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Abstract

Single-image 3D scene reconstruction is required in multiple challenging tasks including mobile
robotics, industrial monitoring and reconstruction of lost cultural heritage. While modern
models demonstrate robust resolution of scene in real time with resolution up to 128 x 128 x 128
voxels, visualization of such detailed of a such detailed voxel model is challenging. A model with
1283 voxels contains 2097152 simple cubes 16M vertices. It is unfeasible for modern hardware
to perform visualization of such voxel models in real-time. Hence a voxel model simplification
technique is required to demonstrate reconstruction results in real-time. In this paper, we
propose a new algorithm for voxel model simplification using predefined camera views. The
algorithm reduces a rigid-body voxel model to a shell voxel model. It keeps only the voxels
that are visible from the required view. We demonstrate the effectiveness of the proposed
algorithm using a case study with a mobile robot and a state-of-the-art SSZ single-photo 3D
reconstruction neural network. We generated a real and a virtual scene with various objects
including a statue. We use a mobile robot equipped with a single camera to collect real and
synthetic data. We train the SSZ model using the collected data. We developed a dedicated
visualization software that implements our algorithm. The comparison of the visualization
performance for the full model and its reduced version demonstrates that our algorithm allows
to increase the performance by 420 times.

Keywords
voxel model visualization, single-photo 3D reconstruction, scientific visualization, neural
networks.

1. Introduction

Single-image 3D reconstruction is required in multiple fields including mobile robotics [1],
industrial monitoring and reconstruction of lost cultural heritage [2]. Modern neural
networks can perform simultaneous 3D reconstruction of the scene and its semantic
segmentation [3]. The result is a high-resolution voxel model with 1283 voxels. While
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Figure 1: Example of single-image 3D-reconstruction. Single input image (left), camera frustum and
the frustum voxel model (center), semantic voxel model output (right)

modern models can generate such voxel models in quasi real-time, visualization of such
detailed voxel model is challenging (Figure 7).

The main complexity of this task arises from the large number of voxels that are
invisible for the virtual camera during the visualization. Still, elementary cubes must be
generated for each frame as the voxel model is being updated by a neural network in the
real-time.

The visualization of voxel models has been intensively studied recently [4, 5, 6, 7, 8, 9,
10]. Multiple approaches has been proposed to improve the visualization performance.
Still, to the best of our knowledge there has been no research to date regarding effective
visualization of semantic voxel models.

This paper is focused on the development of a voxel model simplification algorithm
(VMS). Our VMS algorithm aims reducing the original semantic voxel model representing a
rigid body to a shell-voxel model that includes only the surfaces of objects in the scene
that are visible from a given viewpoint. To achieve this, we use a preliminary ray-tracing
stage that allows us to find sets of voxels t hat are visible from a given v iewpoint. During
the inference, we keep only first non-zero element in a voxel set for each pixel.

We developed an environment simulator to train and validate our VMS algorithm. Our
virtual scene represents a room with various object of eight classes. We developed a
new RoboticVozels dataset with 16k samples using our environment simulator. We use a
state-of-the-art single-photo 3D reconstruction model [3] to evaluate our VMS algorithm.
The results of the evaluation are encouraging and demonstrate that our VMS algorithm
allows to improve the rendering performance by 420 times.

2. Related work

2.1. Single-image 3D Reconstruction

Obtaining an accurate 3D model of an object from its single image as an input is
quite difficult. Since the 2000s, this problem has been intensively studied [11, 12 ]. The
development of neural network technologies has led to the emergence of new algorithms
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based on deep convolutional neural network [13, 14, 15, 16, 17]. Methods have been
proposed to predict unobserved voxels from a single depth map [18, 19, 20], however,
prediction of a voxel model of a complex scene from a single color (RGB) image is more
variable. Object-centered models [21] reconstruct object 3D model in the same coordinate
system for any camera pose with respect to the object. The solution of the problem occurs
in 2 steps: object recognition and a 3D shape reconstruction. The method leverages an
auto-encoder architecture for a voxel model prediction. The method showed encouraging
results, but the resolution of the model was only 20 x 20 x 20 elements.

