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Abstract  
Shadowgraph imaging has been widely used to study flow fields in experimental fluid dynamics. 
Nowadays high-speed cameras allow to obtain millions of frames per second. Thus, it is not possible 
to analyze and process such large data sets manually and automatic image processing software is 
required. In the present study a software for automatic flow structures detection and tracking was 
developed based on the convolutional neural network (the network architecture is based on the 
YOLOv2 algorithm). Auto ML techniques were used to automatically tune model and 
hyperparameters and speed-up model development and training process. The neural network was 
trained to detect shock waves, thermal plumes, and solid particles in the flow with high precision. 
We successfully tested out software on high-speed shadowgraph recordings of gas flow in shock 
tube with shock wave Mach number M = 2-4.5. Also, we performed CFD to simulate the same 
flow. In recent decades, the amount of data in numerical simulations has grown significantly due to 
the growth in performance of computers. Thus, machine learning is also required to process large 
arrays of CFD results. We developed another ML tool for experimental and simulated by CFD 
shadowgraph images matching. Our algorithm is based on the VGG16 deep neural network for 
feature vector extraction and k-nearest neighbors algorithm for finding the most similar images 
based on the cosine similarity. We successfully applied our algorithm to automatically find the 
corresponding experimental shadowgraph image for each CFD image of the flow in shock tube with 
a rectangular obstacle in the flow channel. 
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1. Introduction 

Flow visualization is the visualization of data obtained in fluid dynamics experiments or in 
computational fluid dynamics (CFD). Schlieren and shadowgraph techniques have been widely used 
for studying gas flows in experimental fluid dynamics since the 19th century [1, 2]. Both methods are 
based on the light refraction phenomena. If the light ray passes through region of inhomogeneity, it will 
refract proportional to the gradient of the refractive index of the medium. The refractive index, in turn, 
is proportional to the density of the medium in accordance with the well-known Gladstone-Dale 
equation [3]: n − 1 = G(λ)ρ, where n is the refractive index of the fluid, ρ is its density, G(λ) is the 
Gladstone-Dale constant and λ is the wavelength of light. 

Nowadays with the development of high-speed digital equipment and growing computational power 
of computers the size of flow data becomes larger and manual analysis becomes very complicated and 
time consuming. However, machine learning and computer vision approaches can handle this problem. 
Typical machine learning process consists of 5 stages [4]: (1) formulating a problem, (2) collecting and 
preparing data for the model, (3) choosing an architecture to represent the model, (4) designing a loss 
function to minimize error, (5) selecting an optimization algorithm for model training. In the past few 
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years deep learning methods have been started to apply in fluid dynamics [4, 5] and flow visualization 
[6, 5]. Liu et al. [6] first published a detailed review on the use of deep learning in flow visualization. 
They identify 3 main areas of research: Data Management, Feature Extraction, and Interactive Analysis. 
Data management includes such tasks as high-resolution data production from low-resolution 
information [7, 8], flow data downscaling, flow field reconstruction [9]. Automatic flow feature 
extraction is also being developed. Deep learning methods are being used for vortex [10] and shock 
[11, 12] features extraction. Berenjkoub et al. [13] successfully tested CNN, Resnet, Unet and IVD-Net 
architectures for vortex detection. Beck et al. [14] considered shock detection problem as image 
processing problem. Morimoto et al. [15] proposed a method to fill missing regions on the PIV images 
by using supervised machine learning. Training data included artificial particle images as input data 
and velocity vectors as output. Output vectors were obtained by a direct numerical simulation. The 
obtained model was successfully applied to fill missing parts of the experimental PIV images. It was 
found that the neural network can obtain finer and hidden flow structures, which cannot be resolved 
with the cross-correlation method. Ubald et al. [16] proposed a method based on the Gaussian process 
model for extracting quantitative information from schlieren images. A pair of schlieren images with 
the knife-edge at horizontal and vertical orientations was used to extract density values from the images. 

It is often possible to extract quantitative physical information from schlieren and shadowgraph 
images using simpler computer vision methods without resorting to machine learning. Edge detection 
methods are widely used for shock detection. Canny algorithm [17] showed the most accurate results 
in edge detection on shadowgraph and schlieren images [18, 19]. Background image subtraction in 
frequency domain is often used to improve image quality and reduce noise level [19]. In our previous 
studies, we first used the Hough transform together with Canny edge detection for more accurate 
recognition of shock waves and automatic oblique shock angle calculation in the supersonic gas flow 
[20, 21]. 

In the present study we developed object detection neural network based on the YOLOv2 
architecture [22]. It was trained to detect three classes of objects in the shadowgraph images: solid 
particles in the flow, vertical shocks, and thermal plumes (Figure 1). It is improved version of the neural 
network used in [20]. We used Auto ML tools [23] developed by Apple [24] to automatically tune the 
model and hyperparameters to achieve better results in object detection. We also developed ML tool 
that allows you to compare CFD and experimental shadowgraph images and obtain their similarity 
level. We applied this solution to find the corresponding experimental image to each synthetic CFD 
frame. Our solution is based on the VGG16 convolutional neural network [25] for feature vector 
extraction and k-nearest neighbors algorithm for finding the most similar images based on the cosine 
similarity. 

