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Efficient interactive rendering of large datasets still poses a problem. Widely used algorithm frustum culling is too conservative 
and leaves a lot of hidden objects in view. Occlusion culling with hardware occlusion queries is an effective technique of culling of 
hidden objects inside view. In the paper, we perform the comparative analysis of popular indexing techniques in conformity to 
occlusion culling. 
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1. Introduction 
Occlusion culling algorithms remove occluded objects to 

enhance frame buffer composition speed. In the paper, object is 
defined as a mesh that can be rendered using one draw call. 
Two categories of invisible objects are illustrated in fig. 1: 
occluded objects and objects beyond camera frustum. Frustum 
culling quickly discards objects beyond camera frustum but 
leaves occluded objects inside the camera. We consider the 
algorithm to find occluded objects. The goal of this paper is to 
analyze how different hierarchies for scene organization affect 
occlusion culling and rendering performance. 

Occlusion culling algorithms are described in-depth in 
seminal papers [2][5]. We are interested in online algorithms 
based on hardware occlusion queries that are widespread today. 

Some of the previous algorithms were implemented using 
OpenGL 2 which is using the immediate rendering mode [10]. 
In immediate mode all of the geometry is sent each frame 
resulting in CPU-GPU bandwidth bottleneck and driver 
overhead caused by excessive number of commands in driver 
queue. Display lists were used to compile multiple rendering 
commands once and reduce driver overhead. OpenGL 3 
introduced retained rendering mode and immediate mode 
techniques such as display lists were deprecated and later 
removed from specification. It raised the question of effective 
use of object indexing techniques in modern OpenGL. 
Previously developers had to worry about the amount of 
geometry passed to GPU. Now developers have to think about 
driver overhead and state changes as well [18]. In this paper, we 
analyze performance considerations when using different 
hierarchies in retained rendering mode.  

Although Vulkan API is out of the scope of this paper, it 
was shown that it gives a better multithreaded performance by 
utilizing all of the cores of CPU for rendering [3]. It is still 
based on the same hardware and using retained rendering mode 
so all of the results in the paper stand. 

Hardware occlusion query is GPU technique to find visible 
faces of a polyhedron [6]. Visibility check stops when the first 
visible face is found. Checking query result in the frame queries 
were sent is a blocking function call and it causes CPU 
starvation. Visibility query result is available without noticeable 
delay in the next frame because by that time all draw calls 
required for query execution were sent. So visibility 
information in given frame is based on the previous frame. 

Space coherency is a relationship between nodes in which 
one node's visibility determines the visibility of other nodes. 
For example, if building is invisible then objects inside building 
are also invisible. Time coherency determines visibility in the 
future by visibility at given time. For example, if object is 
visible in the given frame then we can consider it visible some 
number of frames and avoid sending expensive queries. 

 
Fig. 1. Different types of culled objects. Frustum culled objects 

are depicted as triangles. Occluded objects are depicted as 
rectangles. 

2. Previous work 
Greene et al. introduced occlusion culling algorithm based 

on hierarchical z-buffer [7]. Z-buffer is stored as pyramid 
structure. Z-buffer is divided into 4 components, each one 
having maximum z value in its region. The process is repeated 
until pixels are reached. Z-pyramid allows for quick triangle 
culling by comparing minimum z value of triangle and z value 
in the corresponding region. This method can be implemented 
in hardware and software. Software implementation requires 
expensive rasterisation and pyramid structure updates on CPU. 
In hardware implementation (ATI Hyper-Z) triangles still have 
to be transformed and rasterized on GPU which does not 
replace quick method for geometry culling with a hierarchical 
structure. 

Bittner et al. considered ways for optimal usage of 
occlusion queries for hierarchical scenes based on extension 
NV_occlusion_query [1]. Previous frame visibility results are 
used in the next frames. Main performance problems come 
from CPU starvation and GPU starvation. Visibility results are 
checked in the next frame to remove CPU starvation. 
Previously visible objects are rendered at the beginning of the 
current frame to remove GPU starvation. Authors used kD-tree 
constructed according to the surface-area heuristic [11]. 
Visibility queries are sent for leaf nodes and results are 
propagated to upper hierarchy levels.  

Guthe et al. observed that in many cases visibility queries 
make performance worse than frustum culling, proposed 
probability criterion to minimize the number of queries, 
performance model which helps to avoid queries when 
rasterisation is cheaper [9]. Mattausch et al. suggested further 
ways of minimizing the number of queries like sending one 
query for group [12]. Authors used p-hbvo (polygon-based 
hierarchical bounding volume decomposition) [13], which is 
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well-suited for static scenes and expensive to maintain for 
dynamic scenes.  

