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Abstract
Neural networks have shown to be vulnerable against adversarial attacks - images with carefully crafted
adversarial noise that is imperceptible to the human eye. In medical imaging tasks this can be a major
threat for making predictions based on deep neural network solutions. In this paper we propose a pipeline
for augmenting a small histological image dataset using State-of-the-Art data generation methods and
demonstrate an increase in accuracy of a neural classifier trained on the augmented dataset when faced
with adversarial images. When trained on the non-augmented dataset, the neural network achieves an
accuracy of 55.24 on the test set with added adversarial noise, and an accuracy of 97.40 on the same test
set when trained on the augmented dataset.
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1. Introduction

Some machine learning models, deep neural networks in particular, have been shown to be
vulnerable to adversarial attacks, which means they make incorrect predictions after adding an
imperceptible noise to the input image [1, 2, 3, 4] (Fig. 1). Currently, many adversarial attack
and defense methods have been developed [1, 5, 6]. Most adversarial defense methods either
make modifications to the model, for example, defensive distillation [6], or make assumptions
about possible attacks [5].

Currently, one of the most effective adversarial attack methods is AdvGAN [7]. This method
has placed first on the MNIST Adversarial Examples Challenge. The main advantages of
AdvGAN are high attack effectiveness and the small amplitude of the generated noise. This
method is based on the Generative Adversarial Network framework [8], in which the generator
is trained to produce adversarial noise for an input image.

Currently, some medical imaging tasks, such as histological image classification, are solved us-
ing neural networks [9], which are vulnerable to adversarial attacks. Hence, making predictions
using neural networks in medical imaging can be dangerous. In this paper, we demonstrate the
effectiveness of AdvGAN against a neural histological image classifier, and propose a pipeline
for augmentating the train dataset in order to make the classifier robust to attacks of this type.
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Figure 1: Examples of successful adversarial attacks generated by AdvGAN

2. Used data and task formulation

In this work we use a balanced subset of the NCT-CRC-HE-100K dataset [10], with the subset 
consisting of 22500 labeled histological images. The choice to use a small subset was made in 
order to decrease time required to train the proposed pipeline. The images are non-overlapping 
patches from hematoxylin & eosin (H&E) stained histological images of human colorectal cancer 
and normal tissue.
Each image has a resolution of 224 × 224 and is assigned one out of 9 classes: adipose 

(ADI), background (BACK), debris (DEB), lymphocytes (LYM), mucus (MUC), smooth muscle 
(MUS), normal colon mucosa (NORM), cancer-associated stroma (STR), colorectal adenocarcinoma 
epithelium (TUM). These images were manually extracted from 86 H&E stained human cancer 
tissue slides from formalin-fixed paraffin-embedded (FFPE) samples from the NCT Biobank 
(National Center for Tumor Diseases, Heidelberg, Germany) and the UMM pathology archive 
(University Medical Center Mannheim, Mannheim, Germany). Tissue samples contained CRC 
primary tumor slides and tumor tissue from CRC liver metastases; normal tissue classes were 
augmented with non-tumorous regions from gastrectomy specimen to increase variability. 
Examples of images for each class are shown in Fig. 2.
The subset is split into 18000 train images and 4500 test images. The goal of this work is to
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Figure 2: Examples of images for each class in the used subset of the NCT-CRC-HE-100K dataset [10]

design and implement an augmentation method using adversarial attacks in order to increase 
the robustness of a neural classifier trained on the augmented dataset against adversarial attacks 
generated by AdvGAN.
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3. Proposed methodology

In this paper we propose a new augmentation method designed for histological image classifi-
cation consisting of several steps:

1. Performing augmentation by generating new examples using the well known StyleGAN2
architecture [11].

2. Applying superresolution technique in order to scale the generated images from 128 × 128
to 256 × 256 using the SRGAN method [12].

3. Performing augmentation of the resulting dataset using AdvGAN [7] to generate adver-
sarial examples.

3.1. Augmentation using StyleGAN2

StyleGAN2 is a well known method used for data generation from a learned joint distribution
𝑃(𝑋 , 𝑦), where 𝑋 is an object in the data, in our case it is a histological image of size 128×128×3,
and 𝑦 is a class label. The image size of 128 was chosen in accordance with the StyleGAN2
architecture. After training the StyleGAN2 generator accepts a random vector 𝑧 ∼ 𝒩512(0, 1)
and returns a synthetic image of size 128 × 128 × 3. The decrease of image resolution from 224
to 128 was done to decrease the training time necessary for the method to achieve satisfying
quality, as well as memory consumption.
During training, the loss function takes the form of the Vanilla GAN Loss [8], given by the

following equation:

𝑙𝐺𝐴𝑁 = 𝔼𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥) log𝐷(𝑥) + 𝔼𝑧∼𝒩512(0,1) log(1 − 𝐷(𝐺(𝑧))), (1)

where 𝐷 is the discriminator in the GAN framework, 𝐺 is the generator, 𝑥 is a data sample (in
our case - a histological image of size 128 × 128 × 3), 𝑧 is a random vector of length 512 sampled
from a normal distribution with mean 0 and variance 1. The generator 𝐺 aims to minimize the
loss, whereas the discriminator 𝐷 aims to maximize it.
To measure the quality of the generated images we use the Fréchet Inception Distance (FID)

[13], given by

𝑑2((𝑚, 𝐶), (𝑚𝑤, 𝐶𝑤)) = ‖𝑚 − 𝑚𝑤‖22 + 𝑇 𝑟(𝐶 + 𝐶𝑤 − 2(𝐶𝐶𝑤)1/2), (2)

where 𝑚,𝑚𝑤 are the means of the learned and ground truth distributions respectively, and
𝐶, 𝐶𝑤 are the respective covariance matrices.

