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In bi-directional Monte-Carlo ray tracing using photon maps the backward ray collects luminance when hitting
a diffuse surface, and the number of diffuse events is limited by the so-called “backward diffuse depth”, BDD. Its
value strongly affects the resulting noise. The paper describes a method to choose BDD to reduce noise. The idea
is that some surfaces while diffuse are processed as specular, not incrementing the diffuse event counter. Also not
all illumination photons are collected at the hit points, and this is also affected by the proposed method. We show
how this treatment allows to reduce noise both for surface and volumetric scattering.
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Abbreviations

MCRT = Monte-Carlo ray tracing

FMCRT = forward Monte-Carlo ray tracing.

BMCRT = backward Monte-Carlo ray tracing.

BDF = bi-directional scattering function. It describes
surface luminance as a function of the illumina-
tion and observation direction

BDD = backward diffuse depth. It is a specific pa-
rameter of a hybrid ray tracing, when FMCRT
calculates illumination and BMCRT is used to
convert it to the observed luminance. In this
method the backward ray usually has a lim-
ited “length” and terminates after BDD diffuse
events.

1. Introduction

A powerful method of calculation of a virtual cam-
era image is a bi-directional Monte-Carlo ray tracing
using photon maps [4]. FMCRT creates photon maps
that allow to estimate illumination of scene surfaces
and then BMCRT converts them to the camera im-
age. It traces rays from camera and wherever they hit
a diffuse surface, they take the local illumination from
the photon map, “convolve” it with the local BDF and
add the resulting luminance to the image pixel. There
are many modifications of this method [3], [8], [6], [1]
which all follow the above general idea.

An important parameter of such an approach is
the number of operators (“ray events”) in that prod-
uct series that are handled with BMCRT. Usually only
diffuse events are counted, and their number is named
“backward diffuse depth” (BDD). Efficiency of the ap-
proach, i.e. the rate of convergence (or noise level,
which is more or less the same) strongly depends on
that BDD, and its optimal value is specific for each
scene.

A better approach is to let it be different across
the scene [1] and even mix calculations with different
BDD [1], and frequently it is possible to find it, au-
tomatically or manually, so that the calculations are

quite efficient. But this is not always and in some cases
changing BDD does not help and whichever value we
choose the image is highly noisy. Here we also prove
why an “adaptive choice” of BDD individually for each
ray may result in a biased estimates (i.e. the calculated
luminance converges to a wrong value).

We propose a simple method which helps in such
cases. The idea of the method is that the scene objects
(surface or volumetric) which have some diffuse scat-
tering are separated into two sets: “genuine diffuse”
and “quasi-specular”. The latter are usually those with
a narrow, nearly-specular scattering function, but for-
mally the criterion can be arbitrary, e.g. one can treat
a Lambert surface as quasi-specular. Usually the sep-
aration treats each scattering function (BDF for a sur-
face or phase function for a medium) as a sum of quasi-
specular and genuine diffuse components so that both
are not zero.

A quasi-specular scattering does not increase the
“event counter” (which terminates the ray when it
exceeds the BDD). Also, it is necessary that quasi-
specular component of BDF does not convolve with
the indirect illumination (i.e. FMCRT rays that un-
derwent a genuine diffuse scattering). This change to
the BMCRT can be applied to both surface and volu-
metric scattering to reduce image noise and the mem-
ory used.

2. Global illumination equation

Light distribution in a scene is described by a “self-
consistent field” equation which can be written in dif-
ferent forms that are named “global illumination equa-
tion”, “rendering equation” [5] etc.: there is some light
field in the scene; it illuminates its surfaces which scat-
ter it. This transformation of the illumination I (light
that falls onto a surface) into luminance L (light that
goes away from a surface point x in direction v) is
described by the surface BDF f :

L(v;x) =

∫
f(x;v,v′)I(v′,x)d2v′

Then this light, emitted from the surface, propagates
over the scene and eventually illuminates its surfaces.
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This transformation of the luminance (light going
away off a surface) into illuminance (light incident
onto another surface point) is described by the trans-
port operator. The explicit form of the scattering and
transfer operators is inessential here so we use a com-
pact notations:

L = F̂ I (1)
I(i) = T̂L (2)

Notice that here F̂ includes only diffuse scattering
and thus the “direct” component also contains light
that underwent pure specular transformation.

