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Abstract

The technological progress in the field of Brain-Computer Interface and its integration with IoT put
on the agenda the question of the fast transition of the technology from laboratory experiments into
everyday life. But there are a lot of challenges and some of them, in particular, issues of replicability
and reproducibility of experiments are under discussion in this paper. We also discuss how to improve
utilizing neural Interface with the help of ontology-driven scientific visualization tools. Using the
principles of “clean-room reverse engineering” methodology to rewrite existing EEG device drivers we
make it possible to embed visualization tools which dynamically render the streaming data coming from
different EEG devices within a diverse IoT infrastructure without any legal complications.
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1. Introduction

Despite significant progress in Brain-Computer Interfaces (BCI), many issues remain associated
with collecting, analyzing and rendering Electroencephalography (EEG) signals in real-world
environments. This situation makes it difficult for researchers to use BCIs in multidisciplinary
projects. Analyzing EEG data can get quite challenging. Signal processing, artifact detection
and attenuation, feature extraction, and computation of mental metrics all require a high level
of expertise and experience to properly interpret and extract valuable information from the
collected data.

As our experience says and our study has shown, currently in the field of BCI there is a
deficiency of high-level tools that simplify the researchers’ work in the process of conducting
experiments and improve visual data analysis, as is the case in Big Data technologies. In
particular, there are no smart assistants helping the so-called Data Citizen to perform analytical
work at the level of a qualified IT specialist. Also, it is crucial not only to utilize the best
practices for neuroimaging but also make them based on a detailed discussion of different levels
of repeatability, replicability and reproducibility.

These problems are directly related to another important issue concerning the methods of
integration and adaptation of the developed visual tools to the third-party infrastructure of the
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Internet of Things, including BCIL. Data, whether raw, processed, or segmented, can of course be
exported to easily portable formats that allows visual analysis on any platform that researchers
prefer. But real everyday practice shows that it is more effective and in demand to embed
visualization tools directly into the scenario of the experiment being conducted. However, at the
same time, third-party license agreements may be violated and the question arises of applying
modern approaches, in particular, the so-called "clean room” method to solving this problem.
This article is devoted to the description of approaches to solving some problems mentioned
above.

2. Key contributions

Main focus points of this paper are devoted to tackling the following problems in order to improve
the applicability of existing scientific visualization tools developed by our team previously
[1, 2, 3, 4] in BCI studies:

1. Decoupling the headset information in a form of ontology from the physical signal flow
and making it available to other blocks of the pipeline as a separate data flow;

2. Creating a “sliding window” pipeline block that’ll allow us to train and employ our
classifier on chunks of data in an on-line manner;

3. Manner of using the principles of “clean-room reverse engineering” methodology to
rewrite existing EEG device drivers.

3. Related Work

In recent years, the significance of the integration of neural interfaces into an IoT ecosystem
has become more and more clear and widely addressed in the literature. However, the problem
of unified integration, despite being generally recognized, is still not considered wide enough
[5, 6]. Nishimura et al. proposed a system called BIRT based on XML configuration that allows
easy adjusting and modification of pipeline [7]. Quitadamo et al. described a custom BCI
communication protocol using UML notation [8]. Camelo et al. applied genetic algorithms to
the task of controlling the smart conference room with commercial-grade BCI [9]. Mendez et al.
created an ontology describing BCI communication with nodes of IoT infrastructure [10, 11].
Zao et al. proposed the concept of “an augmented BCI” or A-BCI [12]. They applied ontological
engineering to create an ontological description of a fog ecosystem, and demonstrated their
approach using a BCI-controlled online game.

The problem of replicability of the results is also a major topic in the neuroscientific com-
munity. The “EEGManyLabs” project [13] aims to replicate some influential EEG-based neuro
experiments in order to confirm their studies and provides a set of recommendations to the future
researchers about conducting their experiments in a reproducible way. The Organization for
Human Brain Mapping is also raising awareness of this problem and has developed a guideline
for any neuroscientist to follow in their work [14]. Detailed information about the equipment
used in research is thus very important, and so are the software tools. Employment of the
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open-source software [15] and open communication protocols, such as VSCP ! or LSL 2, allows
any researcher not only to replicate the experiments’ pipeline and validate results achieved, but
also to use it as a baseline for further extension [16].

