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Abstract
Thе paper deals with automatic areas of interest detection in video streams derived from mobile eye
trackers. Defining such areas on a visual stimulus viewed by an informant is an important step in setting
up any eye-tracking-based experiment. If the informant’s field of view is stationary, areas of interest
can be selected manually, but when we use mobile eye trackers, the field of view is usually constantly
changing, so automation is badly needed. We propose using computer vision algorithms to automatically
locate the given 2D stimulus template in a video stream and construct the homography transform that
can map the undistorted stimulus template to the video frame coordinate system. In parallel to this, the
segmentation of a stimulus template into the areas of interest is performed, and the areas of interest are
mapped to the video frame. The considered stimuli are texts typed in specific fonts and the interest areas
are individual words in these texts. Optical character recognition leveraged by the Tesseract engine is
used for segmentation. The text location relies on a combination of Scale-Invariant Feature Transform
and Fast Library for Approximate Nearest Neighbors. The homography is constructed using Random
Sample Consensus. All the algorithms are implemented based on the OpenCV library as microservices
within the SciVi ontology-driven platform that provides high-level tools to compose pipelines using a
data-flow-based visual programming paradigm. The proposed pipeline was tested on real eye tracking
data and proved to be efficient and robust.
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1. Introduction

Eye tracking is a modern technology widely used in psycholinguistics, cognitive psychology,
vision research, marketing, usability, etc. as a window to cognitive processing in action. The
core concepts of eye tracking are fixations and saccades. The former represents eye stops when
the new information is obtained and the latter are very quick jumps (e. g. 20–50 ms in reading)
that shift the eyes to the new part of the visual object [1]. Due to saccadic suppression [2] the
visual input is received only during fixations. The influential eye-mind hypothesis formulated by
Just and Carpenter [3] states that “there is no appreciable lag between what is fixated and what
is processed”. This means that fixation durations on visual objects (e. g. words in a text being
read) directly reflect the amount of cognitive efforts required to process them. More recently
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the theory was refined [4]: it was pointed out that fixation durations show not only moment-to-
moment processing of currently fixated visual objects but also preprocessing of visual input in
parafovea, the part of the visual field that extends out to 5∘ on either side of fixation. Therefore,
it is extremely important to analyze separate parts of a complex visual object (e. g. individual
words in a text) to get a deeper understanding of what factors of fixated/non-fixated objects
influence cognitive processing.

Technically, a so-called interest area report that comes with most eye tracker software (e. g.
Eyelink, Tobii, Eyegaze, etc.) is usually carried out. To generate such a report, a researcher
first has to divide manually or automatically a visual stimulus into areas of interest (AOIs, e. g.
words in a text). When dividing manually, a researcher usually just draws several rectangles or
other shapes in the respective software around objects of interest [5]. This is a more or less
easy task for stationary eye trackers, which use a computer screen to show visual stimuli since
their software has information about stimuli location on the screen, and the informant does
not move their body and head during the experiment. However, it is not the case for mobile
eye trackers [6, 7]. Mobile eye trackers are glasses-like devices, which have cameras facing the
informant’s eyes (for tracking the informant’s gaze) and field-of-view camera facing forward
(for recording what the informant sees). The reasons are the following.

First, mobile eye trackers often have cameras of lower quality than stationary ones. This
results in poorly legible recorded scene images. Second, the working area or the part of the
visual field where visual stimuli could be located is predetermined in advance in stationary
eye trackers, whereas even static objects of interest recorded by a mobile eye tracker could
appear in different parts of successive images due to head movements. For example, by text
reading, let the word “cat” be printed in the last paragraph of one-page text that is required to
be read by an informant. At the beginning of a reading, this word is located at the bottom of
the visual field. But approaching the end of the text, an informant lowers their head to read
the last paragraph. The eye tracker’s field-of-view camera also lowers, and as a result, the
word “cat” appears at the top of the visual field, and all the previous text is cut off. Finally, the
images recorded by a mobile eye tracker are much noisier than those that came from stationary
ones. When the screen is used, visual stimuli are usually placed on a white/gray plane therefore
everything that does not correspond to background color is a visual object of interest with high
probability. When a mobile eye tracker is used, it is difficult to differentiate between foreground
and background objects. All mentioned above makes the task of automatic object detection in
images recorded by mobile eye trackers to be very complicated. Moreover, the manual AOIs
generation (by drawing some shape) is not always provided by manufacturers.