Notice L is the luminance of the scene sur-
faces; the luminance of the camera image would be
L = ŜL where Ŝ describes the pure specular transfor-
mation between the camera and a scene surface (fre-
quently Ŝ = 1). Here and below we shall only calculate
the L. Its transformation into the camera image can
be applied after that if needed.

The full illumination consists of indirect and direct
components:

I = I(i) + I(0) (3)
Combining the three above equations we arrive at

the form of “rendering equation” by Kajiya [5] we shall
use:

I = T̂ F̂ I + I(0) (4)

3. Iterative solution (Neumann series) of (4) and
BMCRT

A widely used approach in computational optics is
a combination of forward and backward ray tracing,
when the forward part calculates illumination of the
diffuse surfaces I and stores it as, say, photon maps
[4], and then the backward part “converts” it in the
camera image. Notice that the actual illumination we
operate is noisy and this noise is then “transferred” to
the image, and its final amplitude strongly depends
on how the BMCRT part works.

The simplest way is that we trace rays from cam-
era, terminating then at the first diffuse surface where
the surface luminance under the full illumination (=
F̂ I) is calculated and added to the pixel luminance.
This provides estimate of the surface luminance (1),
though the result is not perfect because the estima-
tion of I from FMCRT is usually subjected to (spatial)
filtering to reduce noise. Thus all fine illumination de-
tails such as highlights are usually lost.

Instead one can first apply the N -th iteration of
(4) to the illumination, which leads to

L = (F̂ T̂ )
N
F̂ I +

N−1∑
k=0

(F̂ T̂ )
k
F̂ I(0) (5)

For the exact illumination field I this gives exactly the
same result as the above simple F̂ I, but for the actual,
noisy I the second form is frequently better because
result in the lower level of the image noise thanks to
the convolution with a power of (F̂ T̂ ). The value of N

is termed “backward diffuse depth”, or BDD for
short.

The term F̂ I(0) is the surface luminance under only
the direct (including caustic) illumination. The indi-
rect (diffusively scattered) illumination I is accounted
only in the last hit point as (F̂ T̂ )N F̂ I.

The integral operators can be calculated using
Monte-Carlo: we fire rays from camera, they hit a sur-
face, are scattered (left operator F̂ ), propagate the
scene (operator T̂ ; notice in the backward ray trac-
ing the events counted from camera correspond to the
operators left to right) and so on, until reach the N -
th diffuse surface and terminate. In the k- th diffuse
hit point (i.e. just before the k-th diffuse scattering)
we calculate this surface luminance under the direct
(and caustic) illumination (F̂ I(0)) if k < N and full
illumination (F̂ I) if k = N . Then scale the result by
the luminance transmission factor due to the specular
transformation in T̂ , and add to the pixel luminance.
The average over ensemble of camera ray converges to
L.

4. How the BDD affects the noise level

Let us first consider a simple scene consisting of a
diffuse plate illuminated by a cone light (which emits
downwards) enclosed in a matte (diffuse) spherical
shade. The camera sees only the plate while the lamp
shade is out of the view area. If the lamp shade is
small enough we can neglect interreflections.

Illumination of the plate is then entirely indirect
(light from the diffuse sphere). In case of BDD=0
camera ray collects that illumination in the hit point.
There is some moderate noise from the FMCRT (=
from photon map), but no more, while for BDD=1
the situation becomes much worse.

Indeed, now in the first hit point (i.e. the plate) we
take only the direct (and caustic) illumination which
in this model is exactly 0. So all contribution to pixel
luminance comes only from the second diffuse hit,
which is only possible when the scattered camera ray
hits the lamp shade. But this probability is very low,
because the BDF (and thus the scattered light cone)
is wide while the lamp shade is small. Therefore, it is
very rare that camera ray brings any luminance to the
image pixel, and this means high noise, see [2].

The case of BDD>1 is not better because it also
requires camera ray hitting the lamp shade.