The most accurate results were obtained by methods based on generative adversarial
neural networks [22, 23]. Methods that leverage a latent space for 3D shape synthesis were
developed recently. Our paper [2] describes image-to-voxel translation network (Z-GAN)
as a starting point. Z-GAN network utilizes the skip connections in the generator network
to transfer 2D features to a 3D voxel model effectively. Therefore, the network can
generate voxel models of previously unseen objects using object silhouettes present on
the input image and the knowledge obtained during a training stage. The other our
paper [3] represent a single shot image-to-semantic voxel model translation framework.
We train a generator adversarially against a discriminator that verifies the object’s poses.
Furthermore, trapezium-shaped voxels, volumetric residual blocks, and 2D-to-3D skip
connections facilitate our model learning explicit reasoning about 3D scene structure.
In [24] a novel framework for single-view and multi-view 3D object reconstruction was
proposed. By using a well-designed encoder-decoder, it generates a coarse 3D volume
from each input image. A multi-scale context-aware fusion module is then introduced
to adaptively select high-quality reconstructions for different parts from all coarse 3D
volumes to obtain a fused 3D volume.

Finally, the most modern transformer neural networks are used in 3D reconstruction
tasks. In [25] the multi-view 3D reconstruction is presented as a sequence-to-sequence
prediction problem and is proposed a framework named 3D Volume Transformer.Unlike
previous CNN-based methods using a separate design, it combines feature extraction and
view fusion in one Transformer network.

2.2. Volumetric Neural Networks

Volumetric neural networks is an extension from 2D CNNs which takes hierarchical
3D image information by dividing it into small cubes, instead of taking 2D patches,
to capture discriminative features along both the spatial and the temporal dimensions.
This introduces challenges for learning-based approaches, as 3D object annotations are
scarce in real images. Previous work chose to train on synthetic data with ground truth
3D information, but suffered from domain adaptation when tested on real data. In
[26] a two-step approach for 3D shape reconstruction via 2.5D sketches was presented.
This method has several advantages. The first of them is the ability to learn only on
synthesized data. Second, compared to full 3D shape, 2.5D sketches are much easier to
be recovered from a 2D image. Third, differentiable projective functions is it derived
from 3D shape to 2.5D sketches.

Wu et al. have proposed a novel framework [27], namely 3D Generative Adversarial
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Network (3D-GAN), which generates 3D objects from a probabilistic space by leveraging
recent advances in volumetric convolutional networks and generative adversarial nets.
The use of an adversarial criterion, instead of traditional heuristic criteria, enables
the generator to capture object structure implicitly and to synthesize high-quality 3D
objects. The generator establishes a mapping from a low-dimensional probabilistic space
to the space of 3D objects, so that objects can be sampled without a reference image
or CAD models, and explore the 3D object manifold. The adversarial discriminator
provides a powerful 3D shape descriptor which, learned without supervision, has wide
applications in 3D object recognition. This made it possible to predict models with
a resolution 64 x 64 x 64 elements from a randomly sampled noise vector. A method
based on combining the architectures of volumetric and multi-view neural networks is
presented in the work [28]. Volumetric neural networks are also actively used to work with
three-dimensional point clouds [29, 30]. In [31] the task of searching for a query object of
unknown position and pose in a scene, both given in the form of 3D point cloud data, was
studied. This method includes a deep reinforcement learning approach that jointly learns
both the features and the efficient search path.This network is successfully trained in
an end-to-end manner by integrating a contrastive loss and a reinforcement localization
reward. The important problem of accelerating the processing of three-dimensional point
clouds was solved in [30]. The algorithm diverse mapping operations onto one versatile
ranking-based kernel, streams the sparse computation with configurable caching, and
temporally fuses consecutive dense layers to reduce the memory footprint and achieves
3.7x speedup and 22x energy savings. Volumetric neural networks are actively used to
solve the problem of recognition of three-dimensional images from two-dimensional input
data [32, 33, 34].

2.3. Voxel Model Visualisation

Visualization is of great interest in areas where inner substances of an object are to be
studied. Computer tomography, widely exploited in medcine, produces large amounts
of data that needs to be effectively visualized. So great part of studies on voxel model
visualization was carried out on medical data. Form the first works, researchers tried to
find techniques for fast and realistic visualization [4, 5].

The Far Voxels [6] method, that integrates visibility culling and out-of-core data
management with a level-of-detail framework, allowed to improve the efficiency and
generality of very large arbitrary surface models. It generates a coarse volume hierarchy
by binary space partitioning at the preprocessing time. When rendering, the volumetric
structure is refined and rendered in front-to-back order. The performance of such
approach was demonstrated on extremely complex heterogeneous surface models. With
some modifications [7], it fairly represents small or thin CAD models of hundreds of
millions of triangles, which is especially visible during transitions between different levels
of detail.