In our experiments at Saint-Petersburg State University, we use the mobile eye tracker
PupilCore by PupilLabs (https://pupil-labs.com/products/core/). PupilLabs produces an eye
tracking platform that consists of open source software and wearable eye tracker glasses.
Corresponding visualization software (PupilPlayer) allows to export all the fixations for the full
recording or the part of it. It is not possible just to draw AOIs inside the recordings; instead,
ArUco markers [8] should be placed in the AOIs corners to allow the software to generate
the corresponding AOIs bounding boxes automatically. Then one could export eye movement
data for these AOIs. The drawbacks of such a procedure are the following. First, the visual
stimulus becomes less natural, and “strange stickers in the corners” may distract the informant’s
attention. Second, conceptually it is not an option to place the markers inside a big AOI to

https://pupil-labs.com/products/core/
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maintain the AOI hierarchy (e.g. words in the texts or magazine pictures). These markers
just disrupt the integrity of the complex visual objects. Automatic AOIs detection algorithms
for mobile eye tracker data could overcome these drawbacks and should be explored more
thoroughly. This is the goal of our present study.

In this paper, we propose a new pipeline for automatic detection of texts and words inside
the texts on video streams obtained from the mobile eye tracker PupilCore by PupilLabs.

To test the proposed pipeline, we used the data from the following eye-tracking-based
experiment. 72 adolescents read printed versions of five texts (text examples and their detailed
description are provided in an Open Science Repository project, https://osf.io/4m59b/). Each
text occupied no more than one page. The font factor was manipulated: texts were presented
in Verdana, Roboto, Times New Roman, and LexiaD, a Cyrillic font created for people with
reading problems [9]. The sampling frequency of eye tracking was 200 Hz. The recording was
performed in binocular mode with a narrow-angle lens for the field-of-view camera (1080p:
88∘ × 54∘). Before reading each text, participants underwent an equipment calibration using an
on-screen marker and a 3D view display in the Pupil Capture 2.6.19 app. The on-screen marker
was presented on the laptop screen (14′′ 1980 × 1080, 309 × 175 mm). The screen was positioned
slightly below eye level, the distance from the eyes to the screen was between 600 and 700 mm.

The AOIs detection pipeline is implemented within the SciVi microservice platform (https:
/scivi.tools/). This pipeline has a modular structure allowing fine-tuning of each step for a
particular AOIs detection task.

2. Key Contributions

In this work, we propose a set of computer vision and scientific visualization tools to automate
the detection of AOIs by given templates in video streams derived from mobile eye trackers.
The following key results can be highlighted:

1. The robust method to segment the video into AOIs preserving fine details and maintaining
the AOIs hierarchy (e.g. detecting the text and individual words in this text).

2. The set of server-side SciVi platform microservices to construct the templates for text-
based AOIs, load video streams, and automatically detect the templates in loaded streams.

3. The corresponding client-side SciVi platform microservice to monitor the detection
process and assess the detection quality.

The above tools allow us to compose robust AOI detection pipelines using the high-level visual
programming environment of the SciVi platform and thereby automate the video segmentation
for subsequent analysis of eye gaze tracks recorded by mobile eye trackers.

3. Related Work

An analytical review of the literature shows that automation of AOIs detection is badly needed
for eye-tracking-based research. Brône et al. “argue for the integration of object recognition
algorithms from vision engineering, such as invariant region matching techniques, in gaze
analysis software” [10]. Later, De Beugher et al. followed this idea by implementing the

https://osf.io/4m59b/
https:/scivi.tools/
https:/scivi.tools/
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computer-vision-based software for the automatic detection of objects, faces, and persons in
the recordings derived from mobile eye trackers [11].

MacInnes et al. propose a method “for mapping gaze data from an egocentric coordinate
system (i. e. the wearable eye-tracker) to a fixed reference coordinate system (i. e. a target
stimulus in the environment)” [6]. The method relies on the robust computer vision algorithms
implemented in the OpenCV library [12], such as Scale-Invariant Feature Transform (SIFT) [13],
Fast Library for Approximate Nearest Neighbors (FLANN) [14], and Random Sample Consensus
(RANSAC) [15]. This method “allows researchers to study aggregate viewing behavior on a 2D
planar target stimulus without restricting the mobility of participants” [6].

