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We present a novel method for semi-automatic reconstruction of cylindrical primitives from three-dimensional dense point clouds 
corresponding to the results of laser-scan acquisition. Our method is a part of the general reverse engineering procedure aimed at 
reconstructing a complete 3D model of an industrial site, such as a petrochemical factory. We use differential properties of a point 
cloud to restore cross-sections of a cylindrical primitive representing a straight pipe segment. Our method requires user interaction 
for the selection of cross-sectional circles of the candidate cylinders. In order to make reconstruction more accurate, we refine the 
extracted radius and axis by taking into account the extended neighborhood of the sample point. 
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1. Introduction 
Digital models of industrial facilities, such as refineries, are 

important in many scenarios, including training, maintenance, 
renovation of equipment, simulation of different operational 
situations, data exchange, etc. Existing industrial facilities can 
be accurately measured with the use of terrestrial laser scanners. 
Laser scanning systems produce large-scale point clouds with a 
point density large enough to cover even small details of a 
measured facility. Typical point clouds representing industrial 
installations may contain hundreds of millions of points. 
Automated and accurate transformation of such point clouds to 
compact 3D representations remains an open problem which is 
known as reverse engineering. A class of reverse engineering 
problems dealing with large amounts of discrete data 
representing existing industrial facilities is called as-built 
reconstruction. Oil platforms, factories, buildings are just some 
of the examples of the facilities that can be reengineered in this 
field. 

There is a growing demand for as-built reconstruction of 
industrial sites using laser-scan data. As-built reconstruction is 
aimed to produce a compact three-dimensional model of an 
operational facility which can be subsequently used in different 
design and management software (e.g. AVEVA PDMS). Our 
paper is focused on the reconstruction of cylindrical pipelines. 
As mentioned by [Rabbani 2006] and [Qiu et al. 2014], a 
cylinder is one the most frequently used primitives in industrial 
engineering. This is especially true for processing industries 
such as petrochemical plants, refineries, nuclear power plants, 
etc. As a result, automatic and robust methods for detecting and 
fitting cylindrical primitives are essential for the reconstruction 
of such sites. 

We present a reconstruction procedure which employs 
differential characteristics of a point cloud as proposed by [Son 
and Kim 2016]. We demonstrate that the use of differential 
heuristics alone may introduce a variety of subtle phenomena 
which complicate the reconstruction process. These problems 
can be solved by refining the extracted differential 
characteristics taking into account global cues. Our work is 
focused on the reconstruction of straight pipe segments. We do 
not examine pipe connection features such as elbows or tee 
pipes. Reconstruction of pipe connection features and other 
primitive types is left for future research. 

2. Related work 
[Son et al. 2015] conducted a survey on as-built 

reconstruction methods for industrial facilities, such as 

petrochemical plants. Their study covers both automatic and 
interactive reconstruction techniques including approaches 
adopted in commercial systems. In particular, the authors 
mention that the majority of existing commercial tools are 
interactive in nature. Although, according to [Benko et al. 
2001], in respect of common engineering objects (i.e. those 
bounded by simple analytic surfaces) significant research 
efforts are directed at automatic reconstruction with little or no 
user interaction. 

Reverse engineering typically starts with segmentation of 
an input point cloud into meaningful regions. In general, the 
segmentation problem is ill-posed, as there is no any objective 
criterion to measure the segmentation quality. A particular 
segmentation technique is chosen in function of the target 
application domain. [Le and Duan 2017] proposed a 
segmentation framework for the reconstruction of mechanical 
CAD parts. The authors state that their approach is more robust 
than the widely adopted random sample consensus (RANSAC) 
method introduced by [Schnabel et al. 2007]. They identify the 
model’s major directions and perform dimensional reduction 
before the extraction of various types of geometric primitives. 
The method is based on the observation that many mechanical 
models have only a moderate number of primary orientations 
around which the CAD features reside. These orientations are 
extracted from Gaussian maps corresponding to plane normals. 
As-built reconstruction methods actively use Gaussian maps for 
the recognition of principal axes of an object. 