The FID metric acts as a distance between distributions. To calculate 𝑚,𝑚𝑤, 𝐶 and 𝐶𝑤 we use
the outputs of the last linear layer of the 𝐼 𝑛𝑐𝑒𝑝𝑡𝑖𝑜𝑛 − 𝑉 3 [14] neural network pretrained on the
Imagenet dataset, with real and synthetic images given as input. The output of the linear layer
is a vector of length 2048.

3.2. Super-resolution

Currently, one of the best and most widely used methods for single image super-resolution is
Super-resolution using Generative adversarial networks (SRGAN) [12]. SRGAN is a GAN in which
the generator attempts to upscale a single image passed as input.
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The quality of the superresolution during training is controlled by a linear combination of
the following equations:

𝑙 = 𝛼𝑙𝑆𝑅𝑉𝐺𝐺𝑖
+ 𝛽𝑙𝑆𝑅𝐺𝑒𝑛, (3)

𝑙𝑆𝑅𝑉𝐺𝐺𝑖
= 1

𝑊𝑖𝐻𝑖

𝑊𝑖

∑
𝑥=1

𝐻𝑖

∑
𝑦=1

(𝜙𝑖(𝐼𝐻𝑅)𝑥,𝑦 − 𝜙𝑖(𝐺(𝐼𝐿𝑅))𝑥,𝑦)2, (4)

𝑙𝑆𝑅𝐺𝐴𝑁 =
𝑁
∑
𝑛=1

− log𝐷(𝐺(𝐼𝐿𝑅)), (5)

where 𝐼𝐻𝑅, 𝐼𝐿𝑅, 𝐼 𝑆𝑅 are, respectively, the image from the train partition of the dataset of size
224 × 224 scaled to 256 × 256, the same image of size 224 × 224 downscaled to 128 × 128, the
result generated from the downscaled image by SRGAN of size 256 × 256, 𝑊𝑖, 𝐻𝑖 - the width and
the height of the feature map 𝜙𝑖 of a pretrained VGG-19 [15] network, 𝑁 is the batch size. The
discriminator 𝐷 during training attempts to maximize the left part of (1).
To clarify our choice of image sizes, we followed an available implementation of SRGAN in

which the scaling factor 𝑟 was set to 2. In accordance with the StyleGAN2 architecture, the
downscaled image resolution was chosen as 128 × 128, and then upscaled by the factor 𝑟. After
generation of synthetic 256 × 256 images, each image is downscaled to 224 × 224 and added to
the full dataset. This augmentation method saved an enormous amount of time, since SRGAN
did not require a lot of training time, and no code modification to the original SRGAN had been
done.
After training, we use SRGAN to scale the small images generated by StyleGAN2 of size

128 × 128 to 256 × 256.

3.3. Generating adversarial attacks using AdvGAN

AdvGAN is a GAN in which the generator accepts an image of size 224 × 224 × 3 as input, and
produces a perturbation of the same size, such that when added to the input image, would cause
a target neural network classifier to misclassify the resulting image. The architecture of this
method is shown in Fig. 3.
Here, Threshold Loss is given by:

𝑙𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =
𝑊
∑
𝑥=1

𝐻
∑
𝑦=1

𝐶
∑
𝑧=1

max(|𝐼𝑥,𝑦 ,𝑧| − 𝑡ℎ𝑟 , 0)2, (6)

where 𝐼 is an image of size 𝐻 × 𝑊 × 𝐶 passed as input to the generator 𝐺, 𝑡ℎ𝑟 is the threshold
for the maximum absolute value of the adversarial noise. In our work 𝐻 = 𝑊 = 224, 𝐶 = 3.