Therefore, in our model scene the best is BDD=0
while BDD>0 results in a very high noise.

Now let us replace the small lamp shade with some-
thing very large. The scene becomes the diffuse plate
in the centre of the floor of a large room box with
diffuse walls and ceiling illuminated by a grid of cone
lights (emitting towards the nearest surface and not
towards the room centre), so their light can not reach
the plate directly. The floor outside the plate is black.
The camera is inside the room and sees only the plate.
The whole scene is as the one from Figure 1 only with-
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out the light in lampshade. At last, unlike the previous
model scene, the bottom plate has now a sharp (nearly
specular BDF).

Like in the previous example, the plate’s illumi-
nation is purely indirect. The light from the grid of
cone emitters undergoes many inter-reflections and so
creates a rather uniform illumination of the walls and
ceiling, though it is not exactly constant and the areas
near the light emitters are brighter.

In case BDD=0 we collect the indirect illumination
(from FMCRT!) at the first hit point. Illumination
comes from the large box which is illuminated rather
uniformly, and thus makes a wide cone. Meanwhile,
the BDFs is sharp, so it effectively senses only illu-
mination in direction close to the mirror reflection of
the view ray. Most of FMCRT rays are be effectively
excluded and only few of them will contribute to the
pixel luminance which leads to a strong noise.

In case BDD=1 the situation improves. At the first
camera hit we collect only the direct (and caustic) il-
lumination, but it is 0 there. After diffuse reflection
by the plate the camera ray hits the box and there
it takes the full (in fact, again indirect) illumination.
Most of camera rays and most of FMCRT rays con-
tribute here, so the noise is low, see the images in [2].

The larger values of BDD work less good. Since
illumination is indirect, the contribution to pixel lu-
minance comes only from the last hit point. It can be
in the box or in the bottom plate with more or less
close probabilities. When it is in the box, it is like for
BDD=1 i.e. all works good. But when it hits a bottom
plate, all is like for BDD=0 i.e. we take a wide cone
illumination of a narrow BDF which results in strong
noise.

5. When all ``is worse''. Introducing the quasi-
specular method

The model scenes from Section 4 admit an optimal
BDD for which the noise is low. But there are scenes
in which whatever BDD we choose the image is highly
noisy.

An example is a combination of the two model
scenes from Section 4: the bottom plate now has BDF
which is a sum of a wide (nearly Lambert) and a
sharp (nearly specular component). To see which BDF
does which contribution to the image, the Lambert
component is pure red and the sharp component is
nearly pure green;1 their integral reflectance is 50%
and 40%, respectively. Indirect illumination comes
both the room walls and ceiling (illuminated by an
array of cone lights), and also by a small “central”
lamp shade with a cone light inside, see Figure 1.

Unlike the first scene from 4 the light from the
lamp shade also results in interreflections, but when
the bottom plate is small (recall the light which hits
the room floor outside it is absorbed), it is inessential.

Figure 1. Combined model scene: indirect illumination
both from the lamp shade and the room walls and ceiling.
This is the side view in correct scale. The yellow cones
show emission of lights; the camera view ray and its

specular reflection are drawn with red arrows. The circle
around the central light is the diffuse lamp shade; the

yellow cone inside it mark its light emission
(downwards). The thick green strip is the bottom plate.

Repeating the analysis from Section 4 one finds
that BDD=0 is bad because of high noise from illu-
mination of a narrow BDF part from the box and
BDD=1 is bad because of high noise from illumina-
tion of a Lambert BDF from a small lamp shade, see
Figure 2. Larger BDDs are not better.

Figure 2. Camera images for scene from Figure 1,
calculated during the same time (3000 sec) for BDD=0
(left) and BDD=1 (right). For the area of 100x100 pixels

around the centre, the average RGB color is:
(150, 27, 2.71) and (150, 31.6, 3). The noise level (relative

to the photometric luminance) is 1000%, and 200%
respectively.

This, however, does not work [1] which has been
proved in [2]. That is, just making the near-specular
and off-specular rays to collect illumination accord-
ing to the ray’s BDD produces wrong luminance, and
one must apply a more sophisticated selection of the
illumination components collected in each hit point.