For the automatic decomposition of large point clouds into 
connected regions, [Rabbani et al. 2006] used segmentation by 
smoothness constraint which is based on the pre-computed 
normal field. Segmentation comprises two steps: normal 
estimation and region growing. This simple technique has found 
broad application in industrial reconstruction. Region growing 
is one of the initial stages of our method. 

[Benko et al. 2001] utilized the so-called direct 
segmentation which is an efficient, non-iterative approach. 
Their segmentation technique is based on the selection of 
“stable” points within a candidate region. If local characteristics 
of points within a selected area are unstable, the algorithm 
deduces that the neighborhood lies between two or more 
regions. 

A popular technique for 3D reconstruction from a point 
cloud is mesh generation (see [Hoppe et al. 1992]). However, 
mesh alone is rarely enough, as it lacks information on 
semantics (CAD features) and does not offer such compact 
representation as planar, cylindrical, conical, or toroidal 
primitives. There are hybrid approaches which employ mesh 
generation at the pre-processing stage for accurate 
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reconstruction. [Masuda and Tanaka Ichiro 2010] presented a 
system which is based on the conversion of input point clouds 
into mesh models. After mesh generation the user may perform 
interactive picking of a seed region which is automatically 
expanded by the system to one of the conventional primitive 
types. 

[Qiu et al. 2014] presented a method for the reconstruction 
of pipelines and their joints from industrial point clouds. 
According to the authors, RANSAC method is not reliable 
enough to drive the automated as-built reconstruction process. 
The same applies to the GlobFit method described by [Li et al. 
2011], as, according to [Qiu et al. 2014], the GlobFit method 
may suffer from unreliable initial primitive detection. 

[Liu et al. 2013] classify all pipelines from laser scan data 
as those perpendicular to the ground and those parallel to the 
ground. They reduce 3D reconstruction problem into a simpler 
2D circle detection problem. However, the employed prior 
knowledge of the ground plane and the assumption about the 
pipes orientation with respect to this plane may be false. 

[Tran et al. 2015] extract cylindrical primitives 
automatically. They use a dedicated validation stage to accept 
or reject the fitting results. The authors notice that acquisition 
noise and point cloud structure may lead to convergence to a 
wrong solution. Therefore, multiple fitting attempts are 
necessary to achieve the expected results. 

[Son and Kim 2016] presented a fully automatic pipeline 
reconstruction procedure. Their method employs local 
approximation with a B-spline surface to derive differential 
properties of a point cloud. It looks promising; however, the 
described method may suffer from fluctuations in extracted 
differential properties due to imperfections of a locally 
approximating surface. We have reused the ideas presented by 
[Son and Kim 2016] and enriched them with additional 
refinement stages aimed to offset the negative effects of local 
fluctuations. 

3. Algorithm 
Regardless of whether a software system is interactive or 

not, there is a common pool of algorithms serving the 
reconstruction procedure. The “gentleman’s set” includes noise 
smoothing, point cloud filtering, region growing, primitives 
fitting, feature recognition, and many other utilities. Our 
intention was to develop a set of auxiliary methods which 
would help solve a broad range of as-built reconstruction 
problems. The output of reconstruction should be transferable to 
any popular CAD system for accurate manual operation. In 
order to achieve this goal, we have created an interactive system 
for as-built reconstruction. The system works as a test bench for 
different reverse engineering techniques, including those which 
allow for user interaction. In this section, we present the basic 
implemented approach and highlight several subtle problems 
that may arise. 

3.1 Outline of the algorithm 
Our algorithm is outlined as follows: 

1. Prepare point cloud: 

a. Filter out near-coincident points in 3D. 

b. Build k-d tree for the initial point cloud. 

c. Build normals for the initial point cloud. 

2. Perform coarse segmentation by region growing. 

3. Prepare cross sections: 

a. Let the user pick interactively seed points within 
the area where local characteristics of points are 
stable. 

b. Approximate each picked point’s neighborhood 
with a B-spline surface. 

c. Build normal plane using differential properties of 
local approximation surface. 

d. Find points which lie within a certain threshold 
distance to the normal plane. We call such points 
a neighbor band. 

e. Refine normal plane with respect to the Gauss 
map of the normal vectors corresponding to the 
neighbor band points. 

f. Calculate the normal section curve by intersecting 
the approximation surface with a refined normal 
plane. 

g. Build an osculating circle for the normal section 
curve. 

h. Project neighbor band points to the normal plane. 

i. Refine the osculating circle to fit the projected 
points. 

j. Snap the resulting radius value to one of the 
predefined radius values of Piping and 
Instrumentation Diagrams (P&ID) available for 
the industrial facility. 