Wolf et al. introduce the computational gaze-object mapping method “that automatically
maps gaze data onto respective AOIs” [16]. This method relies on the region-based convolutional
neural network (R-CNN) that ensures precise object masking. Although this method is highly-
functional, it only detects an entire object and cannot split it into finer details. Therefore, it
cannot maintain hierarchical AOIs. To overcome this limitation, Batliner et al. improved this
approach to support the mapping of the user’s gaze on dynamic AOIs [17]. The aim of this
research group was to study the usability of tangible screen-based user interfaces, like the ones
in modern medical equipment. First, the AOI bounding box is detected in the video frame (in
the mentioned work, just a single top-level AOI is considered) using state-of-the-art computer
vision algorithms. Second, the gaze is mapped from the video coordinate system into the AOI
coordinate system. Third, the extracted AOI is matched against the set of predefined templates
to find out the appropriate one and to allow studying the mapped gaze fixations on the level of
subordinate AOIs. In this way, a two-level hierarchy of AOIs is maintained. To keep track of the
top-level AOI, Lucas-Kanade optical flow [18] is utilized. The main limitation of the approach
of Batliner et al. is the computational burden requiring cloud computing to be involved.

Callemein et al. propose a tool to support the eye-tracking-based study of human communi-
cation [7]. Using the YOLOv2 real-time object detection model and the OpenPose detection
library for the body, face, hands, and foot estimation, this research group implemented the
software for robust automatic detection of human faces and hands in the mobile eye tracker
videos.

Kurzhals et al. propose to create AOIs based on the gaze coordinates without any a priori
information [19]. The idea is to extract small regions around each fixation point, then cluster
these regions and define the result clusters as AOIs. To maintain this process, a special high-level
graphical editor is created allowing the researchers to assess and correct the clustering results
if necessary.

As stated by Hessels et al., despite many attempts to make the AOIs detection fully automatic,
there is still no universal approach; each well-known solution has its certain limitations [20].
These limitations are due to the underlying computer vision techniques, which are multifarious
but have no “silver bullet” to handle all possible use cases at once.

This is why we decided to choose a microservice-based approach for creating a modular AOIs
detection pipeline, that allows to fine-tune, reuse, and replace the individual steps according to
the specifics of a particular detection task.
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4. Background

While collecting, preparing, and analyzing the data within our Digital Humanities (DH) re-
search, we often rely on SciVi visual analytics platform [21]. This platform has a microservice
architecture with microservices’ behavior and communication driven by ontologies.

SciVi is a Web application; its server is written in Python using Flask and its client is based on
JavaScript, HTML5, and CSS3. SciVi supports microservices, which run on the client (written in
any browser-compatible programming language, including JavaScript, TypeScript, GLSL, and
WebAssembly), on the server (usually written in Python or organized as pre-compiled binary
libraries with Python-compatible interface), or on the special external hardware (for that case,
appropriate firmware and middleware are generated automatically [22, 23]).

The involved ontology engineering principles enable a declarative way of describing the
functionality, graphical user interfaces (GUIs), and communication protocols of individual
microservices, which simplifies their extension and reuse. This in turn allows an efficient
adaptation of the platform to solving the new classes of visual analytics tasks. SciVi provides
four levels of this adaptation:

1. System level. This level is available for system programmers and assumes an extension of
the built-in ontology reasoner to introduce fundamentally new features to the platform’s
core. Changes on this level are very rare. They are needed if SciVi is being adapted to
solving problems far beyond visual analytics.

2. Application level. This level is available for application programmers who develop new
microservices for solving new problems within the common SciVi paradigm.

3. Knowledge base level. This level is available for the SciVi administrators who can change
the underlying ontologies to build so-called workbenches: sets of available microservices
suitable for solving problems of a particular class (for example, problems related to
DH [21], Smart Museum [24], Internet of Things [25], Human-Computer Interaction [26],
etc.).

4. Data flow level. This level is available for end users who declare the pipelines of
microservices for solving particular tasks in a given application domain. For this, the
users utilize a high-level visual programming tool based on data flow diagrams (DFDs)
that helps define the data processing pipeline in a form of an operators’ chain. The
involved microservices are represented as DFD nodes (data processing operators) and
links denote data transfer. The composing of DFD requires no special IT hard skills from
the user: SciVi automatically takes care of execution order, load balancing, and needed
data transfer protocols, allowing the user to concentrate on the data processing semantics
only.