 

 
 

Figure 1: Examples of object classes in the training set (shadowgraph images): a - "particle", b - 
"plume", c - "shock" 

2. Experiments 

We performed 3 types of experiments to test our ML software. First set of experiments included 
shadowgraph imaging of the flow in open-ended shock tube in time range from 0 to 40 ms (Figure 2). 
Shock tube has a rectangular cross-section of 24x48 mm2. The driver gas is helium, the driven is air. 
The driven gas pressure was 1 atm (open-ended shock tube). Created shock wave Mach number is M = 
2-4.5. A shadowgraph system was set up to visualize flow in the test section. Test section contains a set 
of electrodes to create pulsed surface and volume electrical discharges to initiate instant energy input 
into the flow. 
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Figure 2: Shock tube scheme and x-t plot of gas flow development after diaphragm rupture 

 
The second set of experiments was designed to test vertical shock wave detection in complex flow 

with horizontal and vertical shocks and high noise level. The flow was created in our test section by 
pulsed surface and volume electric discharges. A target for object detection was a vertical shock wave 
created by a pulsed cylindrical volume discharge. A detailed description of the experiments is given in 
[26]. 

The third set of experiments was designed to compare CFD and experimental frames using VGG16 
convolutional neural network and automatically find the most similar experimental images to the CFD 
results. The experiments were carried out on the same experimental setup. A rectangular obstacle was 
placed on the bottom wall of the test section in a supersonic flow. At a specific point in time, an electric 
discharge was switched on the lower wall of the test section initiating a shock wave spreading from the 
discharge [27]. Figure 3 shows a comparison of the synthetic shadowgraph images obtained by CFD 
and the shadowgraph images obtained in experiments. The developed ML model was trained to 
automatically find such pairs of similar CFD and experimental images. 

 

 
 

Figure 3: Shock wave spreading from the pulsed surface electrical discharge in the supersonic flow 
near the obstacle: CFD and experimental shadowgraph images comparison 
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3. Fluid structures detection using CNN 

We trained a CNN based on the well-known YOLOv2 architecture to detect three types of objects 
on shadowgraph images: shocks, plumes and particles (Figure 1). We used Auto ML [23] tools to 
optimize CNN model and hyperparameters. Create ML (v. 3.0) utility developed by Apple was used to 
automate and simplify model setup and training [24]. Object detection mode was selected in the Create 
ML utility (CNN with modified YOLOv2 architecture). 9000 learning iterations, auto batch size and 
13x13 pixels grid size were selected as the initial settings. We prepared data for training and testing 
based on the set of 844 objects in total: 472 shock wave images, 196 plume images and 176 particle 
images. It also includes a configuration file with the locations and sizes of objects bounding boxes and 
their classes. 

The supervised learning process included 9000 iterations. The graph in Figure 4 characterizes the 
effectiveness of training (loss vs epoch dependency). Final loss value on the last iteration was 0.665, 
which is quite good (generally, values between 0 and 1 are considered appropriate). Testing the model 
showed the following results: 92% correct answers for the training set and 88% for the test set. 

The input for the model was an image of size 416x416 pixels (color image). Intersection over union 
threshold (IoU) was set to 0.45. Confidence threshold was set to 0.25. Output included two 
multidimensional arrays: confidence (boxes × class confidence) and coordinates (boxes × [x, y, width, 
height]). 

 
Figure 4: Effectiveness of model training: loss vs epoch 

 
After exporting the model from the Create ML utility, we used it in our application for MacOS 

written in Swift programming language. In our application we used Core ML [28] and Vision [29] 
libraries to import the model and setup object detection workflow. 

We tested our software on the high-speed shadowgraph images of the flow in the open-ended shock 
tube. The recording frame rate was 150 000 fps. The initial shock wave Mach number was M = 4.2. Air 
pressure in the open-ended low-pressure section was 1 atm. Figure 5 shows some of the examples of 
object detection on different stages of the flow. Red bounding boxes of the detected flow structures 
were rendered automatically by our software. 

 

 
Figure 5: Flow structures detection on the shadowgraph images of the flow in shock tube by CNN. First 
row – initial shock wave; second row – reflected discontinuities; third row – detection of parts of the 
destroyed diaphragm 
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Figure 6 shows : x-t plots of the detected by CNN discontinuities in time ranges 0-6 ms and 0-1.2 ms 
 

 
Figure 6: x-t plots of the detected by CNN discontinuities in time ranges 0-6 ms and 0-1.2 ms 

 
“Particle” class objects were also captured (parts of the destroyed diaphragm). The corresponding 

x-t plot (Figure 7) allows us to roughly estimate flow velocity during the time range from 0 to 40 ms 
from particle velocities if we suppose that particles are following the flow. Each particle velocity can 
be calculated as ∆x

∆t
 for the corresponding x-t dependency. It is clearly visible that flow velocity gradually 

decreases. 25 ms after the passage of the initial shock wave velocity oscillations were detected. 
 

