
Palm Vein Recognition Algorithm using Multilobe Differential Filters 

E. I. Safronova1, E. A. Pavelyeva1 

katyasafit@gmail.com|paveljeva@yandex.ru 
1Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Moscow, Russia 

In this article the new algorithm for palm vein recognition using multilobe differential filters is proposed. After palm vein image 

preprocessing vein structure is detected based on principal curvatures. The image is considered as a surface in a three-dimensional 

space. Some vein points are selected using the maximum principal curvature values, and the other vein points are found from starting 

points by moving along the direction of minimum principal curvature. Multilobe differential filters are used to extract feature maps for 

vein images. These filters are flexible in terms of basic lobe choice and spatial configuration of lobes. The multilobe differential filters 

used in the article simulate vein branch points, and Gaussian kernel is used as the basic lobe. The normalized root-mean-square error 

is applied for image matching. Experimental results using CASIA multi-spectral palmprint image database demonstrate the effectiveness 

of the proposed method. The value of EER=0.01693 is obtained. 
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1. Introduction 

Biometrics recognizes individuals based on the 

characteristics, known as modalities, that uniquely identify a 

person from an entire population based on intrinsic physical or 

behavioral traits [8]. Each biometric modality has its advantages. 

Palm vein recognition is an emerging personal identification 

technology. Since veins are usually not visible to others, they can 

be used for personal identification purposes at low risk of forgery 

or theft. Veins are captured by infrared camera since 

deoxygenated hemoglobin in the vein blood absorbs near 

infrared light. Among other important advantages vein patterns 

are quite unique to the owners, image acquisition does not require 

physical contact, and the system can be made compact. 

Extracting vein structure at their accurate positions regardless of 

their thickness and brightness is necessary for accurate personal 

identification. 

Ordinarily, palm vein recognition algorithm consists of three 

steps (Fig. 1). The first one, region of interest (ROI) extraction, 

includes properly extraction and image preprocessing. 

Fig. 1. The scheme of palm vein recognition algorithm. 

 

The second step, feature vector extraction, represents the 

main difference between existing approaches. Some methods 

could be derived from other biometric recognition algorithms: 

for example, methods that employ statistical information (such 

as local binary patterns, local derivative patterns) [12, 21], 

methods that extract feature points and then match them [11, 14, 

26], subspace-based methods [25], phase based methods [7, 17, 

18] and etc. Some approaches were developed specifically for 

vein recognition [5, 15]. 

The last algorithm step, image matching, is based on feature 

vector type. At this stage the distance between palm vein images 

is calculated.  

Much recent work has been focused on employing deep 

convolutional neural networks in various domains, and the field 

of biometrics is not an exception. Consider some examples of 

applying deep learning methods to different steps of palm vein 

recognition algorithm. To perform the first algorithm step and to 

extract the palm vein ROI’s, the region-based convolution neural 

network that localize the region of interest might be used. The 

reference article [9] gives an example of successful realization. 

Deep convolution neural network could be trained as feature 

extractor. Authors of [25] proposed to use the pre-trained DCNN 

model trained on large-scale database like ImageNet. They 

described a novel global max-pooling of preserving spatial 

position information that is applied for the feature maps of 

convolutional layer to localize vein minutiae features. As for 

matching, the last step of recognition algorithm, we can consider 

[24]. The proposed biometric authentication approach is based 

on Siamese convolution neural network framework with a triplet 

loss function, that enables an idea to learn the distance metric 

between positive, anchor, and negative embeddings. 

In this article we propose the use of multilobe differential 

filters (MLDF) for palm vein recognition. Recently, ordinal 

measures have achieved promising performance in different 

biometric tasks [4, 22, 23]. Ordinal measures represent a general 

concept of image analysis with numerous variants of different 

parameter settings such as location, scale, orientation etc. They 

are defined as the relative ordering of a set of regional image 

features (e.g. average intensity, Gabor wavelet coefficients, etc.). 

The main idea of ordinal measures is to distinguish the image 

structures with specific texture. MLDF can represent ordinal 

features. MLDF is a general concept of differential and bandpass 

filters and is flexible in terms of basic lobe choice, spatial 

configuration of lobes, etc. [22]. In this article the positive and 

negative lobes are represented by Gaussian filters. 