In this work, we introduce new microservices on the application level (level 2) for solving
a new class of tasks related to the automatic segmentation of video streams. After that, we
enriched the SciVi knowledge base (level 3) to allow end users to utilize these microservices
on the data flow level (level 4). To test the new microservices, we composed a DFD to solve
a particular video segmentation task. Below, the newly introduced features are described in
detail.
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5. AOIs Detection Problem

The mobile eye gaze tracker is a glasses-like device with two cameras 𝐸1 and 𝐸2 facing the
human’s eyes (responsible for optical gaze tracking), and one field-of-view camera 𝐶 facing
forwards (responsible for recording nearly the same that the human sees). Two records are the
tracker output: video stream 𝑉 from the camera 𝐶 and eye gaze track 𝑇 derived from the cameras
𝐸1 and 𝐸2. 𝑇 is an array of timestamped samples of eye gaze coordinates expressed in the plain
2D Cartesian coordinate system of 𝑉. It is implied that there is a known location {𝑥𝑡, 𝑦𝑡} of
human gaze within the video stream frame 𝑉 (𝑡) for each timestamp 𝑡 in the eye-tracking-based
experiment.

These data are enough to build a heatmap-like visualization for preliminary analysis of areas,
which attract the informant’s attention. However, for deeper analysis, meaningful segmentation
of 𝑉 (𝑡) into the AOIs is needed. Such segmentation allows revealing the patterns of information
processing by performing the data mining of the eye gaze tracks.

It must be noted, that in our experiments, an informant looks at the static visual stimulus
𝐼 (hereafter also denoted as “template image”) while the gaze track is being recorded. For
stationary trackers, where the informant’s head is fixed opposite to 𝐼, the segmentation can be
performed manually, because 𝑉 (𝑡) = const. For mobile trackers, each 𝑉 (𝑡) is unique, because
the informant can freely move their head while watching 𝐼, so automated segmentation is badly
needed.

For this kind of automation, we suggest the following algorithm:

1. Perform a one-time segmentation 𝑆 of 𝐼 into the set of AOIs 𝐴 = {𝑎1, …, 𝑎𝑛} ∶ 𝐴 = 𝑆(𝐼 ).
Each AOI 𝑎𝑖, 𝑖 = 1, 𝑛 is represented as 𝑎𝑖 = {𝑙𝑖, 𝑝1𝑖 , 𝑝2𝑖 , …, 𝑝

𝑚
𝑖 }, where 𝑙𝑖 is a text label of

corresponding AOI and 𝑝𝑗𝑖 , 𝑗 = 1, 𝑚 are the points of AOI bounding polygon expressed in
the plain 2D Cartesian coordinate system of 𝐼.

2. For each 𝑡:
a) Locate 𝐼 in 𝑉 (𝑡) using a detector 𝐷 ∶ 𝐼 ′ = 𝐷(𝐼 , 𝑉 (𝑡)).
b) If the locating is successful:

i. Calculate a homography transformation 𝐻 such as 𝐼 ′ = 𝐻(𝐼 ).
ii. For each 𝑎𝑖 from 𝐴:

A. For each 𝑝𝑗𝑖 from 𝑎𝑖: calculate 𝑞𝑗𝑖 = 𝐻(𝑝𝑗𝑖 ).
B. Compose a new set 𝑎′𝑖 = {𝑙𝑖, 𝑞1𝑖 , 𝑞2𝑖 , …, 𝑞

𝑚
𝑖 }.

iii. Compose a new set 𝐴′ = {𝑎′1, …, 𝑎′𝑛}.

As a result, for each 𝑉 (𝑡) that contains 𝐼, a set of AOIs 𝐴′ will be created, and the bounding
polygon of each AOI 𝑎′𝑖 from this set will be expressed in the coordinate system of 𝑉 (𝑡). This
in turn enables matching the eye gaze points {𝑥𝑡, 𝑦𝑡} against these AOIs during the subsequent
analysis.

The main advantages of the above mentioned algorithm over segmenting each 𝑉 (𝑡) individu-
ally are higher robustness, sustainability, and efficiency: the template image 𝐼 has no distortions
like perspective, barrel, pincushion, defocus, chromatic aberration, etc., which are typical for
video footages. This is why the quality of automatic segmentation should be much higher for
the template image than for the video frame for almost any segmentation algorithm.
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Since step (1) of the above algorithm is performed just once, the initial segmentation 𝑆 can
potentially be a manual operation. But in our case we are about to retrieve the bounding boxes
of individual words in the textual stimuli, therefore 𝑆 is performed automatically using the
optical character recognition (OCR) technique.

