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Paleographic Dating of Birch Bark Manuscripts

K. A. Sidorov
Cardiff University, Cardiff, UK

We propose a novel method for automatically estimating the age of birch bark manuscripts based solely on the appearance
of graphemes (paleographic dating). Our method achieves mean absolute accuracy of 18.9 years which is comparable to or
surpasses the performance of human experts and of other computational paleography studies.
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10 We address the problem of estimating the age of
birch bark manuscripts [22] from their appearance (pa-
leographically). These birch bark manuscripts (BBMs)
are one of the most valuable corpora of Old Russian
texts, and a crucially important source of information
about mediaeval history and evolution of the language.
Accurate dating of BBMs is necessary in order to place
them in a correct historical context, before historians
and linguists can take advantage of their valuable con-
tents.

1. Background

Paleographic dating is possible due to the fact that
the appearance of graphemes does not remain constant
over time. For BBMs, a considerable effort has been
undertaken by Zaliznyak et al. [22] (pp. 134-429) to
codify paleographic expertise as objectively as possi-
ble. They have constructed paleographic tables [22] for
each grapheme, relating the occurrences of graphemes’
appearance features to dates at which these are known
to occur. Recently, using computer vision and machine
learning techniques, He et al. [7-11] have addressed
the problem of direct paleographic dating of mediseval
charters, with accuracy in the order of decades. In [7],
texture-level features, previously used for writer identi-
fication (Hinge, Fraglets), are used to form descriptors
for the entire documents, and dating is done with two-
level (global and local) support vector regression. The
approach in [11] is based on a histogram of orienta-
tions of strokes as a descriptor, and a procedure based
on 3D self-organising map to discover correlations be-
tween features and dates. In [21] a bag-of-words ap-
proach on shape context vectors extracted from edge
maps in manuscripts is used for dating Swedish medize-
val charters.

handwriting analysis, document analysis, paleography, computational archeology, morphometrics, pattern
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Fig. 1. Top: outline drawing of BBM Ne43.
Bottom: the result of segmentation into graphemes.

Humcapey

2. The Proposed Approach

We have extracted (see Fig. 1) and annotated
48,870 graphemes from the outline drawings in the
BBM corpus (data were predominately taken from the
digital archive [1] and from digitised reproductions in
the relevant volumes of series [22]). A total of 814
manuscripts, from which at least one grapheme could
be reliably extracted, were processed.

Following [22], we reduce the problem of dating
a manuscript to the problem of dating individual
graphemes in it, and then aggregating the results. We
attack the problem on two fronts: first, we use a model
of grapheme deformation, based on groupwise nonrigid
registration of grapheme images; second, we employ a
model based on convolutional neural networks to cap-
ture nuanced details in appearance variation.

Deformable Model of Graphemes. As the
first angle of attack, we parameterise the large-scale
variation in grapheme shapes with a low-dimensional
representation. We employ the classic technique of
decomposing the appearance into deformable “shape”
and the corresponding “texture” and modelling them
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jointly. This technique has been variously known as
Morphable Model or Appearance Model (AM) [5].
This approach allows us to describe as much as pos-
sible of the variation in graphemes’ appearance as a
smooth deformation of their shape, yet describe the
residual variation (subtle nuances that cannot be ex-
plained by smooth elastic deformation, e.g. changes in
topology) as variation in “texture”. The main chal-
lenge involved in building such appearance models is
finding correspondences between analogous parts of all
deformable exemplars: the problem of groupwise non-
rigid registration, for which several approaches have
been developed [4,15]. The standard idea is to it-
eratively align all exemplars to a common reference
model, which itself is iteratively evolved by averaging
aligned exemplars. However, we found that intensity-
based image registration techniques [3, 4, 15] do not
work well with binary grapheme images, as the objec-
tive function is not smooth and/or convex enough.