The rest of this paper is organized as follows: in Section 2 

the vein image segmentation and ROI extraction algorithms are 

described. Our ROI image preprocessing approach is given in 

Section 3. The main steps of the proposed vein structure 

extraction algorithm are introduced in Section 4. Feature 

extraction and feature matching methods are presented in 

Sections 5 and 6, respectively. The experimental results for 

images from CASIA multi-spectral palmprint image database [3] 

are given in Section 7. Finally, Section 8 concludes this paper. 

2. Region of interest extraction 

The proposed palm vein ROI segmentation scheme is 

illustrated in Fig. 2. Gaussian blur is first adopted for smoothing 

the images (Fig. 2 a). Then OTSU algorithm [16] is applied to 

extract hand contours from grayscale palm vein images 

(Fig. 2 b). Since the lighting provides poor contour segmentation 

performance at the wrist section of the image [10], the 



coordinates of the centroid 𝐶(𝑋𝑐 , 𝑌𝑐) of the binary image are 

calculated: 

𝑋𝑐 =
1

|𝑂|
∑𝑋𝑖
𝑖∈𝑂

, 𝑌𝑐 =
1

|𝑂|
∑𝑌𝑖
𝑖∈𝑂

, 

where O is the set of object point on the binary image and |𝑂| is 

the power of this set. Then the lower part of image close to wrist 

is filled line by line with zeros until the distance from the filled 

area to 𝐶 is equal to 𝐿 =  125. (Fig. 2 c). Taking the midpoint of 

upper line of the filled area as the reference point W, the 

Euclidean distances between W and all points on the hand 

contour are calculated to obtain the radial distance function 

(RDF), as shown in Fig. 2(e). We can see that the minima in the 

RDF correspond to the finger valleys of the final binary image. 

The points between index and middle fingers, 𝑃1 (Fig. 2 d), and 

forth and little fingers, 𝑃2, can be taken as landmarks for 

extraction of square ROI [13]. 

To eliminate the influence of palm rotation, the image is 

rotated to the angle θ which is the angle between the line 𝑃1𝑃2 

and the horizontal line: 

𝜃 = 𝑎𝑟𝑐𝑡𝑔((𝑌𝑃1 − 𝑌𝑃2)/(𝑋𝑃1 − 𝑍𝑃2)), 

where (𝑋𝑃1 , 𝑌𝑃1) and (𝑋𝑃2 , 𝑌𝑃2) are the coordinates of 𝑃1 and 𝑃2, 

respectively. 

    
    (a)     (b)              (c)        (d) 

   
(e)             (f)  

Fig. 2. Illustration of palm vein ROI extraction: (a) original 

palm image, (b) binary hand image, (c) reference point W and 

centroid C, (d) two landmark points 𝑃1 and 𝑃2, (e) RDF, (f) the 

square region of interest ABCD on the rotated image. 

 

We denote the distance between 𝑃1 and 𝑃2 as d. Then the 

square region ABCD with side d is extracted (Fig. 2 f), where the 

top side AB is lower by 𝑑 6⁄  and parallel to 𝑃1𝑃2 [7]. Then ABCD 

is rescaled by bilinear interpolation to the square size 128×128 

which is called as ROI. 

To reduce the non-uniform illumination appearing in palm 

vein images the background brightness is found as convolution 

of ROI image with box filter size 17×17. Then the background is 

subtracted and the histogram is stretched (Fig. 3). 

     
           (a)          (b) 

Fig. 3. (a) original ROI image, (b) ROI image with uniform 

illumination. 

3. Image preprocessing 

The following scheme of palm vein images preprocessing is 

used to emphasize veins structure (Fig. 4). 

At first, contrast-limited adaptive histogram equalization 

(CLAHE) technique [29] is used to improve contrast of images. 

After contrast enhancement all image details including noise and 

glares are sharper. In order to smooth the undesirable details, 

non-local means (NLM) algorithm [2] is used to reduce noise. 

NLM smoothies also veins a little so CLAHE is applied again to 

obtain distinguishable veins. 

           
 

            
Fig. 4. The scheme of vein image preprocessing algorithm. 

 

Fig. 5 shows the ROI of palm vein image and the results of 

preprocessing algorithm. After preprocessing veins become 

sharper and more distinguishable. 