With the advances in machine learning methods, they were successfully applied for
realistic voxel model visualization. The VoxelEmbed method [8] provides simultaneous
cell instance segmenting and tracking on 3D volumetric video sequences. The VoxelRend-
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based network (VR-U-Net) [9] combines a memory-efficient variant of 3D U-Net with
a voxel-based rendering (VoxelRend) module that refines local details by voxel-based
predictions on non-regular grids. Experimental evaluation demonstrated that the proposed
VR-U-Net is memory-efficient and provides high-quality segmentation results.

Usually, the main problem in a voxel 3D model representation is a huge volume
of the 3D model, that is needed for high quality visualization. The multi-level voxel
representation based on linear segmentation method was proposed to find a solution for
efficiently representing and the geological structures and internal non-uniform properties
of tunnel engineering [10]. The method uses Volumetric Dynamic B + trees (VDB) data
structure for integrating and updating models. The evaluation of such approach showed
improving spatial efficiency for 28.49% after segmentation, and data access with O(1)
time complexity.

3. Method

3.1. Frustum Voxel Models

A fruxel 3D model is made up of elements called fruxels. They differ from rectangular
voxels in that they are trapezoid-shaped. A ray passes through each fruxel, connecting a
pixel on the camera matrix and a point on an object in the scene. If it is necessary to
predict n classes of objects in an image, then the semantic voxel model F' € {0,1,...,n—
1}wxhxd i5 a three-dimensional tensor that contains the object class number i € [ in a
given fruxel.

Therefore, this fruxel model is a multi-layered semantic segmentation. Each slice is the
result of the intersection of the object and a plane orthogonal to the optical axis of the
camera, located at a given distance. The fruxel model is described by a set of parameters
{#n, z¢,d, o}, where z, is the distance from the camera to the nearest clipping plane, z¢
is the distance to the far clipping plane, d is the number of slices, and « is the horizontal
field of view of the camera (see Figure 1).

3.2. SSZ Neural Network

The main difficulty in translation an image into a 3D voxel model is that it is necessary
to convert high-resolution 2D objects into 3D. This transformation can be done using
latent space and the use of skip joins, which improve the model’s ability to generalize.
Our model SSZ is based on the works [35, 36] , in which the corresponding convolution
levels in the generator decoder and encoder are interconnected using skipped connections.

The dimension of the feature map in our model generator encoder is 3 (N, € R¥*h*e,
w X h is the slice dimension, d is number of slices), while the decoder has 4 (Ny €
Rwxhxdxe where ¢ is the number of channels). In order for the dimensions of the encoder
and decoder layers to match, we copy d two-dimensional slices into the encoder feature
maps. This operation does not add new information about objects, but pixel-based
contour matching allows the model to explicitly match 2D object contours and 3D shapes.
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Figure 2: Slices generation by the boolean intersection of a cutting plane with 3D objects

We have designed our network architecture using inverted residual blocks [37, 38] and
an additional pointwise and depthwise convolutions that downscale the feature map. This
allows for more efficient propagation of the gr adient. Also due to its architecture, our
model works near real-time inference time.

We use volumetric inverted residual blocks to construct our decoder. Each volumetric
inverted residual block includes a volumetric depth separable deconvolution layer followed
by a Leaky ReLU activation and a pointwise volumetric convolution. We believe that
depth separable convolution in our volumetric inverted residual blocks facilitates learning
diverse filters for 2D and 3 D features m aps. T he r esulting g enerator a rchitecture is
presented in Figure 3.

3.3. Environment Simulator

We use the Blender 3D modeling tool as an environment simulator. A three-dimensional
scene of the room was created, in which there was an object model (gnome) and a virtual
camera. An examples of an image of a virtual environment is shown in the figures4 , 5.

To form slice images, the JSON-RPC library in python was developed. Ray tracing
scripts have also been developed for building fruxel models and virtual camera movement.
Examples of the built fruxel scene are shown in the Figure. 6
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Figure 3: The generator architecture

Figure 4: The general view of the environment simulator in Blender 3D

3.4. Mobile Robot

To evaluate the work of the developed algorithm, a simplified mathematical model of the
movement of a four-wheeled robot in virtual space was created [39]. It is assumed that
the inertia of the rotation of the wheels is negligible, and the friction that slows down the
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Figure 5: Location points of the virtual camera in the scene

movement of the car is proportional to the speed with a constant of proportionality b.
Then robot can be approximated for modeling purposes.In this case in inertial acceleration
is simply the second derivative of z (a = &) because the robot position is measured
with respect to an inertial reference frame. Since the variable of interest to us is the
displacement, the equation of motion of the robot will take the form:

U

Pt = —
m m

Let us introduce the notation % =a and % = b. Then, making a change of variables, we

obtain a system of differential equations:
Tr=2x1,T =2
w'lsza
ro=—ax| + bu,

In state-space representation, this system takes the form

X = Az + Bu,
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Figure 6: Examples of color images and ground truth semantic fruxel models

where A = 01 , T = 1 , B= 0 ,ul = vy,
0 -a x9 b ()

The components of the state vector of the system x is the value of the longitudinal
displacement (x1) and longitudinal velocity (x3). The control action u is a vector (u,; u;).
Its components are the speed of rotation of the left and right wheels, which are limited
to a range of values [—100; 100]. The initial position in the Cartesian coordinate system
on the OXY plane is given by the variables xg and . Initial speed and initial heading
angle are vg and 6y. All initial conditions are equal to zero.

