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Abstract

Analysis of viral evolution is a key element of epidemiological surveillance and control. One of the
fundamental tools which is widely used to illustrate evolutionary history is the phylogenetic tree.
Recently, we have proposed an alternative visualization for the phylogenetic tree using the evolutionary
trajectory of its taxa. An evolutionary trajectory is a path starting from a taxon and ending at the root of
the tree. In this paper, we propose an embedding of tree nodes by encoding their genetic sequence using
a reduced amino acid alphabet and employing the Word2Vec framework. The suggested visualization
maintains the phylogenetic relationship between nodes, while their proximity in 3D space depends on
three factors: the type of reduced amino acid alphabet; fixed-length genetic patterns used in Word2Vec;
and the neighbor effect of adjacent signatures. The results of our experiments showed that the majority
of evolutionary history can be described in the embedded space. Moreover, they suggest potential
application of our approach as an explanatory tool in studying various aspects: evolutionary dynamics;
evolutionary deviation of viral variants; and phylogenetic characteristics, such as formation of new
clades. Besides the usual local analysis of point mutations, the developed framework enables studying
these aspects based on a more comprehensive global context, including neighboring effects, genetic
signatures.
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1. Introduction

Study of the evolution of a species is a key tool for understanding their behavior, especially
regarding determination of their evolutionary direction. Such knowledge plays a critical role in
the surveillance and control of pathogens. Specialists investigate the evolutionary history of
species through representation of their similarities and differences using various bioinformatic
tools, such as phylogenetic trees and phylogenetic networks. The phylogenetic tree is a classical
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and fundamental method aiming to embed the species from a complex genetic space into a tree
space to represent their evolutionary proximity in a graphical, human-readable form [1].

Constructing a distance-based phylogenetic tree consists of performing two sequential pro-
cedures: computing a distance (or proximity) matrix; and inferring the tree topology from
the matrix. The distance matrix is often obtained by employing a model of evolution, which
estimates the genetic divergence between objects. Such models have been earlier developed
based on the concept of the Markov model for sequence evolution and vary according to the
type of genetic information (nucleotide, amino acid, codon, etc.) as well as substitution rate
parameters [2, 3]. The obtained distance matrix is further passed into a hierarchical clustering al-
gorithm to express the similarity or dissimilarity of objects. Traditionally, this can be carried out
by applying one of the following well-known and widespread algorithms: neighbor-joining [4];
and unweighted pair group method with arithmetic mean (also called UPGMA) [5].

Although in most cases, the representation of evolutionary history in terms of point mutations
is quite informative, sometimes it is required to consider a more complex genetic signature (or
motif) to well describe a phenotype. As an example, most of the models for predicting antigenic
evolution rely on complex patterns at antigenic sites [6]. Studies have shown that non-antigenic
sites located in the vicinity of antigenic sites also impact antigenicity. This impact is known as
the neighbor effect [7]. Thus, a comprehensive model should consider both genetic patterns
and neighbor effects.

Recently, application of the simplified amino acid alphabets has become more popular, specif-
ically in searching for a suitable space that can better describe a phenotype. A simplified amino
acid alphabet (SAAA), also called reduced amino acid alphabet, is an alphabet in which the 20
standard amino acids are clustered and divided into groups. In this way, a mutation is redefined
as a change between two amino acid groups of the simplified alphabets. For example, the
following alphabet is achieved by grouping the standard amino acids based on their van der
Waals volume: G1={G, A, S, C, T, P, D}, G2={N, V, E,Q, I, L}, and G3={M, H, K, F, R, Y, W}. In
this content, any transition between the two groups (G1-G2, G2-G3, G1-G3) is a substitution.
Since the volume and hydrophobicity of amino acids play a major role in substitution of amino
acids [8], a representation using SAAA provides better insight into evolution and highlights
significant features associated with a target phenotype from various perspectives including
structural, biological, and physicochemical similarities.

As shown [9, 10], visualization of similarity/dissimilarity between viral strains is a key
factor for predicting the current and future characteristics of the virus. When aiming to
improve description and prediction quality for a phenotype, it is beneficial to take into account
three factors for visualizing strain proximity: genetic pattern (instead of point mutation);
neighbor amino acid effects; and application of simplified amino acid alphabets for redefining the
substitution. We provide this kind of analysis and visualization by introducing a computational
pipeline which employs simplified amino acid alphabets, and the Word2Vec framework.