 

    
(a)    (b)               (c)        (d) 

Fig. 5. The results of image preprocessing: (a) ROI, (b) ROI 

after the first step of preprocessing – CLAHE, (c) ROI after the 

second step of preprocessing – NLM, (d) ROI after the third step 

of preprocessing – CLAHE. 

4. Vein structure extraction 

The next step is vein structure extraction. Consider an image 

as a surface in a three-dimensional space, where the brightness 

value of the pixels is the z-coordinate. We are going to calculate 

the values of the principal curvatures and principal directions at 

each point by the following algorithm. 

Let 𝐿(𝑥, 𝑦) denote the image intensity field at the pixel 

position. The gradient 𝐺(𝑥, 𝑦), which is a vector field of 𝐿(𝑥, 𝑦), 
is defined as follows: 

𝐺(𝑥, 𝑦) = (
𝜕𝐿(𝑥, 𝑦)

𝜕𝑥
,
𝜕𝐿(𝑥, 𝑦)

𝜕𝑦
). 

Then the normalized gradient after hard thresholding is 

defined as: 

𝐺𝛾(𝑥, 𝑦) = {

𝐺(𝑥, 𝑦)

‖𝐺(𝑥, 𝑦)‖
,    ‖𝐺(𝑥, 𝑦)‖ ≥ 𝛾

0,    ‖𝐺(𝑥, 𝑦‖ < 𝛾

, 

where γ is a threshold level. In the experiments we use γ = 4. The 

normalized gradient field contains noisy components so we 

smooth it. Let 𝐺𝛾(𝑥, 𝑦) = (𝑔𝑥(𝑥, 𝑦), 𝑔𝑦(𝑥, 𝑦)). Then smoothed 

normalized gradient components, ℎ𝑥 and ℎ𝑦, are defined as: 

ℎ𝑥(𝑥, 𝑦 ) = 𝑔𝑥(𝑥, 𝑦) ∗ 𝐻(𝑥, 𝑦),   ℎ𝑦(𝑥, 𝑦 ) = 𝑔𝑦(𝑥, 𝑦) ∗ 𝐻(𝑥, 𝑦), 

where 𝐻(𝑥, 𝑦) =  
1

2𝜋𝜎2
𝑒−

𝑥2+𝑦2

2𝜎2  is a Gaussian function. 

The local shape characteristics of an image 𝐿(𝑥, 𝑦) at a point 
(𝑥, 𝑦) can be described by the Hessian matrix: 

𝐻𝑆(𝑥, 𝑦) =

(
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Let   𝜆1,  𝜆2 be the eigenvalues and   𝑣1 ,  𝑣2 be the 

corresponding eigenvectors of 𝐻𝑆(𝑥, 𝑦), |𝜆1| > |𝜆2|. Then the 

two principal directions, the directions of the maximum and 

minimum curvature, are determined by two eigenvectors,  𝑣1 ,

  𝑣2. Consequently, two eigenvalues 𝜆1 ,  𝜆2 represent the 

principal curvatures (the curvatures along the principal 

directions) [5] (Fig. 6). 

In order to catch veins of different widths, consider the set of 

parameters σ for the Gauss function: 𝜎0, … , 𝜎𝑛−1, where 𝑛 = 10, 

𝜎𝑖 = 𝜎0 ∙ √2
𝑖4
, 𝜎0 = 2, 𝑖 = 0, 1,… , 9. For each value of 𝜎 the 

Hessian matrix is constructed, at each point the maximum 

positive eigenvalue 𝜆1 and an eigenvector   𝑣2 of the minimum 

eigenvalue are calculated. Then, at each point of the image, the 

largest value of 𝜆1 over all 𝜎 and the corresponding vector   𝑣2 

are taken. 

In Fig. 6 the surface with a tubular shape like veins in infrared 

images is shown. At a point (𝑥, 𝑦), 𝜆1 ,  𝜆2 represent the 

maximum and the minimum principal curvature, vectors   𝑣1 ,  𝑣2 

– the direction of them. Note that tubular-shaped regions have 

maximum principal curvature 𝜆1 higher than other regions. Next, 

mention that vector   𝑣1 is directed across tubular direction and 

vector   𝑣2 – along tubular direction [20] (Fig. 7). According to 

this we select points with highest maximum principal curvature 

values as points that certainly belong to veins (Fig. 8 b). So, the 

other vein points can be found from starting points by moving 

along direction of vector  𝑣2 by |𝜆1|. The extracted vein 

structures are shown in Fig. 8. 