Software rasterisation and visibility checks can be used 
instead of hardware occlusion queries [4]. First, triangles of 
significant occluders are rendered on CPU, hierarchical z-buffer 
of specified resolution is created. Then bounding boxes of 
objects or hierarchy nodes are rasterized to determine their 
visibility against created z-buffer. This helps to avoid expensive 
occlusion query read-back but requires occluder selection that is 
best done manually. Also, occluder rasterisation can be 
expensive and low level-of-detail models give only approximate 
results. 

Scene preprocessing can be effectively applied to static 
scenes. Teller et al. proposed to use BSP tree with 
decomposition along axes for architectural scenes [17]. 
Achieved hierarchy corresponds to room structure in a building. 
Visibility information is stored as the graph with rooms and 
portals. Room visibility can be determined by rasterizing 
portals. However, that graph is expensive to compute and works 
effectively only for static scenes. Commercial solution Umbra 
computes voxel representation of a scene [14]. Empty voxels 
serve as portals between different parts of a scene. Software 
rasterisation of portals determines the visibility of parts of a 
scene. That algorithm effectively finds occluded objects for 
static 3d scenes and is widely used in video games. 

Greene introduced image space algorithm based on 
precomputed occlusion masks [8]. As input, it takes a list of 
polygons in front-to-back order. It recursively subdivides image 
space into quadtree until visibility of polygon can be 
determined for each quadrant. Main advantages of this approach 
are small memory requirements and no pixel overwrites. 
However, it requires special hardware to implement efficiently. 
Zhang et al. proposed visibility culling based on hierarchical 
occlusion maps, which is better suited for modern hardware 
[19]. It constructs occlusion map hierarchy by rendering chosen 
occluders and then traverses bounding volume hierarchy of the 
model database to perform visibility culling. The algorithm 
allows for approximate visibility when opacity threshold is set 
to value lower than one. The main disadvantage of the 
algorithm is the sophisticated process of occluder selection 
which favors large objects with small polygon count for faster 
construction of occlusion map hierarchy. 

3. Occlusion culling algorithm 
Hierarchical occlusion culling algorithm in this paper is 

based on Coherent hierarchical culling [1]. Although our 
implementation does not include query batching, tight bounding 
volumes, probabilistic estimation of visibility, it allows 
comparing benefits and limitations of different subdivision 
hierarchies. 

Pseudocode of the algorithm: 
function RenderFrame(rootNode, frustum, 
queries, sentNodes) 
 PerformFrustumCulling(frustum,rootNode) 
  
 for i in 0..queries.size-1 
  vis <- GetQueryResult(queries[i]) 
  SetNodeCulled(sentNodes[i],vis == 0) 
 end for 
 PropagateVisibilityUpHierarchy() 
  
 nodes <- GetVisibleNodesInFrustum() 
 for n in nodes 
  for inst in n 
   if !InstRendered(inst) 
    Render(inst) 
   SetInstRendered(inst) 
  end for 

 end for 
 
 sentNodes <- GetLeafNodesInFrustum() 
 for i in 0..sentNodes.size-1 
  SendQuery(queries[i],sentNodes[i] 
   .boundingBox) 
 end for 
 
end function 

Function "RenderFrame" renders one frame. Function 
"PerformFrustumCulling" recursively sets frustum culled bit for 
every node outside the frustum. First for loop checks visibility 
results of occlusion queries sent in the previous frame. Second 
for loop renders objects of visible nodes in the frustum. Last for 
loop sends queries for all leaf nodes in the frustum.  

During the first frame, all objects inside frustum are 
rendered, and all hierarchy leafs inside frustum are queried. 
During the second frame, query results are checked, and only 
visible objects are rendered. Hierarchy leafs inside frustum are 
queried each frame. We propagate visibility up the hierarchy to 
optimize performance of hierarchy traversal. Space 
decomposition hierarchies allow multiple nodes per object. 
Rendered state of each instance is stored in bit array to make 
sure that all objects are rendered only once. 

Frame buffer composition time for a large number of 
objects can be approximated by the formula: 

𝑇!"#$% = 𝑇!!!"# + 𝑇!"#$"! + 𝑇!"#$%#& , 

where 𝑇!!!"# — time it takes to check query results, 
𝑇!"#$"! — time to render visible objects, 
𝑇!"#!"#$ — time it takes to send queries for leafs nodes 

inside frustum.  
When the number of queries is small 𝑇!"#$"! is the 

bottleneck. When the number of queries is large 𝑇!"#$%#& +
𝑇!!!"# is the bottleneck. Let's rewrite the formula by expanding 
the terms: 

𝑇!"#$% = 𝑐!𝑁! + 𝑐!𝑁!"# + 𝑐!𝑁! , 

where 𝑁! — number of queries (leaf nodes inside frustum),  
𝑁!"# — number of visible objects inside the frustum. 𝑁!"# 

is the function of camera position and hierarchy height for the 
given object distribution.  

