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This paper is devoted to the automatic calibration of surveillance video camera using objects in the scene. In this paper the 
problem of estimation of three extrinsic parameters (camera height, tilt angle, roll angle) is considered. The idea of baseline method, 
proposed in [14], is based on convolutional neural network. As input data, head bounding boxes and the camera focal length are used. 
In this paper, the modification of the baseline method was proposed, and also methods based on random forest and gradient boosting 
were studied in order to understand the necessity of using neural networks. An experimental evaluation of the proposed methods on 
synthetic and TownCenter datasets demonstrated their high efficiency. The best results was shown by the proposed method based on 
neural networks. 
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1. Introduction 
The purpose of camera calibration is to determine the 

intrinsic and extrinsic calibration parameters of surveillance 
video camera. The classical formulation of this problem 
assumes the presence of calibration object with a known 
geometry in the scene. An example of such a calibration object 
can be a chessboard, Fig. 1. 

 
Figure 1. Camera calibration using special calibration object. 

However, it is difficult to calibrate large amounts of 
cameras in video surveillance systems using the classical 
approach because it requires artificially putting a calibration 
object in the scene. Therefore, for video surveillance systems, 
automatic calibration, that is, analyzing objects in the scene 
(people, cars, buildings) is the most promising (Fig. 2). 

 
Figure 2. Video surveillance footage. 

Camera calibration is necessary to calculate the 
correspondences between 3D scene points and 2D points on the 

image plane, which allows you to calculate the distances 
between objects, track changes in the size of objects, estimate 
the 3D position of a person on the ground [13], etc. 

In addition, information about camera calibration 
parameters can be used to improve object detection and object 
tracking algorithms [11], for example, by filtering false 
detections, which are geometrically incorrect [12]. For example, 
person height depends on the camera position and orientation, 
so the information about camera calibration will allow finding 
regions of interest, where a person of a specific size can be 
located, which can increase the accuracy of object detection and 
reduce the computation time. Such filtering can be used 
alongside with other methods that use some other criteria, for 
example, estimation temporal consistency of detections [10]. 

In this paper, the problem of determining the following 
parameters is considered: camera height above the ground, tilt 
angle and roll angle (Fig. 3). The baseline method is based on 
convolutional neural network [14]. In this paper, the 
modification of the architecture of the baseline neural network 
will be proposed. In addition, two methods based on other 
machine learning algorithms will be studied in order to 
understand the necessity of using neural network to solve the 
problem of camera calibration. As input data, head bounding 
boxes and camera focal length are used. 

 
Figure 3. a) Tilt angle; b) Roll angle. 

2. Related work 
The existing approaches to the automatic calibration of 

surveillance video camera can be divided into two groups: 
1. Analysis of the lines in the image. 
2. Analysis of the objects’ size. 

The main idea of the first approach is to calculate and then 
analyze vanishing points and vanishing lines. Vanishing point is 
a point in the image plane where the projections of a set of 
parallel lines in space intersect. Each set of parallel lines in 
space defines its vanishing point. The set of such vanishing 
points is called a vanishing line, for example, horizon line. 
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This approach is used in articles [1, 2, 4, 6, 7, 9]. In articles 
[2, 7, 9] people are used as calibration objects. In the article [2] 
the method is based on calculating vertical vanishing point, 
which is specified by the position of feet and head of a person, 
as well as calculating vanishing point obtained by tracking 
person in several frames. Authors of the paper [9] consider the 
problem of calibrating video system, which consists of two 
cameras. Vanishing points and vanishing lines are computed by 
RANSAC/EM algorithm [8]. In the article [7], authors use some 
additional information on the distribution of human heights in 
the real world. Camera calibration parameters are found by 
maximizing the log likelihood function under the assumption 
that 90% of people in the image have height that differs from 
the average by less than 7.6%. 

In [4], cars are used as calibration objects. However, there 
are some limitations on the scene conditions, which is necessary 
for calculating vanishing lines: essential part of car trajectory 
should be a straight line. 

In papers [1, 6], buildings are used as calibration objects. In 
[6], authors proceed from the assumption that there are three 
orthogonal planes in the scene, so it is possible to calculate 
three vanishing points. In [1] authors consider the sequence of 
images of urban environment. Images should be overlapping so 
that for each pair of adjacent frames it is possible to find some 
feature point seen in both images. 

