α-surface 

1 1 1 11 1 1 1 1 1( ( , ), ( , ), ( , ))P x t l y t l z t lα α α α=  we 

acquire the parametric equations for the curve 1 1( )MAT t  of intersection of the surfaces 1 1 1( , )P t lα  and 

4 4 4( , )P t lα , see Figures 5, 6: 

1 41 1 1
1 1 1 1 1 1 4 4 1 4 1 4( ( ), ( ), ( )) ( , ) ( , ),  [0,1], [0,1], [0,1], [0,1].MAT MAT MATMAT x t y t z t P t l P t l t t l lα α= = ∈ ∈ ∈ ∈  

Through functional dependence of parameters we can express parameter function 1 4 4( , )t t l , and then 
determine parameter functions 1 4 4( , )l t l ,  4 1 1( , )t t l , and 4 4 1 1( , , )l t t l . By substitution of the function 

4 4 1 1( , , )l t t l  into the equation for α-surface 
4 4 4 44 4 4 4 4 4( ( , ), ( , ), ( , ))P x t l y t l z t lα α α α=  we acquire the 

parametric equations for the curve 4 4( )MAT t  of intersection of surfaces  1 1 1( , )P t lα  and 4 4 4( , )P t lα , see 
Fgures 5, 6: 

1 4 4 4 4
4 41 1 4 4 4 4 4 1 4 1 4( , ) ( , ), ( ( ), ( ), ( )),  [0,1], [0,1], [0,1], [0,1].MAT MAT MATMAT P t l P t l MAT x t y t z t t t l lα α= = ∈ ∈ ∈ ∈

I the same way, solving the system of equations 

2 3

2 3

2 3

2 2 3 3

2 2 3 3

2 2 3 3

( , ) ( , ),

( , ) ( , ),

( , ) ( , ),

x t l x t l

y t l y t l

z t l z t l

α α

α α

α α

 =
 =
 =

 

we find the curves 2 2( )MAT t  and 3 3( )MAT t , see Figures 4, 5: 
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2 3 2 2 2
2 22 2 3 3 2 2 2

2 3 2 3

( , ) ( , ), ( ( ), ( ), ( )),  

                  [0,1], [0,1], [0,1], [0,1];
MAT MAT MATMAT P t l P t l MAT x t y t z t

t t l l
α α= =

∈ ∈ ∈ ∈


 

2 3 3 3 3
3 32 2 3 3 3 3 3

2 3 2 3

( ( , ) ( , ), ( ( ), ( ), ( )),  

                  [0,1], [0,1], [0,1], [0,1].
MAT MAT MATMAT P t l P t l MAT x t y t z t

t t l l
α α= =

∈ ∈ ∈ ∈


 

The parametric equations for curves 1 2 3 4,  ,   and MAT MAT MAT MAT  are acquired through the 
functional dependence of parameters 1 1 4, ,t l t , and 4l . The resultant expressions are too cumbersome to 
present them in print; one can download these calculations and view them in Maple following the link 
below: https://www.mapleprimes.com/posts/213421-Spline-Curves-Formation-Given-Extreme-
Derivatives?sp=213421. 

As a result of the calculations, we acquire the MAT curve for the contour of a domain bounded by 
an ellipse. The MAT constitutes a composite curve: 

1 3MAT MAT MAT=  = 4 2MAT MAT = 1 2MAT MAT  = 4 3MAT MAT . 
 

 

 
 

Figure 5: MAT formation visualization 
 

Figure 6: Composite α-shell formation 
visualization 

 
Example 2. Let us consider construction of a convex boundary contour of a domain ( )∂ Ω  based on 

a cyclic homogenous cubic B-spline given knot points (‑3, 5); (0, 8); (6, 10); (7, 5); (3, 3); (‑3, 5); let 
us then construct the MAT curve for this contour. 
It is known that a B-spline curve is defined by the following expression [11, 12]: 

, min max
0

( ) ( ),    u
n

i i k
i

p t T N t t u
=

= ≤ ≤∑ , 

where the ith normalized basis function , ( )i kN t  of order k is defined recursively by the Cox – de Boor 
formula: 