The key idea of the approach though remains the
same: the nearly specular narrow BDF is treated
specially, not as a “genuine diffuse”; but in a sense
closer to specular ones. Such narrow BDFs (and the
whole method of their treatment in BMCRT) are thus
named “quasi-specular”. The result of calculation of
the same model scene with this method is shown in
the rightmost panel of Figure 2, see Section 9.1 for
more explanations.

1Its normalized color is (0.1, 1, 0.1)
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6. Operator series in presence of quasi-specular
BDFs

Now let us come to the formal derivation of what to
do with a backward ray when the diffuse BDF is subdi-
vided into the “genuine diffuse” and “quasi-specular”
components:

F̂ = F̂d + F̂qs

The separation can be arbitrary (although some sepa-
rations are advantageous as concerning the noise level
and some are not), i.e. the calculated luminance all
the same converges to the exact value.

Illumination is also subdivided into three compo-
nents: direct (that was not scattered at all or scat-
tered by pure specular surfaces), quasi-caustic (scat-
tered at least once by a specular BDF and never by
a diffuse BDF) and indirect (scattered at least once
by a diffuse BDF and any times by a specular BDF
or quasi-specular), i.e.

I = I(0) + I(qc) + I(i)

Luminance of a surface point x is then:

L(v,x) = (F̂dI)(v,x) + (F̂qsI)(v,x)

The above luminance expression can be written as

L = F̂ I = F̂qs

(
I(0) + I(qc)

)
+ F̂qsI

(i) + F̂dI (6)

Substituting our decomposition of I into the global
illumination equation (4) one arrives at

I(qc) + I(i) = T̂ F̂qs

(
I(0) + I(qc)

)
+ T̂ F̂qsI

(i) + T̂ F̂dI

In the r.h.s., the term T̂ F̂qsI
(i)+ T̂ F̂dI comprises light

that underwent at least one diffuse scattering while
the term T̂ F̂qs

(
I(0) + I(qc)

)
comprises light that un-

derwent only specular scattering. In view of the de-
composition into diffuse and quasi-caustic illumina-
tion, this means

I(i) = T̂
(
F̂dI + F̂qsI

(i)
)

(7)

I(qc) = T̂
(
F̂qsI

(qc) + F̂qsI
(0)

)
(8)

from what it follows that

I(i) =
(
1− T̂ F̂qs

)−1

T̂ F̂dI (9)

I(qc) =
(
1− T̂ F̂qs

)−1

T̂ F̂qsI
(0) (10)

We assume that if the backward ray underwent
scattering by the quasi-specular component, this does
not increment the diffuse event counter so the ray
does not terminate and shall derive which illumina-
tion components must taken at which hit points so
as “to be compatible” with the above behavior, i.e.
so that the mathematical expectation of the BMCRT
luminance to match the exact value.

Combining Eq. (6) with Eq. (9) and Eq. (10) we
after some tedious yet trivial transformations see that
the surface luminance from BMCRT with BDD=N is

L = F̂qs

(
I(0) + I(qc)

)
+

N−1∑
k=0

(
(1− Q̂)

−1
F̂dT̂

)k

(1− Q̂)
−1

×F̂d(I
(0) + I(qc))

+
(
(1− Q̂)

−1
F̂dT̂

)N

(1− Q̂)
−1

F̂dI (11)

where
Q̂ ≡ F̂qsT̂ (12)

There is also an alternative form, which gives ex-
actly the same result for the exact illumination while
for a real noisy illumination may give different (in
noise level) result:

L = (1− Q̂)
−1

F̂qsI
(0)

+

N−1∑
k=0

(
(1− Q̂)

−1
F̂dT̂

)k

(1− Q̂)
−1

×F̂d(I
(0) + I(qc))

+
(
(1− Q̂)

−1
F̂dT̂

)N

(1− Q̂)
−1

F̂dI (13)

Detailed derivation can be found in [2].