4. Build a cylindrical surface between the reconstructed 
circular sections. 

5. Trim the cylindrical surface by projecting the points of 
a region and filtering out the outliers. 

For fast nearest neighbor matching we have used the open-
source FLANN library presented by [Muja and Lowe 2014]. 
Normal vectors are calculated by local plane approximation 
with the use of covariance matrices at each point as described 
by [Hoppe et al. 1992]. Normal orientation calculated in this 
way is ambiguous (see Figure 1). However, region growing 
segmentation and other steps of our method are not sensitive to 
such ambiguity. 

 
Fig. 1. Ambiguity in the orientation of normal vectors (blue). 

The original point cloud is shown in red color. 

Region growing has been used for decomposition of the 
initial point cloud into the segments which can be processed 
individually. Such coarse segmentation is an essential step to 
enable the work with large industrial point clouds as it allows 
for piece-by-piece operation, thus relaxing the hardware’s 
requirements. The segmented point cloud is then interactively 
modified by the user. The user picks a set of seed points to 
make an assumption on cylindrical primitive’s location. The 
system analyzes local differential characteristics of the selected 
region and reconstructs a cross-sectional circle which passes 
through a refinement stage as described in paragraph 3.4. The 
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system is then asked to build an infinite cylindrical surface 
passing through the set of guess circles. Finally, the infinite 
surface is trimmed by a subset of tentative points of a region. 
The trimming is accomplished by checking if the distances from 
the points to the cylindrical surface are within a threshold value. 
Figure 2 shows some results obtained with the use of our 
method on synthetic models. 

 
 

 
Fig. 2. Some examples of the reconstruction results obtained 

with the use of our method. 
 
3.2 Data management 
The reconstruction process involves several data 

abstractions which are conveniently represented in an object-
oriented programming language such as C++. In addition to the 
data structures representing input point clouds and resulting 
primitives, it is convenient to have dedicated data structures for 
segmentation results, normal vectors, Gauss maps, curves and 
surfaces employed in reconstruction, etc. In our work, we used 
the open-source framework [Slyadnev 2017] for data 
management and visualization. Figure 3 shows the hierarchy of 
data objects employed in our reconstruction procedure. 

 
Fig. 3. Hierarchy of the employed data structures. Skeleton 

objects which persist throughout the reconstruction process are 
marked with black labels. Objects which are allocated during 
the reconstruction procedure are marked with green labels. 

All inputs and outputs are placed under the Points object 
which represents the initial point cloud. The child objects store 
the k-d tree for fast neighbors access and the normal vectors 
calculated at each point. The results of the region growing 
segmentation are collected under the Regions group. A region is 
nothing but a set of indices pointing to the input cloud elements. 
Once the reconstruction is done, the resulting primitives can be 
saved to STEP (ISO 10303) file allowing for interoperability 
with any CAD system. 

3.3 Extract differential properties 
Some popular computer vision techniques for primitive 

fitting are RANSAC and Hough transform. These methods 
generally avoid using differential characteristics of a point 
cloud such as principal curvatures. In our method, we calculate 
the differential properties of an interactively picked area. 
Having these properties allows for recognition prior to fitting. 
Recognition lets the system “guess” whether the picked region 
constitutes a cylinder or some other type of primitive. 
Significant oscillations in the local characteristics let the system 
guide the user to choose another region which is more “stable”. 

Differential properties of a point cloud segment can be 
estimated by local approximation. Such properties as principal 
curvatures are very sensitive to fairness of the used 
approximation surface. In this work, we have adopted thin plate 
spline (TPS) technique based on OpenCascade geometric kernel 
(see [Slyadnev 2014] for the overview). The used approach is 
similar to the one described by [Hegland et al. 1997]. 