, 1 1, 1
,

1 1

( ) ( ) ( ) ( )
( ) i i k i k i k

i k
i k i i k i

t u N t u t N t
N t

u u u u
− + + −

+ − + +

− −
= +

− −
, 

1
,

1     if 
otherwi

( )
0    ,se

i i
i k

u t u
N t +≤ ≤

= 


 



GraphiCon 2022 Геометрическое моделирование. Компьютерная графика в образовании

19–22 сентября 2022, Рязань, Россия 1007

where 1i iu u +≤ represent knot interval borders for parameter t, where the basis function  , ( )i kN t  has 
non-zero values; k represents basis function degree; k – 1 is elementary B-spline degree; n + 1 
represents the number of knots; [u0, u1, …, um-1] defines knot vector. The knot vector is the basic object 
of B-spline curve construction. A total of m = n + k + 1 particular knot values of the normalized knot 
vector are spread on equal distances. In order to construct a cyclic (closed) B-spline curve, it is required 
to repeat k – 2 vertices at the initial and the final points of the closed polygon defined by the given 
knots. In our current example n = 5, k = 4. In order to construct a closed B-spline curve, let us repeat 
two knots for further calculations: (-3, 5); (0, 8); (6, 10); (7, 5); (3, 3); (‑ 3, 5); (0, 8); (6, 10); then 
n = 7, m = 7 + 4 + 1 = 12. Therefore the following is true for each knot vector: 

0 1 2 3 4 5 6 7 8 9 10 11

[1 2 3 4 5 6 7 8 9 10 11 12]
[ ]u u u u u u u u u u u u

 

The number of elementary B-splines taking part in B-spline curve construction does not match the 
number of knot vector intervals. The curve is evaluated within effective intervals only. Auxiliary knots 
do not affect the resultant approximating curve, but rather allow us to construct and apply a complete 
set of elementary B-splines in B-spline curve calculation. The following condition is true for the 
effective intervals of the uniform knot vector with zero-based indices and integer incrementation: 

1 1k t n− ≤ ≤ +  [11]. In this example the indexing is one-based, therefore the effective intervals are 
defined by the interval 1 1 1 1k t n− + ≤ ≤ + + , hence 4 9t≤ ≤ . The parametric equations for segments 

( ( ), ( ))
i ii p pp x t y t=  of the boundary contour ( )∂ Ω  filling the effective intervals ( 4 5,t≤ ≤ 5 6,t≤ ≤

…,8 9t≤ ≤ ) are of the following form: 

5p  5

2 335 9 3 4( 4) ( 4) ,
2 2 2 3px t t t= − + + − − −  

 5

2 313 5 1 ( 4) ( 4) ,
6 2 2py t t t= − + − − − − 4 5t≤ ≤ ; 

6p  6

237 5 7( 5) ,
3 2 2px t t= − − − +

 
 6

2 349 3 7 5( 5) ( 5) ,
3 2 2 3py t t t= − − − + − 5 6t≤ ≤ ;

 
7p  7

2 391 3 5 1( 6) ( 6) ,
6 2 2 2px t t t= − − − + −

 
 7

3 253 7 1 3( 6) ( 6) ,
2 2 6 2py t t t= − + − + − 6 7t≤ ≤ ;

 
8p  8

2 3113 115 ( 7) ( 7) ,
3 6px t t t= − − − + −  

 8

2 311 12( 7) ( 7) ,
3 2py t t= + − − − 7 8t≤ ≤ ; 

9p  9

2 321 3 9 ( 8) ( 8) ,
2 2 2px t t t= − + − − −  

 9

2 389 5 1 1( 8) ( 8) ,
6 2 2 3py t t t= − + + − − − 8 9t≤ ≤ . 

The evaluated closed convex B-spline curve is presented on Figure 7; it has six vertices with 
alternating maximum and minimum curvature values as shown on Figure 8. 