 
Figure 7: x-t plots of the detected by CNN particles in time range 0-40 ms 

 
We performed another set of experiments with the high-speed shadowgraph imaging of the flow 

created by the complex pulsed electrical discharge arrangement. Сreated by the discharges flow 
contains three shocks: two horizontal – spreading from the surface discharges and one vertical – 
spreading from the cylindrical discharge in the volume of the test section. The vertical shock wave 
Mach number is M = 1.6. The flow contains a lot of inhomogeneities and noise, which complicates the 
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recognition of objects by the neural network. Despite this fact, the created neural network showed high 
resistance to noise and made it possible to accurately recognize all vertical discontinuities in the flow 
(Figure 8). The first two rows (Figure 8) contain shock wave capture spreading from the pulsed 
cylindrical electric discharge. The third row contains images of the reflected shock waves detection. 
Horizontal shock waves and different flow inhomogeneities don’t spoil object detection accuracy. 

 

 
Figure 8: Flow structures detection on the shadowgraph images of the complex post-discharge flow 
by CNN 

 
Figure 9 shows shock wave detection results from full data set corresponding to Figure 8. High 

accuracy of object detection with high background noise level was demonstrated. 
 

 
Figure 9: Shock wave detection with high background noise level based on the CNN 

4. Experimental and synthetic CFD shadowgraph images matching using deep 
learning 

An important task in fluid dynamics is the comparison of experiment and CFD results. Experimental 
shadowgraph images are often compared with the CFD results to test the calculations. We firs applied 
deep learning approach to automatically compare CFD and experimental shadowgraph images and find 
pairs of images for the same flow stage. 

Our objective was to create ML model that finds the top k images that are most similar to an input 
image. In our solution we used VGG16 [25] convolutional neural network architecture to convert an 
image to a vector of size 4096 elements. After that, we used k-nearest neighbors algorithm to find 
similar images to the input image based on the cosine similarity between vectors. Cosine similarity is 
defined for two vectors A and B as follows: 
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 (1) 

where i is a vector component index. 
First, we fed 224x224 pixels size shadowgraph images to the input of the VGG16 neural network. 

We used 3000 experimental images for matching. We obtained vectors of size 4096 elements as an 
output for each image. We used VGG16 implementation from Keras library [30]. The code was written 
in Python. The second step included similar images search using k-nearest neighbors algorithm and 
cosine similarity of the vectors. The input on the second step was a new CFD image and the output was 
an array of k similar shadowgraph images, processed on the previous step, and the corresponding 
similarity score. 

Figure 10 shows some examples of similar images matching for k = 2 and the corresponding 
similarity scores. Our model successfully identifies up to 50% of the image pairs at k = 1 (prediction 
with the highest similarity score) and up to 98% at k = 7. Thus, for each of the given CFD images, our 
model will search through 3000 experimental images, and it is guaranteed to find a suitable 
experimental one in a sample of 7 images. 

 
Figure 10: Similar image search using VGG16 deep neural network and k-nearest neighbors algorithm 
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Green bounding box indicates the correct similar image detection. Input is CFD image, output is an 
array of similar shadowgraph images and similarity scores. 

Although the search for similar pairs of images does not work as well as if it were done by a human, 
nevertheless, the developed solution can narrow the search area from several thousand to less than 10 
images. Thus, our solution can be considered as a recommender system for researchers. 

5. Conclusions 

We successfully applied deep learning methods to automate data analysis in experimental fluid 
dynamics and CFD. We successfully trained a CNN based on the YOLOv2 architecture to detect three 
types of objects on shadowgraph images: shocks, plumes and particles. Auto ML tools were used to 
optimize model and hyperparameters. We used the model to study flow in shock tube in time range 
from 0 to 40 ms. The model automatically processed large amount of shadowgraph images and tracked 
all discontinuities and particles in the flow. Testing the model gives the following results: 92% correct 
answers for training set and 88% for test set. The obtained information allowed us to obtain important 
physical information about the flow. Also, our model obtained excellent results when processing a more 
complex flow created by the pulsed electrical discharge arrangement. 

We firs applied deep learning to automatically compare CFD and experimental shadowgraph images 
and find pairs of images for the same flow stage. Our algorithm is based on the VGG16 deep neural 
network for feature vector extraction and k-nearest neighbors algorithm for finding the most similar 
images based on the cosine similarity. Our model successfully identifies up to 50% of the image pairs 
at k = 1 (prediction with the highest similarity score) and up to 98% at k = 7. Thus, for each of the given 
CFD images, our model will search through all of the experimental images, and it is guaranteed to find 
a suitable experimental image in a sample of 7 results. 
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