Let's consider a common case where a scene is indexed by 
octree and camera is positioned outside the scene. In the worst 
case, three sides of the bounding box of the scene are visible. 
Assuming that objects are distributed uniformly across the 
bounding box of the scene, the number of objects per octree leaf 
equals 𝑁!"!#$/2!", where 𝑁!"!#$ is the total number of objects 
in the scene, ℎ is octree height. Then the number of visible 
objects approximately equals 3𝑁!"!#$/2!. We get the formula 
for frame duration that depends only on octree height and 
constants: 

𝑇!"#$% = (𝑐! + 𝑐!)2!" + 𝑐!3𝑁!"!#$2!!. 
Optimal octree height for given scenario is !

!
log!

!!"!#$!!
!!!!!

. 
For example, for dataset 1 calculated octree height ℎ = 4 gives 
the best performance in practice because dataset 1 can be 
described by that theoretical model. 

LBVH and BVH SAH perform better on scenes where the 
density of objects is uneven. Better clustering helps to lower the 
number of queries to get visible objects inside the frustum. 

4. Hierarchies 

4.1 Octree 
Octree is uniform space decomposition structure that uses 

three axis-perpendicular planes to simultaneously split the 
scene's bounding box into eight regions at each step [15]. When 
object's bounding box intersects the splitting plane, it is either 
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assigned to the internal node (single reference octree) or 
propagated below and assigned to multiple leaf nodes (multiple 
reference octree). Storing geometry in leafs increases clustering 
quality and as a result reduces number of visible objects. The 
downside is the increased number of occlusion queries, which 
are sent for every leaf in the frustum. We performed rendering 
performance comparison to find out which technique is more 
effective. Dataset 1 is small enough that GPU can handle 
rendering and queries quite efficiently (fig. 2). As a result, 
multiple reference octree gives the best time because of 
efficient clustering. Many objects intersect upper levels of 
octree resulting in redundant draw calls in case of single 
reference octree. Dataset 2 has non-uniform object distribution 
where several planes occupy half of the scene. It produced a lot 
of redundant leaf nodes and occlusion queries that degraded 
performance when storing objects in leafs. Dataset 3 has many 
buildings with tightly packed objects inside buildings. Even 
though the number of objects is large, it can be very efficiently 
subdivided requiring only small number of nodes. Overall, 
multiple reference octree provides the most efficient occlusion 
culling of large architectural scenes. 

 
Fig. 2. Average frame rendering time for single and multiple 

reference octrees. 
When rendering a visible node, contained object is skipped 

if it was already rendered in the current frame. Out of all 
hierarchical structures considered in the paper, octree gives the 
least effective clustering because of wasted space without any 
objects. Octree allows dynamic scenes because visibility results 
of octree nodes can be used for subsequent frames as they have 
fixed position in space. Also, it does not need to be rebalanced 
as other space decomposition hierarchies like kd-tree. 
Maximum octree level can be restricted depending on GPU 
performance. 

4.2 LBVH 
LBVH is primitive space decomposition hierarchy that is 

based on sorting along space filling curve [15]. All centers of 
object bounding boxes are sorted along Z space filling curve 
and grouped hierarchically from bottom to top [16]. LBVH 
achieves tighter clustering than octree and as a result less 
number of occlusion queries. Estimating the number of queries 
is simple because the number of leafs is determined at the start 
of the construction. LBVH cannot handle dynamic scenes 
because moving objects make occlusion queries for previously 
constructed LBVH useless in the current frame. 

4.3 BVH 
BVH with surface area heuristic for choosing the splitting 

plane to minimize the number of ray and bounding box 
intersection tests was developed for ray tracing, but it also gives 
efficient clustering of primitives for occlusion culling [13][15]. 
BVH construction is a top-down recursive process; on each 
step, we create two axis aligned bounding boxes. Triangles are 
sorted by the longest scene dimension and splitting plane with 
minimum cost is taken according to surface area heuristic. 

Because of top-down construction, BVH SAH sometimes 
creates clusters that cannot be subdivided into two nodes. We 

try to subdivide such cluster for each axis in order, and in case 
of failure leave it as a leaf node.  

We compare rendering performance when using BVH SAH 
for storing three types of primitives: objects, subdivided 
objects, triangles. Object is set of triangles that can be rendered 
with one draw call. Subdivided object is an object that was 
subdivided into multiple objects to achieve better triangle 
clustering. Storing each triangle as an object generates 
hierarchy with the best clustering. For rendering efficiency, 
large number of triangles is stored in a leaf node, render state 
changes are avoided when encountering triangles of the same 
object. Storing triangles in BVH gives many additional draw 
calls creating a CPU bottleneck (fig. 3). Storing subdivided 
objects gives much faster performance. However, clustering 
efficiency increase is not enough to cover for additional draw 
calls for considered datasets using simple shader. Let's consider 
the difference in rendering time of dataset 1 for objects (8.7ms) 
and subdivided objects (45.6ms). Even though object 
subdivision helped to lower average number of query calls 𝑁! 
from 192 to 171, it raised the average number of draw calls 
𝑁!"# from 4546 to 19452 (tests were conducted for 
𝑏𝑣ℎ ℎ𝑒𝑖𝑔ℎ𝑡 = 10). 