Algorithm 1 Register grapheme images to build AM

Require: Images I? (i € {1...n}); tolerance £¢,); max epochs
tmax; buffer dimensions w, h; point cloud size p.
1 function RegisterGraphemes(I, €01, tmax, W, h, )
2 initialisation:
3 Gorig < 0 > total area
| fori< 1ton
5 triangulate images:
6 {V.'QZXU%,T};”X”} <« Triangulate(I;)
( D" + OQXW
8 Qorig < Qtotal + Area(viv Tl)
9 iterative alignment:
10 for t < 1 to tmax
11 R+ % >, Rasterise(V? + D¢, T*)
12 if Error(R, V, T, D) < €4, then

> initialise deformations

> reference

13 break > tolerance reached
14 a<+ 0
15 fori< 1ton > align each grapheme to R

16 remove i-th image from reference:
7 R « (nR—Rasterise(V? + D, T%))/(n — 1)
Paxp + Sample(R/ S R, p) > sample points
D' «+ CPD(P, Vi + D) > align with [16]
20 a < a+Area(V? + D¢, T?)

ensure area is preserved:

e (SIy YL (VG A) + D)) /S0y v

fori< 1ton

Dl c—Vi+(Vi+ D' —c) y/aorig/a

compute shape and texture for appearance model:
Xoxs « V(z,y) | R(y,z) >0
fori< lton

© 00 ~

NN NNN N N
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J

> align R to each grapheme

28  Poyxp « Sample(R/>" R, p) > sample points
29 DI+ CPD(V%, P) > align with [16]
30 Si.. s + Extrapolate(D? ; on X) > shape
31 Ti o+ IY(SY) > texture
32 return S, T

33 function Error(R, V, T, D)

34 e+ 0

w
at

fori< 1lton ) o

36 I + Rasterise(V* + D*, T*, w, h)

3T e e+ XU Sh |R(y,x) — I(y,2)|
38 return e/n

We, therefore, employ a hybrid approach: we evolve
the reference model as an image, yet use point cloud
registration to align graphemes to it. The procedure is
summarised in Algorithm 1. The input grapheme im-

b
173

LSRR
DRSS

(a) (b) () (d)

Fig. 2. Registration of graphemes to the reference.

()

Fig. 3. Registration of the reference to graphemes
and sampling of the texture.
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Fig. 4. The average shape and texture of the
ensemble as the registration progresses.

ages are first densely triangulated into meshes (line 6,
see Fig. 2 (a)) and the total area of all meshes in the
ensemble is remembered (lines 3, 8). The algorithm
proceeds in epochs (lines 10-24). In each epoch, the
reference R is first computed (line 11) by averaging
the rasterised warped meshes.  The algorithm pro-
ceeds to align each grapheme to the current reference
(lines 15-24). (To avoid problems with local minima,
the grapheme being aligned is excluded (line 17) from
the reference.) To do this alignment, the reference R
is treated as a probability mass function of some dis-
tribution, and p points Py, are randomly drawn from
it (line 18) (importantly, different points are drawn
at each iteration). Figure 2 (b) shows the reference
R at some iteration, with sampled points P overlaid
(in red). The vertices V* of the grapheme’s mesh are
aligned to these points P (line 19), yielding vertex dis-
placements D?. To align the two point clouds V* and
P we use the Coherent Point Drift (CPD) algorithm
described in [16]. We use the following parameters for
CPD: Gaussian width g = 1.4, regularisation weight
A = 8, outliers ratio 0.7, and we run it for maximum
of 100 iterations (for more detail on these parame-
ters see [16]). Figure 2 shows a grapheme {V* T}
(a) being aligned to reference points P (b) yielding a
warped mesh {V? + D* T%} (c) rasterised as (d). To
avoid a run-away effect to the trivial solution, whereby
all meshes may become compressed into a point, af-
ter each epoch we re-scale the meshes to preserve the
total original area (lines 21-24). Figure 4 shows the
reference R as the registration proceeds. Note how as
the alignment becomes better, the average grapheme
appearance R becomes progressively crisper, indicat-
ing good alignment. The registration terminates ei-
ther when the maximum number of epochs t,,.x has
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Fig. 5. Examples of graphemes before and after
registration (shape normalised).
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Fig. 6. Most significant of appearance variation for
some of the graphemes.

exceeded or when the registration error is below ac-
ceptable e, (lines 12-13, 33-38).