While offline classification and data processing is of a very major importance in neuroscience,
the significance of online (streaming, real-time) data processing can’t be underestimated. To
conduct many types of studies we might be content with offline processing of the prerecorded
data; however, if we want to research BCI, especially, in the field of HCI, we’re bound to require
some kind of online algorithms. It’s also very important in medical neurostudies, as early seizure
detection, for example, allows timely medical care and more thorough analysis of occurring
phenomena [17]. However, streaming data comes with its own set of hardships. [18] defines
data streams as a dynamic set of data where:

+ Elements of the data arrive in the real-time
« System has no effective control over the order of the elements
+ There’s potentially no limit on the number of elements of the data

« After processing elements of the data in some way, they are either archived or discarded,
and the amount of discarded elements is prevalent over the archived ones.

Authors of [19] emphasize four major aspects of streaming data: Volume, Variety, Velocity
and Volatility, out of which two latter ones are the most important to distinguish streaming data
from other data sources. Velocity of streaming data makes it hard to process, while Volatility is
complicating hypothesizing about the data.

[19] discusses several types of problems related to visualization in the experiments with
streaming data:

« Context Preservation: It’s very important for analytic tools to store information about
the past and provide a convenient way to recover it when the need arises;

« Mental Map Preservation: Changes in streamed data might be rapid and complex, there-
fore a visualizer should present them in a way that allows a human researcher to recognize
patterns and react to them.

+ Change-Blindness Prevention: A human observer can look at the visualization for a
long periods of time and his eyes might start to glaze over the changes in data. A good
visualization should help him with that.

+ Time representation: Temporal dimension is of utmost importance when analyzing
streaming data, especially in neuroscience, and it’s not always clear how it should be
presented to the researcher.

Main types of visualizations used in neuroscience research papers are:

« Raw signal data (electromagnetic potentials or oxygen levels) [20] allows a trained pro-
fessional to spot a phenomena or pattern in the most direct way possible. It is usually
right after the “Receiving biosignal” step in the experimental setup (Fig. 1).

'https://vscp.org
*https://github.com/sccn/labstreaminglayer
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Figure 1: A common scheme of neuroscience experiment involving EEG data processing.

« Spatial locations of signals w.r.t a head [21, 22, 23] provide information about neural
activity localization in specific parts of the brain. They could be shown on a realistic
3D brain model or just on a simplistic head visual scheme, and are usually used on
the “Feature extraction” step (Fig. 1) to help a researcher get a better hold of occurring
phenomena and choose appropriate feature selection algorithm.

« In case of EEG studies, a signal spectrum [24], because different EEG phenomena have
distinct spectral characteristics which can be used to distinguish such phenomena. Visu-
alizing it helps on “Feature extraction” step of the experiment too (see Fig. 1).

Thanks to the comprehensive review [25] we can be excused from going into a detailed survey
of current challenges and opportunities of modern BCL. However, we have no finding related
to the methods of adaptable embedding of visualization tools into third-party infrastructure
integrating BCI and IoT.

As a part of our previous work we built and successfully tested a pipeline that utilizes a
unified high-level mechanism to allow brain-computer interfaces to be integrated into diverse
IoT ecosystems in a manner that doesn’t depend on said ecosystem’s peculiarities [4]. That
pipeline was based on the SciVi platform, an ontology-driven scientific visualization and visual
analytics toolset [1]. Then we extended this pipeline to apply it for the task of audiovisual
stimuli presentation for the neurophysiological studies [2, 3]. However, there were two major
technical issues with this pipeline that we’re gonna address in this paper:

1. As a part of this pipeline we utilized an EEG device driver with a closed-source code
we weren’t able to publish. This severely limited the ability to reproduce our results
by independent researchers, thus making it not quite aligned with moderns’ scientific
standards. We tackle this problem by employing a “clean room” reverse engineering
methodology to reproduce driver’s functionality in a new, clean reimplementation we
can share with a community. While we were at it, we also moved some logic related to
labeling the signal components out of the driver to a new pipeline node.

