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Abstract  
In cyclographic modeling of lines of space R3 direct and inverse problems and their solutions are 
known. In addition to the classic cyclographic projection, there is modified cyclographic projection 
of a line of space, developed on the basis of the classic one. The modified cyclographic projection 
has practical relevance in design of general purpose road surface forms. For this projection, the 
solution of the direct problem, i.e. to determine modified cyclographic projection given a curve of 
space (road axis), is known. In this paper, we propose a solution to the inverse problem - to restore 
the initial space curve given its modified cyclographic projection. The paper provides justification 
for solution to the inverse problem and considers on example an analytic solution to the inverse 
problem given second-order curves. The results of this study can be applied as the basis for 
development of computer-aided design systems for road surface forms, both in creation of new 
working surface forms, and in restoration the existing ones. 
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1. Introduction 

Due to advances in information technology, computer aided design and computer algebra systems, 
the method of cyclographic modeling of geometric objects is more and more often finding application 
in solutions to completely different areas of both science and production [1-4]. One of the distinguishing 
features of this method is the parametric bijective correspondence of the triad of curves generated by 
cyclographic mapping of a spatial curve into projection plane. This fact allows one to solve both the 
direct and the inverse problems of cyclographic modeling of a spatial curve. 

The development of cyclographic model of a spatial curve allowed the authors to acquire its 
modified cyclographic projection, where the straight generatrices of the ruled surfaces constituting the 
cyclographic modeling apparatus elements are located in a plane perpendicular to the orthogonal 
projection of the curve [4]. In further studies, such projection was applied in development of the 
geometric model for common purpose road surface formation [4]. 

Analysis of the body of research in the area of automated design of road surface forms allows us to 
conclude that over the past years a relatively new method of design has emerged. This method is based 
on 3D representation of the modeled objects of road construction. Retirement of the traditional biplane 
design allows one to significantly simplify and reduce computational operations in design, as well as 
visualize the modeled road surface objects on each stage of design. At the same time, we see the 
appearance of new problems that require finding the location of road axis in space given various 
blueprints, plans or photographs. Even though in road surface form design based on the classic 
cyclographic mapping this problem is effectively solved [1,5], in the case of the modified cyclographic 
mapping behind the geometric model for common purpose road surface formation this problem has not 
yet been studied. 
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2. Theory 

In cyclographic mapping a projection of a point ( , , )A x y z  of space R3 constitutes a cycle (a directed 
circle) in plane 0z =  of radius z centered at coordinates ( , )x y . The direction of the cycle is determined 
by the location of the point with respect to projection plane, i.e. the sign at z coordinate [5-8]. This 
method of mapping generates a projecting cone with vertex at the point A and base in plane 0z = . Its 
base is the cycle, and the cyclographic projection of the point. Evidently, the cyclographic projection 
of a spatial curve ( ) ( ( ), ( ), ( ));P t x t y t z t=  0'( ) 0; :P t t R T t T≠ ∈ ≤ ≤  constitutes an envelope of a one-
parameter multitude of cycles consisting, in general, of two effective branches. The given spatial curve 
and its cyclographic projection combined allow us to acquire a ruled surface, where these curves serve 
as generatrices. In classic cyclographic projection half-angle α at the projecting cone vertex is equal to 
α = 45°; the equations for the cyclographic α-projection of a spatial curve are known [7]. In their 
previous studies, the authors have derived the equations for the cyclographic β-projection and β(t)-
projection of a spatial curve. Here half-angle β can either have constant value in range  0° < β < 90°, or 
even be represented by a certain function β(t) of the initial curve parameter [4]. In the latter case, the 
generalized cyclographic projection is described by the equations of the following form: 
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where ( ) ( ) '( ) '( ) ( );t e t z t e t z tµ = ⋅ + ⋅ 2 2( ) '( ) '( ) ; ( ) ( ( )).t x t y t e t tg tλ β= + =  
The acquired generalized equations for cyclographic projection of a spatial curve have laid the basis 

for development of the geometric model of road surface formation through cyclographic mapping [4]. 
However, state codes and standards dictate certain requirements to designed objects of road 
construction [9]. This includes the requirement for all orthogonal projections of straight generatrices of 
road surface form to be located in a plane perpendicular to the orthogonal projection  1( )P t  of road axis 