The calculated vertex points of curve ( )∂ Ω  allow us to divide it into three segments 6‑ 1‑ 2, 
2‑ 3‑ 4, 4‑ 5‑ 6. The borders of these segments are the three vertex points 2, 4, 6 of maximum 
curvature. These segments are accepted as the first directrices of the three α-surfaces (by the number of 
pairs of vertices 6-2, 2-4, 4-6 of maximal curvature). The second directrices of these α-surfaces are 
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spatial images of respective evolutes. Further division of the acquired B-spline curve into segments this 
time limited only by vertex points requires reparametrization of the curve. It is worth noting that this 
division does not affect the resultant MAT geometry. 

 

 
 

Figure 7: Boundary contour ( )∂ Ω  in the shape of a B-spline curve 
 

 
Figure 8: Boundary contour ( )∂ Ω  in the shape of a B-spline curve 

Consideration of pairs of second directrices of the three constructed α-surfaces 6’’-1’’-2’’, 2’’-3’’-
4’’, 4’’-5’’-6’’ allows us to determine their common points 2’’, 4’’, 6’’. These points correspond to the 
maximum curvature points of B-spline curve ( )∂ Ω  and therefore can belong to the sought MAT curve. 
At the same time, orthogonal projections of peak points 1’’, 3’’, 5’’ (points of zmax) of each of these 
directrices constitute in plane z = 0 vertex points of minimal curvature. 

Of the three points 2’’, 4’’, 6’’ two points 2’’ and 6’’ correspond to the vertex points 2 and 6 of the 
contour ( )∂ Ω with higher curvature than the point 4. Besides, points 2’’ and 6’’ are, as follows from 
the evolute 1’-2’-3’-4’-5’-6’, boundary points of the sought MAX curve for the given contour ( )∂ Ω . 
Point 4’’ does not belong to the MAT curve as follows from the calculation results and Fgure 9. The 
results of the conducted calculations are visualized on Figure 10. 

This example confirms existence of a MAT curve of a convex contour ( )∂ Ω  in the form of a B-
spline curve, due to the existence of points 2’ and 6’ belonging to this curve. The MAT curve is acquired 
as a multitude of points of intersection of straight lines of the α-surfaces. In order to do that, through 
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the general equation ( , ) ( ) ( ( ) ( ))
i ii i i E iP t l p t l p t p tα = + −   we perform preliminary analytic formation of 

α-surfaces 5 5( , )P t lα , 6 6( , )P t lα , 7 7( , )P t lα , 8 8( , )P t lα , and 9 9( , )P t lα , where ( )ip t  and ( )
iEp t are 

parametric equations for segments and spatial images of the evolutes of these segments defined by 
formulas ( )

iE i ex x t= , ( )
i iE ey y t= , 2 2( ) ( ) ( )

i i i i iE p E p Ez t x x y y= − + − . 
 

 
Figure 9: Visualization of intersection of the α-surfaces 
 

 
 

Figure 10: Visualization of the calculated MAT curve 
 

The analysis of the calculations presented in examples 1 and 2 allows us to come to the following 
conclusions: 

1. Given a boundary contour ( )∂ Ω  in the form of separate second-degree curves or outlines of their 
segments, it is possible to produce an analytical solution to the inverse problem of cyclographic 
modeling of a curve. 

2. Optimal division of the given cyclographic projection ( )cp t  into elements in order to construct 
the MAT curve is achieved when the boundary points of the elements are located at the vertex points of 
curve ( )cp t . 

3. Given a convex contour ( )∂ Ω , two of its points with highest curvature define the MAT curve 
boundaries. 

4. Not every point of convex contour ( )∂ Ω  of curvature maximum defines the MAT curve 
boundaries, i.e. there may be lines of intersection of α-surfaces not included into the sought MAT curve. 

3. Conclusion 

The results of the study prove that given a plane domain boundary contour as a cyclographic 
projection of a spatial curve allows one to unambiguously construct the said curve. Compared to the 
known solutions, the proposed geometric model of solution to this problem has the advantages of 



Geometric Modeling. Computer Graphics in Education GraphiCon 2022

1010 19–22 September 2022, Ryazan, Russia

simplicity and precision of calculation algorithm that provides an analytic solution to the problem given 
a boundary contour in the form of second-degree curves. For the case of more complex boundary 
contours, another algorithm providing analytical definition of the sought curve in the form of a discrete 
series of points is proposed. 
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