2. Our unified pipeline was split into two separate parts; namely, the recording part and the
processing part. To conduct a study we had to perform a full data recording cycle first
and only then analyze the acquired data in an offline manner. This reduced the range of
available experiment setups we were open to, and also occluded our ability to react to
the experiment’s conditions (e.g. we’d only be able to notice something went wrong post
factum, after a full recording cycle had been completed). So, we introduce new nodes to a
pipeline to make online processing of streaming data possible.
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4. Implementation

4.1. Decoupling Headset Information from Signal

In the previous iteration of our pipeline, the information about a headset — electrodes, their
names and positions, mapping from the electrodes to EEG channels etc. — were provided by the
“EBNeuro” node and baked together with signal flow. Every block receiving signal data was also
receiving headset information (even if it didn’t require it), and every block that required info
about a headset had to subscribe to a signal stream. That was not only more resource-consuming
than necessary but in fact led us to some duplication of work (e.g. “Impedance visualization”
block had to rely on externally provided headset information due to technical complications).

Now we extracted all information related to the headset into a separate block called “Montage
Provider”. It’s supplied with ontological description of the headset and can be used as a
convenient source of all the information about electrodes and their properties which it extracts
from the ontology supplied. Fig. 2 shows an example of such ontological description used in
our experiments (21-channel EBNeuro headset montage).
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Figure 2: Ontology example for “Montage Provider” pipeline node (only two out of 21 electrodes are
shown for clarity).

As of now we only employ one montage in our experiments, but as the system grows it might
be necessary to create some way of storing and managing montages. This could be achieved
with the help of some kind of smart repository and is a topic of a future work.

Comparison of the old pipelines (a) and the new ones (b) are shown on Fig. 3

This separation also allows us to reuse “Montage Provider” node at the stage of configuring
experimental setup. In our previous paper [2, 3] we demonstrated a data monitoring pipeline
(Fig. 4), but as of time of writing it had some drawbacks; in particular, visualization of the
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Figure 4: An example of visual representations for monitoring different pipeline attributes.

headsets’ impedances was static in reference to electrode counts and their positions. New
“Montage Provider” node allows us to make them dynamic by providing a unified way to
feed headset information into a pipeline. Now to visualize impedances we can use a headset
ontological description which allows for quick swapping of different headsets in the experiment.

4.2. Sliding Window for Data Streaming

During our previous experiments, we were limited to offline classification and processing due
to the different organization of two pipelines: signal acquisition pipeline operated frames of
data, while processing and classification pipeline utilized groups of frames. We introduce a
new block called “Sliding window” that uses a simple idea of accumulating last N frames and
outputting them together as a group. (N is a configuration parameter of this block.) Thus, we
are now able to simultaneously acquire the signal, process it and train / evaluate our classifier
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in a streaming manner. Ontology describing this node is illustrated on Fig. 5.

Python

ServerSideWorker

Sekting

Output

Figure 5: Ontology for “Sliding Window” node.

We also were required to introduce another new node — “Labels by Channel” - for labeling such
frames based on the value of some channel present in data. Previously in offline processing this
role was fulfilled by “MNE-EEG Converter” node, but it wasn’t paradigmatically right combining
two functions into the same block, and it only allowed the processing of a prerecorded data
that was loaded in MNE format. It’s functionally quite similar to the previously existing “Test
Channel” node except it doesn’t buffer data as this role is now performed by “Sliding Window”.
This new node computes some integral characteristics (there’re quite a few to choose from -
mean, median, mode etc.) of a specific channels’ signal over an entire frame and outputs “1” as
a label if this value is above specified threshold or “0” if it’s below it.

Comparison of the old pipeline without new nodes (top) and a new one with them (bottom) are
presented on Fig. 6. Beware that the old pipeline was offline and relied on the data prerecorded
with a pipeline similar to the one present on Fig. 3, while the new one enables online processing
of the data in a streaming manner. CSP node is shown but isn’t connected to the pipeline; it can
be used in the pipeline instead of PSD node and just added for illustration.