( )P t . In order to conform to this requirement, the authors have proposed modification of the classic 
cyclographic projection that rotates (see Figure 1) the orthogonal projections into the desired location. 
This transformation is considered in detail in paper [4]. The acquired equations for the modified 
cyclographic projection of a spatial curve are of the following form: 
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As follows from the theory of bisectors [10], the orthogonal projection 1( )P t  of curve ( )P t  
constitutes a bisector line for the curves (1) ( )P tβ  and (2) ( )P tβ . It is known that a bisector line of two 
geometric objects constitutes a geometric locus of points equidistant to the points of the objects, where 
the distance to the bisector line is determined in direction orthogonal with respect to the objects [10, 
11]. Obviously, the curve 1( )P t  does not constitute a bisector line of the modified cyclographic 
projection curves (1) ( )chP t  and (2) ( )chP t . According to the construction scheme, the curve 1( )P t  

constitutes a line of curvilinear symmetry, since normal distances from any point of curve 1( )P t  to 
curves (1) ( )chP t  and (2) ( )chP t  are equal. 

Theoretically, is it at all possible to reconstruct the initial curve given its modified cyclographic 
projection? If we consider the problem ( ) ( )chP t P t→  as direct, then obviously, ( ) ( )chP t P t→  would 
be the inverse problem. The present paper is dedicated to solution of this problem. It is worth noting 
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that, apart from the theoretical interest, the inverse problem can find application in reconstruction of 
road axis given various design documents, blueprints or real-life measurements of road edge reference 
coordinate points [12-14]. The latter is most relevant in road surface restoration, when, as a rule, the 
actual position of the road axis is compared to its design position in order to estimate the volume of 
repair operations [12]. Of high importance is the 3D visualization of the design solution allowing one 
to estimate spatial visibility on the road, visibility on turns and joints, etc. 

 

 
a)                                                                                 b) 

Figure 1: Modified cyclographic projection (1,2) ( )chP t  construction scheme [4] 
 

Let us consider solution of the inverse problem (1,2) ( ) ( )chP t P t→ , where (1,2) (1) (2)( ) :ch ch chP t P P∪ . 

Note that parameters at the given curves (1)chP  and (2)chP  aren’t the same: (1) (1) 1 10 1 11( ),ch chP P t T t T= ≤ ≤ , 

(2) (2) 2 20 2 22( ),ch chP P t T t T= ≤ ≤ . It is therefore required to determine the relation of the parameters of the 

given curves (1) 1( )chP t  and (2) 2( )chP t . In classic cyclographic modeling this task is known as the inverse 
problem; its solution is known [2, 9]. Let us briefly consider the idea behind this solution. Given two 
branches (1) 1( )P tβ  and (2) 2( )P tβ of cyclographic projection in projection plane 0z = , it is required to 

reconstruct the corresponding curve ( )P t  in space. In order to do that, curves (1) 1( )P tβ  and (2) 2( )P tβ  

are put into correspondence with respective cyclographic images constituting ruled surfaces (1)Φβ  and 

(2)Φβ  with a certain incline of generatrices to plane 0z = . For example, in α-mapping the incline angle 
is equal to 45°, while in β-mapping the incline angle is (90 - β)° [2]. Then the curve of intersection of 
these surfaces is found analytically, expressed, for instance, through parameter 1t . In practice, analytic 
solution to this problem can be acquired in case both (1) 1( )P tβ  and (2) 2( )P tβ  constitute second-degree 

curves or outlines of such curves. Therefore the curve 1( )P t (Figure 2) as the orthogonal projection of 
the curve (1) (2)( ) : Φ ΦP t β β∩  constitutes the sought curve. This allows us to bring the curve (2) 2( )P tβ  to 

parameter t1. As a result, cyclographic mapping in projection plane forms a triad of related curves 1 1( )P t
, (1) 1( )P tβ , and /

(2) 2 1 1( ( )),  ( ) 0P t f t f tβ = ≠ . 

Obviously, the described solution does not work for curves (1) 1( )chP t  and (2) 2( )chP t  acquired through 
the modified cyclographic mapping. It is also obviously impossible to uniquely define the position of 
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the sought curve ( )P t  without knowing the position of the curve 1( )P t  of the cycle centers and the 
value of generatrix turn angle φ (see Figure 1b).  