As an extension of our previous work on phylogenetic tree visualization [1, 11], we propose
a novel visualization in this paper. In it, the phylogenetic relationships between tree nodes are
maintained, whereas the distance between two nodes is determined using Word2Vec encoding
and SAAA. To our knowledge, this is the first time that the proximity of strains, in terms of
higher-order genetic signatures, has been visualized along with their phylogenetic relationships.

Our contribution to this field is developing an approach for visualization of strain evolution
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Figure 1: The overall schema of the proposed pipeline. The pipeline extracts information about the
evolutionary path from the phylogenetic tree. The coordinate of each vertex in the path is generated
by embedding genetic sequences using the simplified amino acid alphabet and the Word2Vec frame-
work [12].

wherein their coordinates depend on the type of amino acid alphabet, on fixed-length genetic
patterns, and on neighbor effects. We believe such a visualization can serve as an investigative
tool capable of revealing more information than other approaches about hidden mechanisms
of the evolutionary process at micro- and macro-scales. The rest of this paper is organized as
follows. Section 2 explains the methodology in more detail. Section 3 describes the computational
experiments and discusses their results. Finally, the conclusion is presented in Section 4.

2. Methodology

Our approach consists of four basic steps: reconstructing the phylogenetic relationships between
strains; computing the sequence of ancestral (or inner) nodes located in the phylogenetic tree;
embedding genetic sequences for all nodes and computing the distance matrix of strains; and
finally visualizing strain relationships by utilizing their connections from the phylogenetic tree
and their coordinates from the new embedding space. Figure 1 illustrates the overall schema of
the proposed pipeline. We briefly describe each step in more detail in the following section.

As mentioned, the pipeline is an extended version of our recent work on visualization
of the phylogenetic tree called PhyloTraVis [11]. PhyloTraVis focuses on visualization of
evolutionary trajectories defined within a phylogenetic tree. An evolutionary trajectory is an
individual unique path that connects a taxon (located in the tree leaf) into the root (the most
common ancestor for all tree leaves). In PhyloTraVis, the distances between trajectory nodes
are determined by embedding their genetic sequence into a 3D space using one-hot-encoding
and the t-distributed Stochastic Neighbor Embedding (t-SNE) method [13].

The first and second steps of the pipeline are related to phylogenetic analysis and are carried
out using Randomized Axelerated Maximum Likelihood (RAxML) [14], as described earlier [11].
Here, we focus on further steps related to the embedding and visualization.

The pipeline input must be an aligned FASTA file, including n amino acid sequences denoted
by {l1,12, ..., 1, }. By constructing their binary phylogenetic tree, n — 1 internal nodes connect
n leaves, whereas each leaf represents a strain/sequence from the FASTA file. We denote an
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internal node (ancestor) by a;, where i € {1,2,...,n — 1}. Therefore, the phylogenetic tree T'
can be represented by graph notation as 7' = (V, E), where V' and FE are set of vertices and
edges, respectively.

V={l]ic{1,2,. .n}}U{a|i€c{l,2...n—1}} (1)

The FASTA file includes amino acid sequences of all leaves, whereas the sequences of internal
nodes need to be computed using the ancestral sequence reconstruction algorithm. Note that to
reconstruct the ancestral sequences, the tree must be rooted. We perform this reconstruction by
applying the flag ’-f A’ in the RAXML package. Here, we append the graphical representation
by adding the genetic information of amino acid sequences. So the tree is expressed by triple

(V, E,S), where S is defined as follow:

S={S;|ie{1,2,...2n—1}} 2)

where S; is the amino acid sequence of length m for node v; € V:

Si = {SZ"j ’j S {1,2, ...,m}}, 1€ {1,2, ey 2m — 1} (3)

where s; ; is a standard amino acid or gap:

Si,jE{gap(_>,A,R,N,D,C,Q,E,G,H,I,L,K,M,F,P,S,T,VV,YV,V}

PhyloTraVis shows the leaves’ proximity through their path-to-root. Although it treats each
path as an independent object for visualization, the path strongly depends on the tree topology
and the sequences of tree nodes. Extracting the path-to-root of a leaf is carried out by parsing
the tree using the module ‘Phylo’ from the Biopython package [15]. Since our visualization
aims at representing such paths, we replace the edges set E in (V, E, S) with the set of paths P.