3.4 Refinement of cylindrical section 
According to [Kim and Son 2016], differential 

characteristics of a locally approximating surface patch can be 
used to extract the main properties of a reconstructed cylindrical 
surface, i.e. its radius and axis. We have found however that 
using differential properties alone is a troublesome technique. 
The reconstruction approach which is exclusively based on 
differential properties of a point cloud is impractically sensitive 
to the quality of a locally approximating surface. Intuitively, 
such an approach may not provide reliable results as it uses 
inherently local (thus unreliable) geometry characteristics to 
derive global shape properties. Depending on a surface 
approximation technique, it may happen that the obtained radius 
and the axis direction are significantly distorted even for a 
regular point cloud without any noise. Figure 4 illustrates the 
osculating circle which does not fit in the intuitively expected 
shape of the cylinder. 

 

Fig. 4. An example of an inaccurate osculating circle whose 
quality suffers from oscillations in a local approximation 
surface. The radius of the osculating circle is greater than 

expected. 
 
Figure 5 illustrates unexpected inclinations of normal 

planes. The inaccuracy of a normal plane means inaccuracy of 
the detected axis direction. 

 

 
Fig. 5. Unexpected inclinations of normal planes due to small 

fluctuations of local approximation surfaces. 
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Both problems are caused by insufficient fairness of a 
locally approximating surface. It is known from geometric 
modeling practice that the formalization of such “fairness” is 
not straightforward. Summarizing the detected phenomena, we 
conclude that the differential properties of the approximating 
surface are “weak” heuristics which cannot be directly used in 
reasoning about the global pipe’s properties. Apparently, both 
the radius and the axis of the cylindrical primitive have to be 
refined taking into account a “more global” behavior of the 
point cloud in a sufficiently larger subregion. 

3.4.1 Axis refinement 

First, we sharpen the orientation of the normal plane. As a 
global cue for refinement, we use the neighbor points lying near 
the original section plane (Figure 6). The corresponding normal 
vectors constitute a Gauss map whose vectors should be 
predominantly orthogonal to the cylinder axis. 

 

Fig. 6. Neighbor band points as a global cue for refinement. 

For the unknown axis coordinates (𝑥!, 𝑥!, 𝑥!), a residual 
value 𝑟 for a single Gauss map element 𝐮 = (𝑢!,𝑢!,𝑢!) can be 
calculated as a dot product 𝑟 = 𝑥!𝑢! + 𝑥!𝑢! + 𝑥!𝑢!. The 
perfect fit is achieved for 𝑟𝑖 = 0𝑁

𝑖=1 , where 𝑁 is the number 
of elements in the Gauss map (the number of points in the 
neighbor band). The perfect fit criterion can be formulated for 
each component individually as 𝑥𝑘 𝑢𝑖 = 0𝑁

𝑖=1  for 𝑘 = 1,2,3. 
In matrix notation, this can be reformulated as a homogeneous 
linear system 𝐴𝐱 = 0, where 𝐴 is the diagonal matrix. 
Minimizing 𝐴𝐱 2 under the constraint 𝐱 = 1 using the 
Lagrange multipliers yields 

𝐱𝑇𝐴𝑇𝐴𝐱 + 𝜆 𝐱𝑇𝐱 − 1 = 0. 

Derivation by 𝐱 yields 

𝐴𝑇𝐴𝐱 + 𝜆𝐱 = 0. 

Therefore, we end up with the eigenvalue problem for 𝐴𝑇𝐴 
matrix. Figure 7 shows an example of axis refinement. 

 

 
Fig. 7. Axis refinement using the Gauss map of neighbor band 

points. The original axis direction (red) is orthogonalized 
(green) in accordance with point cloud normals. 

3.4.2 Cross-section refinement 

The refined normal plane is used for computation of the 
intersection curve on the locally approximating surface. 
Inspired by [Son and Kim 2016], our intention was to use the 
osculating circle for this curve as a cross-section of the target 

cylindrical primitive. However, such an approach is not 
sufficiently reliable due to possible oscillations of the 
approximating surface leading to a wild shape of the 
intersection curve (Figure 8). 