7. Integration by paths for BMCRT

Expanding (1− F̂qsT̂ )
−1 in Eqs. (11) via Neumann

series we see that e.g. for BDD=2
L = F̂ (I(0) + I(qc))

+

∞∑
k=1

Q̂kF̂d(I
(0) + I(qc))

+

∞∑
k,m=0

Q̂kF̂dT̂ Q̂
mF̂d(I

(0) + I(qc))

+

∞∑
k,m,n=0

Q̂kF̂dT̂ Q̂
mF̂dT̂ Q̂

nF̂dI (14)

In this expression a term like Q̂kF̂dT̂ Q̂F̂d(I
(0)+ I(qc))

means that:
1. The final transformation (“before camera”) light

is subjected to k ≥ 0 quasi-specular transforma-
tions with corresponding transport term, i.e. Q̂k =
(F̂qsT̂ )

k

2. Before that (i.e. “further from camera”) light is
subjected to the diffuse transformation with corre-
sponding transport term, i.e. F̂dT̂

3. Before that (i.e. more “further from camera”) are
light is subjected to m ≥ 0 quasi-specular trans-
formations with corresponding transport term, i.e.
Q̂m = (F̂qsT̂ )

m

4. And all the above is applied to the convolution of
the direct and quasi-caustic illumination with the
diffuse BDF i.e. to F̂d

(
I(0) + I(qc)

)
.

The action of the integral operators F̂d and F̂qs can be
estimated with the BMCRT, tracing ray from camera.
Then the first ray transformation events correspond
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to the leftmost operators in a product and the last
ray events — to the rightmost operators. That is, our
term Q̂kF̂dT̂ Q̂F̂d(I

(0) + I(qc)) is estimated from the
rays that first underwent k ≥ 0 quasi-specular events,
then one diffuse event, then m ≥ 0 quasi-specular
events and after that take the luminance of the dif-
fuse BDF under direct and quasi-caustic illumination
(i.e. the diffuse illumination part is ignored).

Detailed derivation can be found in [2].
The other terms in Eq. (14) can be interpreted and

then estimated with BMCRT similarly. This leads to
the following algorithm of processing BMCRT rays:

• before (and including!) the first not pure specu-
lar event we take F̂

(
I(0) + I(qc)

)
;

• after the first quasi-specular event and up to the
2nd diffuse event we take F̂d

(
I(0) + I(qc)

)
;

• after the 2nd diffuse event we take F̂dI

• at the 3rd diffuse event we stop

The case of another BDD, as well as the alternative
form i.e. Eq. (11) are considered similarly. When ap-
plying BMCRT, we trace rays from camera so that
they undergo BDD+1 diffuse events (unless are ab-
sorbed prematurely) and then stop. Whenever a ray
hits a surface which has some diffuse or quasi-specular
BDF, the ray takes the convolution of some part of the
BDF with some part of illumination, as summarized
in the Table 1:

Table 1. In which hit points and for which illumination
component the “genuine diffuse” BDF part F̂d is used
instead of the full F̂ . “QS” mean “quasi-specular”.

Main variant Alternative variant
Direct,

After the 1st After the 1st diffuse event
caustic

Quasi-caustic QS event Always
Indirect Always

8. Volumetric scattering

8.1 Standard method
Here all works like for surface scattering. Sup-

pose for example that the camera is inside a turbid
medium and BDD=1. Then camera ray propagates in
the medium and when it undergoes the first volumet-
ric scattering, it takes direct and caustic illumination
and “convolves” it with the phase function. In the
second volumetric scattering it takes full illumination
and “convolves” it with the phase function.

Let us consider a model scene in which camera
looks through a layer of turbid medium onto some
illuminated object. Let also the turbid medium is
absorption-free and has a large scattering coefficient,
so that camera ray undergoes many (volumetric) scat-
tering events before it penetrates the medium and

reaches the object. Let, at last, phase function be
sharp enough so that each scattering changes the ray
direction only slightly.

For the “standard” method with a small BDD, the
camera ray terminates close to the ray origin (i.e. cam-
era), and the ray does not reach the object. Also, since
the phase function is narrow, its convolution with that
illumination which came from the scene surfaces re-
sults in strong noise, cf. Section 4.