The second approach is used in [3, 5, 14]. In [3] authors 
proposed the method for estimating camera calibration 
parameters for video surveillance system, which consists of 
several cameras with not overlapping viewing zones. The 
camera focal length and the tilt angle are obtained by analyzing 
the distribution of human heights depending on the feet 
location. However, additional information about person height 
in real world is necessary to determine the camera height above 
the ground. 

In [14] convolutional neural network is used to estimate 
calibration parameters using head bounding boxes and camera 
focal length. For training synthetic data was used. 

The main drawback of most methods is instability to 
changes of the scene or calibration object. The neural network 
method from [14] is chosen as baseline method, as the most 
promising and stable to changes of the scene. In this paper, its 
modification and some other methods based on random forest 
and gradient boosting will be proposed. 

3. Proposed method 
The input of the algorithm is a set of head bounding boxes 

{𝑅!}!!!
!! , and focal length 𝑓!, where 𝑅! is a head bounding box, 

which is given in image coordinates by three numbers:  
𝑅! = < 𝑥! , 𝑦! , 𝑠𝑐𝑎𝑙𝑒! >, where (𝑥! , 𝑦!) is the coordinates of top 
left corner of bounding box, 𝑠𝑐𝑎𝑙𝑒! is the size of bounding box 
(assuming that the human head can be enclosed in square);  𝑁! 
is the number of head bounding boxes for camera position in 
space 𝐾!; for each unique camera position there is a set of 
bounding boxes. 

The output of the algorithm is a triple of parameters 
characterizing the position of camera in space 𝐾!:  

𝐾! = < 𝜃! ,𝜑! , ℎ! >, 

where  𝜃! is a tilt angle in radians, 𝜃! ∈ 0, !!
!"

, 
𝜑! is a roll angle in radians, 𝜑! ∈ [−

!
!"
, !
!"
], 

ℎ! is a camera height above the ground in meters, 
ℎ! ∈ [0, 20]. 

3.1 Baseline method 
Baseline method based on convolutional neural network 

was proposed in [14]. The problem of the lack of training data 
was solved by constructing a synthetic dataset, which will be 
described in section 4.1. The general scheme of this algorithm: 

1. Preparation of input data.  
At this step, bounding boxes {𝑅!}!!!

!!  are grouped by 64 
observations for each unique camera position 𝐾! and focal 
length 𝑓! in matrices 𝑀! of dimension 3х8х8. Within each 
group, the bounding boxes are sorted by their sizes 
𝑠𝑐𝑎𝑙𝑒! , 𝑖 = 1, . . , 64 in ascending order. Thus, convolutional 
layers can analyze both boxes that are close in sizes and far 
apart, that is, track the changes in the object size depending 
on its position relative to the camera. 

2. Training neural network with the architecture shown in 
Fig. 4. 

 
Figure 4. Neural network architecture of baseline method. 

 
2.1. Two data input layers: focal length 𝑓! and matrices 

𝑀!  from step 1. 
2.2. Convolutional layer with ReLU activation function and 

parameters: number of filters is 20; kernel size is 3х3. 
2.3. Convolutional layer with ReLU activation function and 

parameters: number of filters is 50; kernel size is 3х3. 
2.4. Convolutional layer with ReLU activation function and 

parameters: number of filters is 50; kernel size is 3х3. 
2.5. Concatenation layer, which concatenates the output of 

the last convolutional layer and input focal length 
layer. 

2.6. Fully connected inner product layer with ReLU 
activation function and 100 neurons. 

2.7. Fully connected inner product layer with ReLU 
activation function and 75 neurons. 

2.8. Fully connected inner product layer with ReLU 
activation function and 50 neurons. 

2.9. Fully connected inner product layer with ReLU 
activation function and 50 neurons. 

2.10. Two output layers: mathematical expectation of 
parameters 𝜇 and logarithm of variance of normal 
distribution 𝑠. 

Neural network was trained by minimizing the following 
loss function: 