P = {p; | p; is path-to-root for leaf [;, i € {1,2,...,n}} (4)

Here, our graph definition changed to (V, P, S). The next step is embedding the genetic
information located in .S to generate the 2D or 3D coordinates of each node in the visualization
space. In this step, we assume that there is no information about the connection of vertices
(i.e., path-to-root). The proposed embedding approach consists of four sequential sub-steps,
including encoding the amino acid sequences by a reduced amino acid alphabet; embedding the
obtained sequences from the previous sub-step using the Word2Vec framework [12]; computing
the distance matrix between all nodes by a metric; and finally applying the dimensionality
reduction algorithm to obtain the 3D/2D coordinates from the distance matrix.

A reduced amino acid alphabet (RAAA) is an alphabet, in which the 20 standard amino acids
are clustered into groups. In addition to earlier RAAA applications [16, 17], we have recently
shown that RAAA is beneficial for increasing modeling accuracy regarding influenza virus
antigenic evolution [18]. RAAA provides a point of view through which we can investigate a
phynotype. Indeed, a substitution is redefined in the context of amino acid proximity. Currently,
there are 41 amino acid alphabets, including the standard amino acid alphabet and 40 published
RAAAs [19, 20, 21], and denoted by Ry, where k € {1,2,...,41}. InaRAAA, the first amino acid
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Figure 2: Skip-gram architecture. Once the network is trained, we employ matrix W for word embedding.
Note that the vocabulary size is w, while the hidden layer size or word embedding dimension size is 7.

of a group is considered its representative, e.g., the representative for group M, H, K, F, R, Y, W
is M (Methionine). Therefore, we replace each standard amino acid in a protein sequence from
S with its group representative.

If the amino acid sequence S; (the sequence for vertex v;) is encoded by RAAA Ry, the
encoded sequence is denoted by S; r, . Here, we replace the set of genetic sequences S by Sg,
(set of the encoded version of all sequences from ) in our graph and express it by (V, P, Sg, ).
Note that Sg, can have the repeated sequences.

The next procedure is representing sequences from Sg, in a numerical space. Although
the representation can simply be carried out by assigning a binary code to each group in
RAAA Ry, numerical representation should reflect some aspects of the biological relationship.
To do this, we employ the well-known and widespread framework of embedding for natural
language processing, Word2Vec, proposed by Mikolov et al. [12, 22]. Word2Vec employs a
neural network to learn word relationships in a defined neighborhood in a corpus of text. Once
the network training process is accomplished, it can be used to obtain the numerical/vector
representation of words. In this manner, semantically similar words have the high degree
of cosine similarity. Word2Vec has shown promising applications in the encoding genetic
sequences. Recently, several embeddings have been developed based on Word2Vec, including
DNAZ2Vec [23], and Imuune2Vec [24]. Word2Vec is constructed based on one of the two
architectures: continuous bag-of-words (also called CBOW); and skip-grams. We use skip-gram
since it is more suitable for infrequent words (rare mutations in our case). The architecture
of this network is illustrated in Figure 2. Suppose we use k-gram to split the sequence S; r,
in Sg, into its words W = (w1, wa, ..., wy), while each k-gram has a vector representation of
length 7. By concatenating the vector of words represented in W, we obtain a vector of length
h x ~ that represents S; g, (Figure 3). We replace Sg, in the graph representation (V, P, Sg, )
by ® = {¢; | i € {1,...,2n — 1}}, where ¢; is the vector representation for vertex v; € V.