4.3. Clean-Room Reverse Engineering of the EEG Driver

Elliot J. and James H. in [Reverse] define the term “Reverse engineering” as the process of
analyzing the target system in order to determine its components and their interaction, and then
creating some high-level description of this system. The authors of the taxonomy also define
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Figure 6: Pipelines without sliding window (a) and with (b).

the term “Reengineering” — a re-creation of the target system in some new form. Reengineering
involves the reverse engineering of the target system and the subsequent “forward” development
based on the acquired knowledge, including any changes to the new system if necessary. Thus,
reengineering is a re-creation of some product based on information obtained through reverse
engineering.

It is easy to imagine that a researcher using the results of reverse engineering can run into
legal implications at some point. The author of [26] notes that a program created as a result of
reworking some other program becomes a derivative work. So, the rights of the author of the
original program are still in effect. The article provides a clarification: a similarly functioning
program cannot be declared copied unless the real use of the original code or parts of it is
proven.

To avoid such copying, there are several approaches to reverse engineering, but the simplest

and most popular is clean room reverse engineering. It’s based on division of labor to two
teams:

1. The research team uses all the reverse engineering methods and tools available to create
a technical documentation describing structure and behavior of the target system. All
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implementation details that may be considered an intellectual property are excluded from
this documentation.

2. Next, the development team, consisting exclusively of people who did not participate in
the previous step, writes a new program based on this documentation.

This approach eliminates copying parts of the code and avoids any legal implications. It is
sufficiently fast, as it does not limit the possible tools used for research, but at the same time
requires a separate team of people who cannot participate in the development of a new system
in any way. During the initial design of the driver, an architectural decision was made that
the driver should be implemented as a single class that directly reflects the functionality of the
device. We also separated the platform-specific code with a special abstraction.

This abstraction hides the operating system on which the driver is running (in the case of
microcontrollers, this abstraction can play the role of the operating system itself) and includes
networking and debug output. An abstraction is defined by an interface, which is a C header
file that defines some types and functions (system methods). After defining the interface, an
implementation of it was made targeting operating systems based on the Linux kernel.

After that, the basic functionality of the device was implemented:

« To initialize the device, the corresponding method connects to the device’s initialization
port, requests service information, puts the control and data ports into the ready state
and then connects to them.

+ To receive data from the device, a method is implemented that reads packets from the
data port into a special queue, from which measurements are transmitted to the user. The
use of a queue avoids data loss during slow processing.

+ To de-initialize, the EEG is put into standby mode, after which the control and data ports
are closed and disabled.

While the created driver can be used as a standalone library, in our experiments we are
interested in integrating it into an existing pipeline as a block. SciVi platform supports several
ways of integration modules into it, but the most straightforward would be to create a Python
wrapper module and describe it with a corresponding ontology. Thus, a Python wrapper for
the driver was implemented using the SWIG tool.

This approach enables us to embed visualization tools which dynamically render the streaming
data coming from different EEG devices within a diverse IoT infrastructure without any legal
complications.

The project uses CMake [27] as a build system.

Source code is available at https://github.com/icosaeder/libmed under GPLv3 license. Protocol
documentation can be supplied upon further request.

5. Conclusion

This paper deals with different issues that make it possible to automate the research conduction
by means of embedding the ontology-driven scientific visualization tools in third party infras-
tructure IoT that include BCI. Also, to improve utilizing neural Interface we take into account
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the replicability and reproducibility issues and suggest the manner of using the principles of
clean-room reverse engineering methodology to rewrite existing EEG device drivers that help
us to reproduce the experiments without any legal complications. Now we together with the
researchers from the educational and scientific laboratory of sociocognitive and computational
linguistics of Perm State University have successfully used the suggested solutions to automate
the experiment on the analysis of human perception of visual incentives (adjectives of the
Russian language) using EEG. Two cases of perception of adjectives were considered, based on
a comparison of visual and auditory perceptual modalities and on a comparison of primary and
secondary formed perceptual modalities.
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