𝐿 𝑦 𝜇, 𝑠 =  −𝑙𝑜𝑔𝑁 𝑦 𝜇,𝑑𝑖𝑎𝑔 𝑒! + 𝜀 , where 
𝑦 = < 𝑡!" , 𝑟!" , ℎ!" > are ground truth values of parameters (t is 
for tilt, r is for roll, h is for height); 
𝜇 = < 𝑡!"#$%&'#$ , 𝑟!"#$%&'#$ , ℎ!"#$%&'#$ > are predicted values 
of parameters;  
𝑠 = < 𝑠! , 𝑠! , 𝑠! > are logarithms of variance of normal 
distribution of parameters, 𝑑𝑖𝑎𝑔(𝑒!) – diagonal matrix of 
dimension 3х3; 𝑁() – normal distribution density function; 
𝜀 = 10!! is used to prevent overfitting to a single train sample. 
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3.2 Modifications of baseline method 
Since the input data in the baseline method of automatic 

calibration of surveillance video camera is a set of head 
bounding boxes and camera focal length and not the frames of 
the video sequence itself, the question about using 
convolutional layers in neural network architecture arises. 
Despite the sorting of bounding boxes by their sizes during the 
construction of matrices 𝑀!, due to the wide variety of locations 
(and sizes) of human head in the image, it is not guaranteed that 
constructed matrices contain local features that could be 
effectively recognized by the convolutional filters. Thus, a 
modification with the following architecture of neural network 
was proposed (Fig. 5): 
1. Convolutional layers were removed. 
2. Fully connected inner product layer with ReLU activation 

function and 150 neurons was added. 
3. Three output layers: one for each of the estimated 

parameters. 
4. As a loss function, Euclidean distance is used. 

 
Figure 5. Neural network architecture of proposed method. 

In addition, the neural network without focal length input 
layer was trained, because this information is not always 
available. 

3.3 Other methods based on other machine 
learning algorithms 

It was decided to develop and evaluate methods based on 
other machine learning algorithms in order to understand the 
necessity of using neural networks to solve the problem of 
automatic camera calibration. 

In this paper, two methods were proposed: first method is 
based on random forest, second method is based on gradient 
decision tree boosting. 

As input data, vector of 193 elements (64 observations of 
bounding boxes plus focal length) was used. 

A method based on random forest: three models were 
trained, each has 60 tree with a depth of 18). 

A method based on gradient decision tree boosting: three 
models were trained, each consists of 300 decision trees with a 
depth of 9. 

4. Results 

4.1 Datasets 
To evaluate proposed methods two datasets were used: 

1. Synthetic dataset. 
2. TownCenter1 dataset. 

Synthetic dataset was generated using HumanShape2 and 
neural network head detector FasterHog3: 

                                                                    
1http://www.robots.ox.ac.uk/~lav/Research/Projects/2009bbenf
old_headpose/project.html 
2 https://github.com/e-sha/pyhumanshape 
3 https://github.com/e-sha/fasterhog 

1. About 300000 samples were generated, each containing 64 
observations of human head. 

2. Samples were generated for camera calibration parameters 
if following ranges:  
 𝑡𝑖𝑙𝑡 ∈ 0, 75° ;   𝑟𝑜𝑙𝑙 ∈ −15°, 15° ; ℎ𝑒𝑖𝑔ℎ𝑡 ∈ 0, 20 . 

3. Outliers were artificially added to generated samples to 
emulate the incorrect detections of human head. 

4. 80% of synthetic data were used for training purposes. 
An example of the generated synthetic image is shown in 

Figure 6. A detail description of constructing synthetic dataset 
can be found in [14]. 

 
Figure 6. Image from the synthetic dataset. 

Second dataset contains footage from real video 
surveillance camera. This TownCenter dataset contains 4500 
frames, obtained from a 5-minutes video sequence. About 
70000 head bounding boxes are marked on these frames. For 
the evaluation, 40000 samples were constructed (64 
observations each). An example from a TownCenter dataset is 
shown in Fig. 7. 

 
Figure 7. Image from TownCenter dataset. 

4.2 Quality metrics 
L1 metric was used to evaluate the quality of developed 

algorithms.  
𝑑 𝑙𝑎𝑏𝑒𝑙, 𝑠𝑐𝑜𝑟𝑒 = !

!
|𝑙𝑎𝑏𝑒𝑙! − 𝑠𝑐𝑜𝑟𝑒!|!