 

 
Fig. 6. Concept of the principal direction and the principal 

curvature: 𝜆1, 𝜆2 represent the maximum and the minimum 

principal curvature, 𝑣1, 𝑣2 – the direction of them. 

 

  
(a) (b) 

Fig. 7. (a) The computed positive maximum principal 

curvatures, 𝜆1, of ROI image (Fig. 5d), (b) Vector field of 

direction for the minimum principal curvature 𝑣2 with length in 

proportion to 𝜆1 . 

 

   
 

   
 

   
              (a)   (b)                  (c) 

Fig. 8. Vein structures extraction: (a) ROI for different palm 

vein images of one person, (b) starting points with highest 𝜆1 

belonging to veins, (c) found vein structure. 

5. Feature extraction 

The palm vein structure images after previous stage are not 

accurate enough so we will use them as a mask. We invert 

preprocessed ROI images so that vein pixels have higher values 

than background pixels and apply masks (Fig. 9). 

 

   
Fig. 9. The mask of ROI for different palm vein images of 

one person. 

 

In this paper we propose the use of multilobe differential 

filters (MLDF) [22] for palm vein feature extraction, aiming to 

highlight vein branch points. We use the Gaussian kernel as the 

basic lobe, so mathematically the MLDFs are given as follows: 

𝑀𝐿𝐷𝐹 = 𝐶𝑝 ∑
1

√2𝜋𝜎𝑝𝑖

𝑁𝑝
𝑖=1 𝑒

−(𝑋−𝜇𝑝𝑖)
2

2𝜎𝑝𝑖
2

 − 𝐶𝑛∑
1

√2𝜋𝜎𝑛𝑖

𝑁𝑛
𝑖=1  , 

where the variables µ and σ denote the central positions and the 

scales of a 2D Gaussian filters respectively, 𝑁𝑝 denote the 

number of positive lobes, and 𝑁𝑛 denote the number of negative 

lobes. Constant coefficients 𝐶𝑝 and 𝐶𝑛 are used to ensure zero 

sum of the MLDF. 

The most compelling feature of MLDF compared with 

traditional differential filters is that it decouples the settings of 

intralobe (scale) and interlobe (distance) parameters. Some 

examples of MLDF with different settings of parameters 

(distance, scale, orientation, number, and location) are illustrated 

in Fig. 10 a. MLDF can have visual meaning, for example, 

MLDF can represent point, line, edge, ridge, corner, slope 

(Fig. 10  b) [22]. 



         
          (a)    (b) 

Fig. 10. (a) Some examples of multilobe differential filters. 

(b) Visual meanings of MLDF. 

In order to select the points of interest, consider MLDF that 

simulate vein branch points (Fig. 11). We take the convolution 

results of the ROI images with the proposed MLDF kernels to 

obtain the feature maps of vein images. Compared with the 

previous approach [22], the convolution results are not binarized. 

It enables us to use more information and to achieve higher 

accuracy. 

  
        (a)             (b) 

Fig. 11. Illustration of proposed multilobe differential filters 

for vein image analysis: (a) the first group: with 30 degree angle 

between two positive lobes; (b) the second group: with 60 degree 

angle between two positive lobes. 

6. Feature matching 

In order to provide slight translation and rotation invariance 

matching, the normalized root-mean-square error (NRMSE) is 

proposed for feature maps matching [6]: 

𝐸(𝑓(𝑥, 𝑦), 𝑔(𝑥, 𝑦))2

= min
𝛼,𝑥0,𝑦0

∑ |𝛼𝑔(𝑥 − 𝑥0, 𝑦 − 𝑦0) − 𝑓(𝑥, 𝑦)|
2

𝑥,𝑦

∑ |𝑓(𝑥, 𝑦)|2𝑥,𝑦

= 1 − 
max
𝑥0,𝑦0

|𝑟𝑓𝑔(𝑥0, 𝑦0)|
2

∑ |𝑓(𝑥, 𝑦)|2𝑥,𝑦 ∑ |𝑔(𝑥, 𝑦)|2𝑥,𝑦
 , 

where the summation is over all the pixels (𝑥, 𝑦) in the image; 