We implemented the above algorithm using the visual programming capabilities of the SciVi
platform. SciVi provides a high-level GUI for fine-tuning the corresponding data preparation
and detection steps. This allows the users without deep computer vision knowledge to adapt
this algorithm for the new types of template images and new video streams.

6. AOIs Detection Pipeline in SciVi

The DFD pipeline for automatic detection of AOIs in a set of video streams is shown in Fig. 1.
Each DFD node denotes a corresponding data processing operator that is implemented as an
individual microservice.

Figure 1: SciVi DFD of interest areas detection pipeline.

The pipeline execution starts with the “Load Videos” and “Load Image” operators. They both
act as data sources. “Load Videos” is responsible for loading video streams. The corresponding
microservice is written in Python and runs on the SciVi server side. It has corresponding
settings (not shown in the DFD, because they appear in a special side panel in SciVi GUI), which
allow the user to choose a set of video files to be loaded. The files should be located on the
server because normally they are quite large (hundreds of Megabytes), so it is inefficient to
transfer them over the network. The loading is leveraged by OpenCV that takes care of video
decoding and splitting the stream into frames for subsequent analysis. “Load Videos” performs
an implicit iteration over the array of videos, and for each video, over its frames. For each
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iteration, the operator’s outputs take the corresponding values: frame image (“Frame”, denoted
as 𝑉 (𝑡) in Section 5), frame index in a stream (“Frame Index”), number of frames in the stream
(“Frame Count”), index of the current video stream in the array (“Video Index”), length of this
array (“Video Count”), and file name of the current video stream (“Video Path”). The subsequent
operators are executed for each iteration taking these values as inputs. The outputs “Video
Index” and “Video Count” could be used to maintain a progress bar of the entire operation,
but in the present case, they are not connected to anything because the progress is estimated
elsewhere (see the description of “Count Matches” operator below).

Parallel to the video loading, the template image is loaded using the “Load Image” server-side
operator that relies on Python-based OpenCV API. The template is an image that should be
located in the video stream (this image is denoted as 𝐼 in Section 5). Normally it is the graphical
or textual stimulus that has been used in the eye tracking experiment. In our case, it contains a
text with particular formatting.

Then, both frame image and template image are binarized by the “Binarize Image” server-side
operator that uses adaptive thresholding from OpenCV (https://docs.opencv.org/4.x/d7/d4d/
tutorial_py_thresholding.html). Next, the template image is downsampled using the “Resize
Image” server-side operator. The downsampling ratio is empirical and can be set via the
operator’s GUI. We revealed that this step dramatically affects the subsequent template location
quality. The task is to make the template image as close as possible to the size of its representation
in the video frame.

The downsampled template image is passed to two other server-side operators: “Locate
Template” and “OCR”. The “Locate Template” operator chains under the hood three algorithms
implemented in OpenCV. First, it utilizes the SIFT detector [13] to find a set of features in the
“Template” and “Picture” (video frame) images. Second, it uses FLANN [14] and Lowe’s ratio
test [13] to find the best match between these two sets. If there are more than 50 matching
features, the template is considered to be located, and “True” is assigned to the “Match” Boolean
output. Otherwise, “False” is assigned. Third, regardless of the matching features number,
homography transformation is calculated using the RANSAC [15] algorithm. The homography
matrix is assigned to the “Homography” output.

The “OCR” operator performs optical character recognition to find the bounding boxes of
all the words in the text. This operator is leveraged by Tesseract open source OCR engine
(https://github.com/tesseract-ocr/tesseract) using Long Short-Term Memory (LSTM) artificial
neural network [27] to recognize the characters and language-specific dictionaries to recognize
whole words. Although this method is quite robust, it can be improved if the default dictionary
is substituted by the actual text being processed. This is possible in our case as the text is not
random but represents a part of an actual eye-tracking-based experiment protocol. The result
of the “OCR” operator is a set of AOIs, each one having a label (the recognized word) and four
points of bounding box corners.

The next pipeline step is the “Perspective Transform” server-side operator. It takes a ho-
mography matrix and a set of AOIs detected in the template image and transforms the bound
boxes from the template image space to the video frame space. To solve this, a built-in OpenCV
perspective transform function is used.