 

 
 

Figure 2: Visualized solution to the inverse problem of cyclographic modeling of a spatial curve  
 
Construction of α-surfaces with generatrices (1) 1( )chP t  and (2) 2( )chP t  allows one to acquire the spatial 

curve 1 (1) (2)( ) : Φ Φch ch chP t ∩  and its orthogonal projection ,1 1( )chP t  ) (Figure 3). Obviously, the curve 

,1 1( )chP t  is the bisector line of the curves (1) 1( )chP t  and (2) 2( )chP t , but it is not the line of curvilinear 

symmetry, i.e. not the orthogonal projection of the sought curve ( )P t . However, the curve ,1 1( )chP t  

allows us to bring the given the curves (1) 1( )chP t  and (2) 2( )chP t  to bijective correspondence of parameters, 

i.e. to common parameterization. Now that any point 1iC  of the curve (1) 1( )chP t  is bijectively 

correspondent to a certain point 1iB  of the curve (2) 2( )chP t , it is possible to find the midpoints of straight 

line segments 1 1i iB C  constituting the points 1A  of the sought curve 1( )P t  (see Figure 3). Since projecting 
cone base radius is equal to distance 1 1iA B  (or 1 1iA C ), it is also possible to reconstruct the spatial curve 

( )P t  for the case of cyclographic α-projection.  

3. Results of experiments 

Let us consider an example. The two given curves (1) 1( )chP t  and (2) 2( )chP t  (Figure 4) located in 
projection plane 0z =  are defined by the following equations: 

2
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It is required to reconstruct the initial spatial curve ( )P t , for which these curves constitute the 
modified cyclographic projection. 
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Figure 3: Scheme for reconstruction of points of the orthogonal projection 1( )P t  of the initial curve 

( )P t given the branches of the modified cyclographic projection of ( )P t  
 
Following the algorithm for the inverse problem of cyclographic modeling of a spatial curve, let us 

put the given curves into correspondence with respective α-surfaces [2,9]. To accomplish this, let us 
construct spatial images of the evolutes of these curves through the formulas known in differential 
geometry:  
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where i=1,2. We do not cite the evaluation of the acquired equations due to its awkwardness.  

 
 

Figure 4: The given data for the considered example 
 
The given curves in combination with the respective spatial images of their evolutes form ruled 

surfaces (1) 1( )chΦ t  and (2) 2( )chΦ t . The equations for these surfaces are of the following form: 
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By equating ( ) ( )(1) 1 1 (2) 2 2, ,ch chX t l X t l= , ( ) ( )(1) 1 1 (2) 2 2, ,ch chY t l Y t l= , ( ) ( )(1) 1 1 (2) 2 2, ,ch chZ t l Z t l= , we can 
acquire a system of three equations in four unknown. Such system is solved through functional 
dependencies of its parameters. In the considered example, we start by expressing the parameter 

2 2 1 2 1( , , )l f t t l=  from the equation ( ) ( )(1) 1 1 (2) 2 2, ,ch chZ t l Z t l= . Then, by substitution of the acquired 

expression into the equation ( ) ( )(1) 1 1 (2) 2 2, ,ch chY t l Y t l= , we express the value 1 1 1 2( , )l f t t= . Further 

substitution of the acquired expressions for 1l  and 2l  into the equation ( ) ( )(1) 1 1 (2) 2 2, ,ch chX t l X t l=  

allows us to express parameter 2 1( )t f t= . Substitution of the acquired dependencies 2 2 1 2 1( , , )l f t t l= , 

1 1 1 2( , )l f t t= , and 2 1( )t f t= into the equations for surface (1) 1( )chΦ t  results in the parametric equations 

for the spatial curve 1( )chP t : 
( ) ( ) ( ) 11 1 1; ; , 0 1.ch x ch y ch z       x f t y f t z f t t= = = ≤ ≤  

Reconstruction of the curve 1( )chP t  is visualized on Figure 5. All the calculations of functional 
dependencies of parameters performed below, as well as all the visualizations presented on the figures, 
were performed in Maple computer algebra system. 

 

 
 

Figure 5: Reconstruction of the curve 1( )chP t . Spatial visualization 
 
The acquired curve 1( )chP t  allows us to express the curve (2) 2( )chP t  through parameter 1t . The 

resulting equations for the curve (2) 2 1( ( ))chP t f t=  take the following form in Maple computer algebra 
system: 
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where 10 1t≤ ≤ . The function RootOf is Maple-specific and indicates that the underlying expression is 
not solvable in radicals. However, this does not prevent the program from providing correct end results 
for both symbolic and numeric calculations. 