 
Fig. 8. Oscillating intersection curve (red) due to the 

insufficient fairness of the approximation surface (white 
wireframe). The osculating circle is shown in green color. 

For circle refinement, we use simple gradient descent 
method with Armijo rule for adaptive step selection. The radius 
and the (𝑢, 𝑣) center coordinates of the original osculating 
circle are passed to the optimizer as the initial guess. Other 
approaches, such as direct circle fitting proposed by [Coope 
1993] also look promising. One example of osculating circle 
refinement is shown in Figure 9. 

 

Fig 9. The result of refinement (blue circle) applied to the 
original osculating circle (green) used as the initial guess in 

local optimization. 

4. Discussion and future research 
Fully automatic as-built reconstruction is a challenging 

problem. We believe that the user’s intervention cannot be 
avoided in general case as no algorithm can reliably substitute 
an experienced human engineer. On the other hand, there is a 
huge amount of manual operations which consist in searching 
for stereotypical shapes in the input laser-scan data and 
selecting the best fitting primitives for the unambiguous 
regions. Such operations require many man-days of qualified 
human engineer’s work, so their automation is greatly 
beneficial. We have presented the algorithm for semi-automatic 
extraction of cylindrical primitives from dense laser-scan data. 
The algorithm is based on local analysis of a point cloud region 
with its user-driven completion into a segment of a straight 
cylindrical pipe. 

We have found that differential characteristics are weak 
cues even if applied to synthetic point clouds without noise. 
Two such weak characteristics were used in our work: the 
osculating circle and the axis of the normal plane. Any such 
differential characteristic requires refinement by global cues. 
E.g. center and radius of osculating circle were refined by 
simple gradient descent method using the neighbor band points. 

Figure 10 illustrates some reconstruction results obtained 
for regions of an industrial point cloud representing a real 
petrochemical factory. 
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(a) Single pipe with noise and occlusions. 

 

(b) Several pipes. 

 

(c) Several pipes. 

Fig 10. Some examples of reconstruction results. The input data 
set contains many occlusions and outliers. 

In our experiments, we did not measure the deviation 
between the original points and the resulting cylinder since 
P&ID information was used to choose final radii. The precise 
surface deviation was of little interest in our setting, especially 
due to presence of huge geometric defects in the input clouds. 
Careful comparison of our method with other solutions is left 
for future research because we do not consider our method 
complete. Moreover, the methods which are reported as fully 
automatic and precise are not publicly available to make such 
comparison representative. However, we found interesting to 
compare our solution with a popular computer vision method 
RANSAC as reported by [Schnabel et al. 2007]. Our 
experiments show that RANSAC gives appropriate results for 
the unambiguously segmented point cloud regions. For 
industrial point clouds, such segmentation is hardly possible 
without intensive user interaction. Therefore, fully automatic 
RANSAC is not an option. The system which employs 
RANSAC should provide rich interactive means for point cloud 
segmentation. 

 

Fig 11. Recognition results using RANSAC method in system 
[CloudCompare 2017]. 

Figure 11 illustrates the results of RANSAC method 
launched for a piece of industrial point cloud (also shown in the 
Figure 10). The set of extracted cylinders contains many 

redundant primitives which should be excluded from the result 
manually. 

 
Fig 12. Recognition result using RANSAC method in system 

[CloudCompare 2017]. One portion of point cloud is recognized 
in two different ways. 

Another observation is related to recognition of an 
individual primitive. Figure 12 shows that RANSAC method 
was able to detect two cylinders for a manually captured 
segment of a real industrial point cloud. The cylinders of 
different radii give multiple solution in a situation where only 
one solution is expected. The result of our method is shown in 
the Figure 13. Since several neighbor bands are used to detect 
and refine cylindrical cross-sections, our method extracts two 
radius values and averages them in order to return a single 
result. 

 
Fig 13. Recognition result using our method. 

Another advantage of our method is that it enables 
recognition prior to fitting. Using differential characteristics of 
a local area, it is possible to decide algorithmically whether 
consequent fitting makes sense or not. Moreover, since 
differential characteristics of a point cloud are extracted by 
general-purpose TPS technique, our method can be extended to 
recognition and extraction of pipeline connection features. 
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