In the previous work, we apply the method of dimensionality reduction to encoded sequences,
which were obtained by one-hot-encoding. The one-hot-encoding generates a binary vector of
m X 4 (or m x 20) for a DNA (or protein) sequence, where m is the length of the sequence. In
the case of a Word2Vec embedding, the size of the vector that represents the genetic sequence
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Figure 3: An example of generating the numerical representation for an encoded amino acid sequence.
The blue rectangle includes the trigram, while its vector representation is given on the right side. The
amino acid sequence S; is represented by concatenating the vectors of its trigrams. Note that & indicates
the concatenation operation on vectors.

isy X (m — k + 1), where  is the size of the word embedding vector, m is the length of
the sequence, and k is the length of the word (k-gram). This may increase the computational
complexity of the dimensionality reduction process if the length of sequence or the embedding
size is relatively large.

In order to speed up the computation, we suggest computation of the distance matrix for
embedded sequences and applying the dimensionality reduction method to the matrix. To do
this, we apply a similarity measure or distance to compute the proximity between vertices using
their vector representation in ®. This generates a proximity/distance matrix, which is fed into
a dimensionality reduction algorithm, e.g., t-SNE or multidimensional scaling (MDS) [25], to
obtain the vertex coordinate. The choice of similarity measure can be varied since it depends
on the target phenotype of interest to the specialist. One can even perform a Softmax operation
for all vectors located in ® to represent each of them as a probability distribution. Therefore, in
addition to traditional measures of similarity such as Euclidean and Cosine distance, the final
visualization can be customized using similarity measures between probability distribution, e.g.,
Jensen-Shannon distance.

We denote the coordinate of vertex v; € V' by ¢;, where ¢; can be a tuple or triple. Our final
graph for visualization is defined by (V, P, C'), where: V is the set of vertices or all nodes in
the phylogenetic tree; P is the set of path-to-root for all leaves in the tree; and C' is the set of
coordinates for vertices. Indeed, C' gives the coordinates of vertices of V, while P determines
how vertices are connected in the space. Before visualization, all paths are smoothed by the
Bezier curve algorithm, which has been described in more detail elsewhere [11]. The smoothed
path information is passed into Vrungel to visualize the graph.

Vrungel is a visualization technology, consisting of a programming language and its in-
terpreter, developed by one the authors of this paper. It facilitates visualization through a
relatively brief description of tree objects. Visualizations are displayed in a web browser, and
the representation can be customized by setting parameters in a two-dimensional interface. In
addition, Vrungel is capable to enter to virtual reality (VR) mode thanks to WebVR technology.
We consider VR as a usable option for data investigation both for detailed and general view. VR
specifically becomes handy in the case of working with a large data set. However additional
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user interaction techniques should be developed to more efficiently use VR mode in Vrungel.
Vrungle is publicly available at https://github.com/viewzavr/vrungel.

In the next section, we present a visualization example using a sample set of influenza virus
strains.

3. Experiments & Results

To demonstrate the application of our approach, we visualized evolutionary trajectories for a
data set of influenza viral strains. Currently, there are three subtypes of influenza virus which
pose a significant threat to the public health: HIN1, H3N2, and H5N1. It is known that the
H3N2 subtype is more genetically variable than other influenza virus subtypes. That is the
reason why we choose this subtype for our experiment. The experimental data set includes HA1
sequences (hemagglutinin protein) for 335 strains of H3N2 subtype, collected during 1968-2007,
as described [26]. Since the input file needs to be aligned, an alignment process may be required
before submitting the data set into the pipeline for performing phylogenetic analysis. The
prepared input file included sequences with a length of 329 amino acids.

We constructed the phylogenetic tree through four steps: generating an initial tree by FastTree
software [27]; constructing the middle tree using the PROTCATFLU model by RAXxML from the
initial tree; constructing the final tree using the PROTGAMMAFLU model by RAXxML from the
middle tree; and finally rooting the tree by RAXML by setting ‘-f I' and the PROTGAMMAFLU
model. Our approach relies on knowledge about the genetic sequence of each node in the tree.
Therefore, we conduct ancestral sequence reconstruction to compute marginal ancestral states
of the internal nodes (i.e., ancestors). We perform it by RAXML using the ‘-f A’ flag under the
PROTGAMMAFLU model.