!!! ,  
where 𝑙𝑎𝑏𝑒𝑙! is a true value of a parameter for the 𝑗 sample, 
𝑠𝑐𝑜𝑟𝑒! is a predicted value of a parameter for the 𝑗 sample, 𝑁 is 
a number of samples. 

This metric is chosen because it allows easy interpretation 
of the results. 

4.3 Experimental evaluation 
The results of the experimental evaluation of synthetic 

dataset are given in Table 1. 
All proposed algorithms (except the neural network based 

method without using focal length information) showed good 
quality on synthetic dataset in comparison with the baseline 
one. The best result for the tilt and roll angles was demonstrated 
by a modified neural network algorithm. The camera height 
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above the ground was best determined by method based on 
gradient decision tree boosting. 

The results on TownCenter dataset are given in Tables 2 
and 3. Table 2 shows the average error on all test samples. 
Table 3 shows the error for estimated camera calibration 
parameters, obtained by averaging over all samples. 

On TownCenter dataset proposed neural network algorithm 
showed an advantage over the baseline one and all other 
proposed algorithms on all three estimated parameters. The fact 
that the results on TownCenter dataset are better than on 
synthetic dataset can be explained by the fact that TownCenter 
dataset does not contain incorrect head observations. 

Experimental evaluation shows the applicability and 
effectiveness of methods based on machine learning algorithms 
in automatic calibration of surveillance video camera problem. 
However, the best result was shown by the modification of 
baseline neural network method. The proposed neural network 
method on synthetic dataset showed results that exceed results 
of the baseline algorithm by about 1.7 times, which confirms 
the hypothesis from section 3.2 that a wide variety of locations 
of human head in the image does not allow to use convolutional 
layers efficiently. 

5. Conclusion 
Compared with the existing methods, the machine learning 

based approach to solve automatic camera calibration problem 
has greater resistance to changes in the scene conditions and 
can be applied to different types of objects. The problem of the 
lack of training data can be solved using synthetic dataset. 

In this article, the modification of the baseline [14] neural 
network method was proposed. As input data head bounding 
boxes as long as camera focal length were used. Some 
modifications of the architecture of the neural network were 
proposed. The experimental evaluation of the proposed method 
showed that it is more efficient than the baseline one. 

In addition, other methods based on random forest and 
gradient boosting were proposed in order to evaluate the 
necessity of using neural network to solve the problem of 
automatic camera calibration. The experimental evaluation of 
these methods showed their applicability, however, the best 
results on both synthetic and TownCenter datasets were shown 
by the proposed neural network method. 

Table 1. Average error on synthetic dataset. 

Estimated 
parameter 

Baseline 
method 

Proposed neural network 
method (with focal 

length) 

Proposed neural 
network method 

(without focal length) 

Proposed random 
forest based method 

Proposed DT-
boosting based 

method 
Tilt angle, 
radians 0.084 0.04984 0.1096 0.0859 0.0555 

Roll angle, 
radians 0.0925 0.0553 0.0575 0.0764 0.0586 

Camera height, 
metres 0.8177 0.5226 1.1008 0.6140 0.4904 

  
Table 2. Average error on TownCenter dataset. 

Estimated 
parameter 

Baseline 
method 

Proposed neural network 
method (with focal 

length) 

Proposed neural 
network method 

(without focal length) 

Proposed random 
forest based method 

Proposed DT-
boosting based 

method 
Tilt angle, 
radians 0.0196 0.0186 0.2591 0.0668 0.0298 

Roll angle, 
radians 0.0398 0.0344 0.0487 0.0527 0.0367 

Camera height, 
metres 0.6690 0.4692 0.6597 1.1187 0.8134 

  
Table 3. Error for estimated camera calibration parameters on TownCenter dataset. 

Estimated 
parameter 

Baseline 
method 

Proposed neural network 
method (with focal 

length) 

Proposed neural 
network method 

(without focal length) 

Proposed random 
forest based method 

Proposed DT-
boosting based 

method 
Tilt angle, 
radians 0.0157 0.0037 0.2600 0.0667 0.0006 

Roll angle, 
radians 0.0377 0.0014 0.0432 0.0511 0.0315 

Camera height, 
metres 0.5562 0.1935 0.5191 1.1004 0.7091 
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