We must set a large BDD so that camera ray to
leave the medium, reach a scene surface behind and
also not to collect indirect illumination in the volu-
metric scene points (which due to sharp phase func-
tion creates strong noise). But then we must keep in
memory all the volumetric scattering points (because
they still collect direct and caustic illumination), and
this is usually too expensive.

8.2 “Quasi-specular medium”
Applying the quasi-specular approach to the volu-

metric scattering greatly improves the situation with
the above scene.

Suppose that the scene surfaces are not quasi-
specular. Let also the whole phase function be treated
as quasi-specular, i.e. its “genuine diffuse” part F̂ d =
0. Then, until the camera ray travels inside the
medium, it undergoes only quasi-specular events and
thus does not increment the “diffuse counter”. As a
result it penetrates the medium layer and reaches for
a scene surface.

Indirect illumination now is the light after diffuse
scattering by scene surfaces; quasi-caustic is the light
which underwent at least one volumetric scattering
(and any specular events, but no diffuse surface scat-
tering).

Since F̂ d = 0, the “main variant” from Table 1
implies that:

• the indirect illumination (=from scene surfaces)
is effectively ignored inside the medium

• the direct, caustic and quasi-caustic illumination
is taken only up to the first volumetric scatter-
ing, i.e. in fact for the first volumetric event only.

As a result, for any BDD the camera ray reaches the
scene surfaces behind the medium layer; only one vol-
umetric ray event (the first one) is remembered; there
is no noisy convolution of the sharp phase function
with the indirect illumination from scene surfaces.

There is, though, the convolution of phase function
with the direct, caustic and scattered by the medium
light. But they all do not have a wide angular distri-
bution that would result in strong noise.

The “alternative” variant from Table 1 is worse be-
cause the direct and caustic illumination will be taken
“up to the first diffuse event” and since the volumetric
scattering is quasi-specular, that happens only after
the camera rays leaves the medium. We must therefore
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store all the ray scattering events inside the medium
to take direct and caustic illumination in that points
which is expensive in memory.

9. Results

9.1 Surface case
The model scene is from Figure 1. Calculation for

the quasi-specular mode were performed for BDD=0
and the same other conditions as those for the “stan-
dard mode”. The results for the standard mode are in
Figure 2 and for the quasi-specular mode in Figure 3.

One can see the noise level is about threefold lower
than for the best case without the quasi-specular
method. And, which is more essential, the calculated
image has a better estimation of color: for BDD=0 the
image looks mainly red with rare bright green dots;
for BDD=1 it looks mainly green with rare bright red
dots, and it is only with quasi-specular method that
we see a “mixture” of red and green. In the mean-
while the averages obtained in the three simulations
are about the same, which means that the result e.g.
for the “standard BDD=1” just has very bright red
dots which “on average” would give the correct value.
That is, in the standard method achieves the correct
average by very rare very bright peaks, i.e. the worst
sort of noise.

Figure 3. Camera image for scene from Figure 1,
calculated for quasi-specular method with BDD=0. For
the area of 100x100 pixels around the centre, the average
RGB color is (150, 31.4, 3). The noise level (relative to

the photometric luminance) is 76%.

9.2 Turbid medium
The model scene consisted of a plane parallel plate

of thickness 3 mm laid upon a paper sheet with a
chessboard-like texture, illuminated by a self-emitting
sphere above it. The plate’s medium has refraction
index 1.5 and scattering coefficient 7.5 mm−1. The
phase function is the Henyey-Greenstein one [7] with
g = 0.9. The images calculated during the same time
(and other settings) are presented in Figure 4; one can
see that in the “standard mode” the boundaries of the
texture squares seen through the plate are sharp while
in reality they must blur. In the image calculated with
the quasi-specular representation of the phase func-
tion these boundaries are smoothed (as they should
be).

Figure 4. Camera images for the scene with a plate of
turbid medium laid upon a chessboard-like texture. The

left image is the “standard mode” of volumetric
scattering, when it is treated as diffuse. The right panel is
when the volumetric scattering is purely quasi-specular.

In both cases BDD=1.
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