 
Fig. 3. Average frame rendering time for different types of 

primitive clusters when using occlusion culling on BVH SAH. 

5. Performance comparison 

5.1 Datasets 
For rendering performance comparison we took three large 

datasets (figs. 4–6): 
1. Dataset 1: 5,012,582  triangles, 50,521 objects. 

Building is tightly packed with objects having 
small variation in size.  

2. Dataset 2: 10,827,713 triangles, 71,961 objects. 
Scene has many relatively large objects, half of 
the scene's volume is occupied by several planes. 

3. Dataset 3: 10,154,304 triangles, 221,796 objects. 
Artificial test scene with 36 buildings. Each 
building has cluster of objects that can be culled 
after rendering exterior consisting of small 
number of objects. 
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Fig. 4. Dataset 1 – architectural scene with 5 million triangles. 

 
Fig. 5. Dataset 2 – architectural scene with 10.8 million 

triangles. 

 
Fig. 6. Artificial test scene with buildings with 10.2 million 

triangles. 
5.2 Clustering 
Let's calculate the average number of rendered objects to 

compare object clustering efficiency of considered hierarchies 
for occlusion culling. Better object clustering should result in 
fewer visible nodes and fewer draw calls. During tests, we fixed 
the number of leafs for all hierarchies. BVH has the most 
efficient clustering of objects (fig. 7). It could be better but top-
down subdivision process leads to the scenario where relatively 
long objects are gathered in a node and cannot be subdivided 
efficiently. In dataset 2 we encountered clusters with 40–70 
objects where subdivision by any axis produced singleton. 
Algorithm based on octree issues more draw calls when space 
decomposition gives bounding volumes with a lot of empty 
space. Octree is more efficient for dataset 1 because it has very 
little empty space. It gives worst clustering in spacious dataset 3 
because it cannot decompose it as efficiently using fixed 
number of leafs. 

 
Fig. 7. Average number of rendered objects during scene 

walkthrough for considered hierarchies. 
5.3 Frame rendering 
All scene geometry is uploaded once at the beginning, 

shader with one directional light is used. Test results were 
produced on the system: AMD FX 8320 Processor, 24GB 
DDR3 RAM, AMD Radeon HD 6770 1GB. 

Camera walkthrough is performed diagonally from the 
lower left to the upper right corner of a scene. Average and 
maximum frame rendering times are measured along the 
camera path (figs. 8, 9). Fig. 8 shows average rendering 
performance of all considered hierarchies on three datasets. 
Octree showed the fastest time for dataset 1 because it produced 
the best clustering (fig. 7). It performed better than expected for 
dataset 3 because most of the objects can be culled with 
relatively small number of queries. Dataset 2 was problematic 
for all hierarchies because it has most of the objects in one 
building. For efficient rendering careful balance of draw calls 
and occlusion queries is required. BVH SAH showed the fastest 
time because of efficient clustering. LBVH is close in 
performance to BVH SAH for all datasets.  

Occlusion culling may give worse performance than 
frustum culling when GPU can efficiently render all of the 
objects inside the frustum. However, frustum culling shows 
worst performance on datasets 2 and 3 because of the large 
number of visible objects inside the frustum. Note that 
occlusion culling algorithm in the paper is not state-of-the-art 
and can be improved further to reduce the number of queries 
using visibility prediction and multiqueries [9][12]. 

 
Fig. 8. Comparison of average frame rendering times for all 

datasets and hierarchies. 
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Fig. 9. Comparison of maximum frame rendering times for all 

datasets and hierarchies. 

6. Conclusion 
We performed the comparison of frame rendering 

performance when using different types of primitives and found 
that using objects instead of subdivided objects is more 
effective (fig. 3). 

Octree efficiently handles datasets where most of the 
scene's volume is occupied by objects (fig. 7, dataset 1). 
Although storing objects in interior nodes of octree helps to 
select large objects and get better performance (fig. 2, dataset 
2), storing objects in leafs is overall more effective and can be 
used to determine the number of leafs by scene's volume.  

BVH SAH gives the most effective clustering of objects 
(fig. 7), and it positively affects frame rendering time (fig. 8). 
LBVH is close in performance to BVH SAH. Also, it is faster 
to construct, and bottom-up construction is better suited to get 
the optimal number of leafs. 
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