As mentioned, the connection between tree nodes in the final visualization is based on
evolutionary trajectory. We extract the information of all trajectories by applying the ‘Phylo’
module from the Biopython package [15]. The proposed approach treats each trajectory as an
individual object for visualization, while the coordinates of its nodes are determined based on
the genetic sequence embedding. The definition of amino acid substitution can be customized
by applying a reduced amino acid alphabet. The choice of alphabet depends on the subject of the
analysis. For example, our previous studies [18] have shown that 3 alphabets are advantageous
in modeling the antigenic evolution of the H3N2 subtype. They are Hyrphobicity alphabets
({RKEDQN,GASTPHY,CVLIMFW}); Polarity alphabet {LIFWCMVY,PATGS, HQRKNED}); and
Cannata 2002 alphabet ({D,E,N,KR,Q,ST,G,P,H,A,CW,Y,FEML,IV}). In this experiment, we use
these alphabets to encode the genetic information of all tree nodes before embedding them by
the skip-gram model.

To train the skip-gram network, there are two options for choosing the training data set. The
training process can be carried out on the experimental data set, or we can use a larger data
set which reflects a more comprehensive history of subtype evolution. To enhance embedding
quality, we trained the network on a large data set (H3N2 subtype) featuring 36,434 unique
hemagglutinin protein sequences. Note that the training data set must also be encoded by
the RAAA. Since applying a RAAA leads to a decrease in the variation of genetic sequence
mutations, some sequences may be repeated in the encoded training data set. Thus, we created

19-22 cenmsabpsa 2022, Pasanw, Poccus 281


https://github.com/viewzavr/vrungel

Scientific Visualization and Visual Analytics GraphiCon 2022

a training data set with unique sequences by removing redundant sequences using the SeqKit
toolkit [28]. The training was carried out in the PyTorch framework [29] by setting the following
hyperparameters: k-gram size to three; context window size to 20 words; hidden size to 100;
learning rate to 0.001; epoch number to 100, k-negative sampling size to 5 words; and finally
optimizer to Adam. This setup was obtained by performing several computational experiments
and assessing the quality of embedding using the cosine similarity between adjacent and distant
words. Note that the word size of embedding includes three amino acids, i.e., each word is a
trigram. The process of generating words from a sequence is shown in Figure 3. The stride for
word generation is set to one amino acid.

Our approach can serve as an exploratory tool to investigate the connection between a
phenotype (represented in the embedding space) and evolution. A key factor to better visualize
this connection is customizing the concept of similarity between strains. Hence, we offer a
modified version of the skip-gram architecture by adding a softmax function to the output of
the hidden layer. This allows us to consider each embedding vector in the word embedding
matrix as a probability distribution (see matrix W in Figure 2). As mentioned in Section 2, vector
representation of a sequence is obtained through concatenation of the vector representation of
its words. In the case of the modified skip-gram, the sum of sequence vector elements is equal
to the number of its words (since the sum vector elements of each word is equal to one). To
treat the sequence vector representation as a probability distribution, we scale each element by
the total number of words in the sequence. This provides us with a wide choice of distance,
including those are used for measuring the similarity between two probability distributions, to
score the similarity between sequences in the embedding space.

In this experiment, we considered 3 distances (Euclidean, cosine, Jensen-Shannon). In order
to estimate semantic similarity between words in Word2Vec, researchers compute the cosine
similarity between the vector representation of words. To extend the definition of similarity
between sequences, we used the Jensen-Shannon distance, which is the square root of the
Jensen-Shannon divergence. We generated a distance matrix for each metric using the ‘distance’
module in the Scipy library [30]. The matrix was further utilized to extract the coordinates
of tree nodes. This was conducted by applying a dimensionality reduction algorithm, t-SNE,
to the distance matrix. In result, we have the coordinate of every node in each evolutionary
trajectory. We smoothed every trajectory by applying the Bezier curve algorithm to increase
the visualization quality. A sample visualization of evolutionary trajectories for the experiment
data set is illustrated in Figure 4.

Considering the mentioned three alphabets (Polarity, Hydrophobicity, Cannata 2002), we
applied three distances for each alphabet and obtained nine distance matrices. To assess how
well the derived embeddings can preserve the evolutionary history of strains, we calculated the
pairwise evolutionary distances between original genetic sequences of strains and compared
them with the distance matrices from the embeddings. To do this, we calculated distance
matrices for three evolutionary distances: uncorrected distance; Jukes-Cantor distance [3]; and
Kimura distance [2]. To measure the correlation between matrices, we conducted the Mantel
test [31]. Table 1 shows the results of the test.