Motion simulation is performed with a given time step dt. At each step, displacement
and speed values are calculated. Turning the wheeled robot is done by changing the
heading angle 6. The value and direction of this angle depend on the difference in the
speed of rotation of the left and right wheels 6(¢t + 1) = 0(t) + w - 2m - 0t. Thus, at
each moment of time, the current position of the mobile robot is calculated, as well as
the values of the angle of rotation and its direction.
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Figure 7: The scheme of the movement of the robot. Yaw angle 6 shows the deviation of the direction
of movement of the robot from the longitudinal axis

Figure 8: Voxel model simplification algorithm: predefined camera poses (left), estimation of the
sets of visible voxels using ray-tracing.

3.5. Voxel Model Simplification Algorithm

Our proposed voxel model simplification algorithm ( VMS) aims converting a rigid body
semantic voxel model to a shell-voxel model that includes only such voxels that belong to
the visible surfaces of objects in the scene. Let F' € {0,1,...,n — 1}thXd be the input
semantic voxel model. Let the ‘empty’ space be encoded with the class label [ = 0. Then,
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Table 1
FPS for various visualization approaches

Visualization approach FPS

No simplification 1/30
VMS 14

our aim is designing such algorithm that provides a mapping V : {F,p} — F’, where
F' is a simplified semantic voxel model in which each voxel element is equal to 0 if it is
invisible from a given camera pose, and p is the camera pose.

Our approach is straightforward. We define m possible camera poses with respect to
the semantic voxel model that must be visualized (Figure 8, left). For each camera pose,
we perform ray tracing from the optical center of the camera through each pixel to find a
set of voxels W = {{xl, Y1, 21}, {x2, Y2, 22}, . .. } that lie on a given ray (Figure 8, right).
The ray-tracing is performed only once and the generated indices are stored in the cache.

After that during the inference, we find the closest predefined pose for a given input
pose p. We have a precomputed set of possibly visible voxels W (x,y) for each image pixel
(z,y). For each pixel, we find the first non-zero voxel in the set W (z,y). We keep the
class value of this voxel and set all other voxels equal to zero. To perform visualization,
we convert each frustum voxel to a trapezium that occupies the given volume.

4. Evaluation

4.1. Dataset Generation

We use our environment simulator to generate out Robotic Vozels dataset. The dataset
includes 16k samples consisting of pairs of images and the corresponding semantic
voxel models. The images present the virtual scene with objects of six classes: wall,
floor, window, furniture, door, sculpture. The resolution of color images is 512 by 512
pixels. The resolution of semantic voxel models is 128 x 128 x 128. The dataset is split
into a training set with 15k samples and a test set with 1k samples. We use various
augmentation techniques to increase the dataset diversity. Example images from the
dataset are presented in Figure 9.

4.2. Quantitative Evaluation

We perform the quantitative evaluation of our VMS algorithm in terms of the possible
maximum frames per second (FPS) for visalization of a given semantic voxel model. We
compare our VMS algorithm to a straightforward visualization of non-simplified voxel
model. Our approach allows to improve the performance by 420 times and achieve a
quasi-real-time FPS of 14 frames per second.

The results of performance evaluation is shown in Table 1.
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Figure 9: Examples of color images from our RoboticVoxels dataset

5. Conclusion

We proposed a new algorithm for voxel model simplification using predefined camera
views. The algorithm reduces a rigid-body voxel model to a shell voxel model. It keeps
only the voxels that are visible from the required view. We demonstrate the effectiveness
of the proposed algorithm using a case study with a mobile robot and a state-of-the-art
SSZ single-photo 3D reconstruction neural network. We generated a real and a virtual
scene with various objects including a statue. We use a mobile robot equipped with
a single camera to collect real and synthetic data. We train the SSZ model using the
collected data. We developed a dedicated visualization software that implements our
algorithm. The comparison of the visualization performance for the full model and its
reduced version demonstrates that our algorithm allows to increase the performance by
420 times.
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