The loss functional Vanilla GAN loss is given by (1). Negated Cross Entropy Loss is defined as:

𝑙𝑛𝑐𝑒 =
1
𝑙𝑐𝑒
, (7)
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Figure 3: AdvGAN architecture. G is the adversarial noise generator which accepts an input image and 
returns adversarial noise for that image, D is the discriminator in the GAN framework

𝑙𝑐𝑒 = − 1
𝑁

𝑁
∑
𝑛=1

log
exp(𝑥𝑛,𝑦𝑛)

∑𝐶
𝑐=1 exp(𝑥𝑛,𝑐)

, (8)

where 𝑥𝑛 is the output vector of size 𝐶, returned by the neural classifier and corresponding to
the image with index 𝑛 in a batch of size 𝑁. 𝑦𝑛 is the class index of the image with index 𝑛. In
summary, the overall loss functional is defined as:

𝑙 = 𝛾 𝑙𝑛𝑐𝑒 + 𝜃𝑙𝐺𝐴𝑁 + 𝜁 𝑙𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, (9)

where 𝛾, 𝜃, 𝜁 are the hyperparameters that control the importance of each separate function.
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4. Testing and results

4.1. StyleGan2 generation results

In our work, we trained StyleGAN2 for 280000 batch iterations, with each batch containing 32
randomly chosen images of the train partition of the dataset. Training was done on a single
NVIDIA RTX A6000 GPU and took approximately 7 days and 21 hours. At the end of the
training session, the calculated FID (given by (2)) between the generated images and the train
partition of the dataset was equal to 16.77. Examples of generated images are shown in Fig. 4.
After completing the training procedure, 18000 synthetic images of size 128 × 128 × 3 were

generated.

4.2. SRGAN generation results

In our work, we have trained SRGAN for 6000 batch iterations, with each batch containing
32 randomly chosen images from the train partition.Training was done on a single NVIDIA
RTX A6000 GPU and took approximately 21 hours. After training, the PSNR between images in
the train partition and the images scaled by SRGAN was equal to 30.7 on average. SSIM was
equal 0.93 on average. Examples of scaled images can be found in Fig. 5. This result allows to
generate high quality synthetic images without spending a lot of time training a high-resolution
image generator.

4.3. AdvGAN generation results

We have trained this method on 68000 batch iterations, with each batch containing 16 randomly
chosen images from the train partition. In our work, we have set parameters 𝛾, 𝜃 and 𝜁 to 10, 1
and 1 respectively. We have tested the resulting adversarial attacks on three neural classifiers,
all of which were ResNet34 [16] networks. The test results are demonstrated in table 1. Each of
the classifiers was given its own train dataset. Results for the classifier trained on the vanilla
dataset containing 18000 real images are shown in the first row. Results for the classifier trained
on the combination of 18000 real images and 18000 fake images are shown in the second row.
And the results for the classifier trained on the previous combination with applied AdvGAN
adversarial attacks to each image are shown in the third row. Additionally, we have tested the
classifiers on the test set with applied FGSM attacks. The attacks were generated using the
classifier trained on the initial dataset, as would a potential adversary attempt without any
knowledge of synthetic data in the training set. Since the test dataset is balanced, we used the
classic accuracy metric which shows the proportion of correctly classified images accross the
whole dataset.

As a result of the augmentation pipelane, the dataset size has increased by 4 times using
high quality synthetic images. The test accuracy of the neural classifier trained on the resulting
dataset for the same amount of epochs has increased, moreover, by adding adversarial images
to the dataset, the classifier showed remarkable results on the AdvGAN adversarial attack test
set, showing only a 1.18% drop in performance.
The achieved results demonstrate that the proposed augmentation pipeline not only makes

the target classifier more robust to various adversarial attacks, but also improves its performance
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Figure 4: Examples of synthetic images generated by StyleGAN2 for each class (ADI, BACK, DEB, LYM, 
MUC, MUS, NORM, STR, TUM

in general.
Adversarial attack examples are shown in Fig. 1.
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Figure 5: Examples of upscaled images belonging to several classes (ADI, DEB, MUC) using SRGAN 
and bicubic interpolation

5. Implementation details

All experiments were conducted using the Python3 programming language. The implementation 
for the CNN architectures, training and evaluating procedures was done using the open source 
software library for machine learning PyTorch.
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Table 1
AdvGAN testing results. The second column shows accuracy on the test dataset with AdvGAN applied 
to each image, the third columns shows accuracy on the test dataset with FGSM with 𝜖 = 0.1 applied to 
each image

Train dataset Test dataset accuracy, % AdvGAN, % FGSM, %

18000 train images 95.67 55.24 68.76
36000 images (18000 train images
and 18000 generated by StyleGAN2) 97.56 63.42 83.54

72000 images (36000 previous images
with added adversarial attacks) 98.58 97.40 90.38

6. Conclusion

In this paper, we have implemented a pipeline for augmenting a small dataset of histological
images with adversarial attacks. We have demonstrated the effectiveness of the proposed
pipeline on the available test set. The train dataset has increased by 4 times with high quality
synthetic histological images, and the neural classifier trained on the resulting dataset has
shown an increase in quality not only on the adversarial test set, but on the test set with no
additional noise added to the images. The main drawbacks are the amount of used data and the
quality of the adversarial attacks. Since we haven’t used the entire available training set (only
18000 out of 100000 labeled images), future research should test the augmentation pipeline on
larger amounts of data. Moreover, the AdvGAN adversarial attacks are not perfect, and can
easily be spotted by the human eye, as can be seen in Fig. 1. Future research should focus on
making the adversarial attacks more imperceptible without sacrificing effectiveness in fooling
neural networks.
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