𝑟𝑓𝑔(𝑥0, 𝑦0) =∑ 𝑓(𝑥, 𝑦)𝑔∗(𝑥 − 𝑥0, 𝑦 − 𝑦0)
𝑥,𝑦

=∑ 𝐹(𝑢, 𝑣)𝐺∗(𝑢, 𝑣)𝑒
𝑖2𝜋(

𝑢𝑥0
𝑀
+
𝑣𝑦0
𝑁
)

𝑢,𝑣
 

is the cross correlation of 𝑓(𝑥, 𝑦) and 𝑔(𝑥, 𝑦); 𝑁 and 𝑀 are the 

image dimensions; * denotes complex conjugation; uppercase 

letters represent the DFT of their lowercase counterparts, as 

given by the relation 

𝐹(𝑢, 𝑣) =∑
𝑓(𝑥, 𝑦)

√𝑀𝑁
𝑒
−𝑖2𝜋(

𝑢𝑥
𝑀
+
𝑣𝑦
𝑁
)
.

𝑥,𝑦
 

7. Experimental results 

In our research CASIA Multi-Spectral Palmprint Image 

Database [3] was used. It contains 7200 palm images captured 

from 100 different people using a self-designed multiple spectral 

imaging device. Each sample contains six palm images which are 

captured at the same time with six different electromagnetic 

spectrums. 

Given the intra and interclass vein matching results, the 

recognition performance is measured by the following indicators. 

1) False Acceptance rate (FAR): the probability that the system 

incorrectly matches the input pattern to a non-matching 

template in the database. 

2) False Reject Rate (FRR): the probability that the system fails 

to detect a match between the input pattern and a matching 

template in the database. 

3) Equal error rate (EER), i.e., the cross-over error rate when 

FAR is equal to the FRR. Lower EER means higher accuracy 

of a biometric matcher. 

4) The distribution of genuine and impostor scores. 

In our study the part of the images from CASIA database 

obtained at 850 nm are taken. In Fig. 12 the results of the 

proposed algorithm are presented. We applied the first MLDF 

kernels group (Fig. 11 a) and both MLDF kernels group 

(Fig. 11 a, b). The EER results are 0.01693 in the first case and 

0.01862 in the second case. 

 

  
          (a)                (b) 

  
Fig. 12. Illustrations of the distribution of genuine and 

impostor scores, FAR and FRR curves: (a), (c) FAR and FRR 

curves; (b), (d) the distribution of genuine and impostor scores. 

The top row (a–b) corresponds to the first MLDF kernels group 

(Fig. 10 a), the bottom row (c–d) corresponds to both MLDF 

kernels group (Fig. 10 a, b). 

 

A comparison of EERs derived from different approaches for 

CASIA database is given in Table 1. It shows the good 

performance of the proposed method. As an improvement of the 

proposed method, multilobe differential filters selection using 

machine learning techniques can be applied [23]. 

Reference Method EER 

Kang W., Wu Q [10] Improved 

LBP 

0.00267 

Zhou Y., Kumar A. [28] NMRT 0.0051 

Hessian phase 0.0144 

Thapar D., Jaswal G., 

Nigam A., Kanhangad V. 

[24] 

PVSNet 0.0371 

Bhilare S., Jaswal G., 

Kanhangad V., Nigam A. 

[1] 

Deep 

matching 

0.0261 

Raghavendra R., Busch 

C. [19] 

LD-KDA-

SRC 

0.1010±0.0102 

Proposed method MLDF 0.01693 

Table 1. Summary of related approaches for palm vein 

verification using CASIA database. 



8. Conclusion 

In this paper the new palm vein recognition method based on 

multilobe differential filters is proposed. Palm vein image 

preprocessing and palm vein structure extraction are described. 

The points with high maximum principal curvature values are 

selected as starting points, and the other vein points are 

calculated using the direction of minimum principal curvature. 

Feature extraction is based on MLDF where the Gaussian kernel 

is used as the basic lobe. NRMSE is used for image matching. 

Experimental results demonstrate that the proposed approach 

gives good recognition accuracy. 
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