Among the selected RAAAs, the Cannata 2002 alphabet has 16 groups of amino acids [32],
while the other two alphabets include 3 groups. The Polarity and Hydrophobicity alphabets
provide more compact representations of the standard amino alphabet than the Cannata 2002
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Figure 4: A sample visualization of our experiment data set. The data set included 335 strains collected
during 1968-2007. Top images obtained by encoding protein sequences using Hydrophobicity alphabet
and applying cosine distance to measure the proximity of sequences in the embedding space. The below
images are the visualization of same phylogenetic relationship as top images by encoding using Cannata
2002 alphabet and employing the Jensen-Shannon distance. Left side images are colored based on the
node distance to the root, while the color in right side images expresses the isolation year of strain.

alphabet. This is why the Cannata 2002 alphabet has the highest correlation for each distance in
Table 1. The Hydrophobicity alphabet shows slightly more correlation than Polarity does with
evolutionary distance matrices. Moreover, the distance matrix obtained based on Hydrophobicity
alphabet encoding with cosine distance, surprisingly, achieved the highest correlation with
Jucke-cantor and Kimura distance matrices, yet it describes only 3 possible transitions in the
encoded genetic sequences.

In summary, Table 1 shows that the majority of evolutionary history is preserved in the
proposed embedding space. Moreover, the cosine distance outperforms the other two distances in
terms of correlation coefficients, while the Euclidean distance achieves slightly less correlation
than the Jensen-Shannon distance. Taken together, the results indicate that the proposed
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Table 1

Mantel test results for assessing the correlation between distance matrices. The Mantel test was
calculated using the Pearson method, 1000 permutations, and a two-sided test. All reported correlation
coefficients have been achieved with p,qie of 1e-03.

Metric RAAA Uncorrected | Jukes-Cantor | Kimura
Hydrophobic 0.940 0.935 0.933
Jensen—-Shannon Polarity 0.933 0.926 0.924
Cannata 2002 0.955 0.948 0.946
Hydrophobic 0.935 0.930 0.928
Euclidean Polarity 0.933 0.927 0.925
Cannata 2002 0.938 0.931 0.928
Hydrophobic 0.962 0.960 0.959
Cosine Polarity 0.958 0.956 0.955
Cannata 2002 0.963 0.959 0.958

approach can serve as an auxiliary tool for exploring and studying the evolutionary process
and phylogenetic characteristics which can be described in terms of amino acid properties and
higher order genetic signatures.

4. Conclusions

In this paper, we propose an alternative visualization of the phylogenetic tree by maintaining
the phylogenetic relationship between strains and modifying their coordinates. The coordinate
of each node is computed by applying the Word2Vec framework to encoded genetic sequences.
The encoding is carried out using a reduced amino acid alphabet (RAAA), with redefinition of
the mutation as a change between its groups.

The results indicate that encoding the genetic sequences by RAAA, along with Word2Vec
embedding, preserves the majority of evolutionary history in the resultant visualization. One
prominent advantage of our approach is highlighting of abrupt changes in the direction of
evolution. Such a phenomenon represents a significant change in a specific amino acid property
that has been introduced by the RAAA in encoding genetic sequences. The Word2Vec framework
allows us to incorporate long signatures in measuring the similarity between objects, instead of
comparing them by considering point mutations. Additionally, such an embedding considers
the neighbor effects of adjacent signatures through learning the word in its context.

We plan to generate Word2Vec embedding for hemagglutinin protein sequences of the
influenza virus subtypes using other simplified alphabets and to study the impact of hyperpa-
rameters on the training performance. To assess the quality of embedding, it may be better to
compute the distortion of the embedding instead of the correlation coefficient between distance
matrices. Additionally, embedding can be conducted by implementing more than one RAAA. In
this way, an amino acid is considered as a multidimensional object. Thus, we achieve a vector
representation of a protein sequence for each alphabet. The final vector of the sequence can be
obtained by concatenating all its representations. We believe our approach can be beneficial
for providing a better insight into the evolutionary process and revealing factors that drive the
evolution of species.
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