According to the main algorithm, “Perspective Transform” is the last step. Its result is
transmitted to the “Save AOIs” server-side operator that stores the transformed AOIs in a CSV

https://docs.opencv.org/4.x/d7/d4d/tutorial_py_thresholding.html
https://docs.opencv.org/4.x/d7/d4d/tutorial_py_thresholding.html
https://github.com/tesseract-ocr/tesseract
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file. Each entry has the following format:
Frame Index, "Word", X1, Y1, X2, Y2, X3, Y3, X4, Y4
where 𝑋𝑖, 𝑌𝑖, 𝑖 = 1, 4 are the bounding box corners coordinates enumerated in counter-clockwise
order, expressed in the video frame coordinate system.

The file name corresponds to the name of the processed video stream (obtained through the
“Path” input). For each frame, the number of entries generated is equal to the number of words
in the text from the template image.

The above-mentioned operators solve the AOIs detection problem. However, to monitor the
detection process, additional operators are introduced. To store the visual representation of
AOIs, the “Draw AOIs” server-side operator draws bounding polygons of AOIs in the video
frame using OpenCV image manipulation API. The resulting image is passed to the “Save Image”
server-side operator that stores it in a file with a name specified in the “Path” input. This input
takes concatenation (“Concat Strings” server-side operator) of the video path and video frame
index (converted to a string using the “Number2String” server-side operator).

Last but not least, the “Count Matches” client-side operator allows the user to monitor the
overall progress of the pipeline execution and assess the detection quality. This is the only
operator in this DFD that runs in the browser. For each video stream, a labeled sequence chart
is drawn in real time (see Fig. 2). Green bars indicate the frames, for which the “Frame Match”
value is “True”, and red bars stand for “False”. This allows the user to see if there are any
template location failures in the video stream. Clicking in the sequence chart opens up the
pop-up with the loaded frame image that is requested from the server by the “Frame Path”
cached in the “Count Matches” operator for each frame. Using this feature, the user can visually
assess the AOIs detection quality for any place in any processed video stream.

Figure 2: Sequence chart rendered in SciVi displaying the successful and unsuccessful attempts to
locate template image in video streams (processing of the videos “Informant-1-1” and “Informant-1-2”
are completed; processing of the video “Informant-1-3” is in progress).

7. Discussion

As for the time of writing the paper, we tested the above pipeline on 3 different text-based visual
stimuli, each one with 3 different video streams. The OCR worked correctly for all the template
images used (this was expected because the template images have no distortions and are in
fact perfect text representations). The template location accuracy is nearly 90%, which is a
fairly good result. It must be noted, that the locating failures at the beginning of the videos (see
Fig. 2) are expected and correct: the text was presented to the informant a couple of seconds
after the start of the recording. The individual failures in the middle are not a big problem: the



GraphiCon 2022 Научная визуализация и визуальная аналитика

19–22 сентября 2022, Рязань, Россия 237

single-frame gaps can be filled by interpolating the AOIs bounding polygons in the neighboring
frames (thus, such post-processing is a matter of future work).

The example of the template image is shown in Fig. 3 (left). The AOIs detection result for
a single frame (as saved by the “Save Image” DFD operator) is shown in Fig. 3 (middle). The
SIFT/FLANN-based template location for text-containing images appears to be very robust
because the graphical representation of a text has many salient features. The corner case is
shown in Fig. 3 (right). As it can be seen, the detection still works correctly even if the informant
bows their head pretty much.

Figure 3: Template image of one of the experimental texts (left), the result of AOIs detection in SciVi
(middle), The result of AOIs detection in SciVi for the corner case of almost fully obscured template
(right).

8. Conclusion

In this work, we propose a pipeline for automatic detection of AOIs in the video streams derived
from the field-of-view cameras of mobile eye trackers. This pipeline is based on the SciVi
ontology-driven microservice-based platform that provides high-level tools to maintain its
modularity and extensibility.

Currently, we adopted tools to work with text-based visual stimuli, detecting the given text
(top-level AOI) in the video streams and segmenting individual words (subordinate AOIs). The
proposed AOIs detection pipeline proved its efficiency on the real data derived from the mobile
eye tracker PupilCore. Although currently it has been used with text-based stimuli only, thanks
to the modularity it can be extended to other types of stimuli as well by introducing new
segmentation algorithms instead of OCR.

For the future work, we plan to mitigate the mentioned limitations by adopting other template
localization techniques and implementing AOIs inter-frame interpolation.
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