As a result, every point of the curve 1( )chP t  bijectively corresponds to a certain point of the curve 

(2) 2 1( ( ))chP t f t= . As follows from Figure 3, the sought points 1iA  are the midpoints of straight line 

segments intersecting the curves 1( )chP t  and (2) 2 1( ( ))chP t f t=  in points of equal values of parameter 1.t  
Symbolically these points can be determined by establishing a linear dependency between the 
correspondent points of curves 1( )chP t  and (2) 2 1( ( ))chP t f t= : 
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=
 

where 10 1t≤ ≤ , 0,5λ = . The equations for orthogonal projection 1( )P t  of the sought curve ( )P t  
evaluated in Maple computer algebra system are of the following form: 
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As we can see from Figure 1b, any point 1 1 1 1 1( ( ), ( ))A x t y t  of curve 1( )P t  constitutes an orthogonal 
projection of a projecting cone vertex. Evidently, the continuous multitude of the vertices matches the 
sought spatial curve ( )P t . Therefore, for example, in case of α-projection, applicate z value of a point 

1A  will be equal to the distance from the point 1A  to one of the curves  (1) 1( )chP t  or (2) 1( )chP t  in 

normal direction with respect to curve 1( )P t . Therefore, applicate 1 1( )z t  can be determined from the 

equation 1 1 (1) 1 1 1 (1) 1 1 1
2 2( ) ( ) ( ) (( ) ( ( )) )ch chz t x t x t y t y t= − + − : 

2 5 4 2 3
1 1 1

3 2 4 2 5 3 2
1 1 1 1 1 1 1

5 4 2 3 3
1 1 1

1 1
2

2
1 1

1 0,125 (4096 _ 576 _ (1024 8192) _

(48 23760 ) _ ( 192 63360 13312) _ 3 48 2438

( )

)4 )

(4 1,5 (4096 _ 576 _ (1024 8192) _ (48 23 0 ) _76

t RootOf Z t Z t Z
t t Z t t Z t t t

t RootOf Z t Z t Z

z t (

t Zt

= − + − + + +

+ + + − − + + − −

− − + + + +

+

+
4 2 5 3 2

1
1

1 1 1
/2

1( 192 63360 13312) _ 3 48 24384 ) .) )t t Z t t t+ − − + +

+

− −

 

The acquired spatial curve 1 1 1( ) ( ( ), ( ), ( ))P t x t y t z t=  is the sought one. It also allows one to determine 
the classic cyclographic projection through the equations (1). Figure 6 depicts the final result of solution 
of the considered example with orthogonal projection 1( )P t  of the curve ( )P t . Additionally, for further 
clarity, the figure also represents the cyclographic α-projections (1) ( )P tα  and (2) ( )P tα  acquired with 
half-angle 45° at the projecting cone vertex. Orthogonal projections of the generating ruled surfaces 
directed by the give curves (1) ( )P tα , and (2) ( )P tα  as well as the resultant curve (2) ( )P tα  are also 
depicted. 

The results of numerical experiments have justified the theoretical conclusion that transition from 
the curves (1) 1( )chP t  and (2) 2( )chP t  acquired through modified cyclographic mapping back to the initial 

curve ( )P t  is possible. It may happen that there will be an analytic solution given second-degree curves 

(1) 1( )chP t  and (2) 2( )chP t  or outlines of second-degree curves. In other cases, e.g. given spline curves of 

third degree or higher, the spatial curve 1( )chP t  can be reconstructed in the form of discrete multitude 
of analytically acquired points. The actual curve 1( )chP t  can be then reconstructed through interpolation 
of this multitude. 
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Figure 6: Visualization of the final result of reconstruction of the curve ( )P t  (figure shows its 

orthogonal projection 1( )P t ) 
 

4. Conclusions 

The results of the study demonstrate that modified cyclographic mapping, just as classic 
cyclographic mapping, is reversible. The proposed algorithm for reconstruction of the initial spatial 
curve given the curves acquired through modified cyclographic mapping is based on the algorithm for 
the inverse problem of classic cyclographic mapping of a spatial curve. It allows one to uniquely define 
the orthogonal projection 1( )P t  of the sought curve and reconstruct the sought spatial curve ( )P t . The 
results of the study can be applied in development of computer-aided design systems for design of roads 
of both common and special purpose. 
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