Finally, we compute the shape and texture describ-
ing each grapheme, by finding an optimal alignment
of the reference to the graphemes. To do so, we
find (line 26) the union X of all aligned graphemes
(its boundary is shown in blue in Fig. 3). For each
grapheme, as above, points are sampled from the ref-
erence, but this time the reference points are aligned
to the grapheme mesh (line 29). The thus computed
deformation is extrapolated to the entire domain X
using radial basis functions (line 30) to find the shape
deformation S? that best explains a grapheme in terms
of the warped reference. Given the extrapolated de-
formations, the texture 7% is found by appropriately
sampling the original grapheme image (line 31). Fig-
ure 3 shows the reference shape (a) warped to align
with a grapheme (b), and the texture sampled from
the grapheme into reference shape (c). Figure 5 shows
the results of the groupwise registration of graphemes.

Having obtained samples of the deformed shapes
S* and the corresponding textures T, we seek to ob-
tain their low-dimensional representation. In this work
we employ basic linear dimensionality reduction with
Principal Component Analysis (PCA), as done in [5],
yielding a twice-linear model

_ ECS _ Cs _ EST(S - /J/s)
rem (50 ) o= (i ) = (Wit )

with the shape model s = Eses + p, = EsEcsa + b,
and the texture model t = Eic; + p, = EsW Eqa +
+ u,, where a, s, and t are the appearance, shape, and
texture parameters (feature vectors) respectively; FE,
E,, E; are the corresponding eigenvectors, and W; are
normalisation weights [5]. We preserve 128 dimensions
in appearance feature vectors.

Table 1. Structure of our CNNs.

Analysis with CINNs. Deep convolutional neu-
ral networks (CNNs) have recently demonstrated ex-
cellent performance on diverse tasks ranging from im-
age classification, to speech recognition, to natural lan-
guage processing [6,13]. The main challenge in our case
is that the number of training samples available per
each of the 43 alphabetic classes divided between 19
temporal classes is orders of magnitude too scarce for
naively training CNNs. We employ two strategies to
tackle sample deficit. First, we train a CNN on the task
of classifying graphemes into alphabetic classes (OCR),
without subdivision into temporal classes. (This OCR
CNN was also used in annotation of the dataset.) We
discovered that it is possible to achieve this with a
very small CNN that does not over-fit despite sample
deficit. Having trained the OCR CNN, we reuse the
low- and mid-level representations learned by it for the
task of dating. This technique is known as transfer
learning [2,18]. Second, instead of pursuing a classi-
fier with 19 temporal classes, we reduce the problem to
an ensemble of binary classifiers, as will be discussed
below. In this regime there are substantially more sam-
ples available per class.

The structure of the network is shown if Table 1. It
consists of 9 convolutional blocks. Each block consists
of a convolutional layer (see Table 1 for filter dimen-
sions and numbers; we use zero-padding throughout),
followed by a dropout layer [17] with 0.2 rate, followed
by a ReLU non-linearity, followed by 2 x 2 max-pooling
(except in the last two blocks). The total number of
parameters is 1.6 x 109,

The network takes as an input 64 x 64 images. All
grapheme images were resized to 48 x48, preserving the
aspect ratio, and leaving 8 pixel border on each side
(necessary for augmentation, see below). The size of
the images was choosen by hyper-optimisation. We ob-
served that much smaller images result in poor discrim-
ination, while much larger sizes do not yield any appre-
ciable increase in performance. Training was done for
1500 epochs using the standard stochastic gradient de-
scent optimiser, with an initial learning rate of 0.001,
descending to 0.0001 after 750 epochs. The batch size
of 100 was chosen. We did not observe any increase
in performance on the development set with longer
training. To partially alleviate the imbalance between
classes, batches are formed in a stratifying manner,
sampling the more rare classes proportionately more
frequently.

In order to decrease the sensitivity of the CNN to
variations that may occur in the data yet do not have
paleographic significance, the images in each batch
were subject to augmentation by random affine trans-
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forms, and random alteration of the stroke widths by
morphological erosion and dilation, which we perform
on-the-fly. This augmentation serves as regularisation
and helps alleviate over-fitting. For all experiments
with CNNs we used the MatConvNet toolbox [20]. The
error rate of the CNN on the OCR task was 2.04% on
the testing set (1/8 of all letters) and 0.98% on the
training set: over-fitting is very insignificant. Investi-
gation of the misclassified samples shows that most of
them are either highly distorted or mis-written letters.

We take the 512-dimensional output of the penul-
timate fully connected layer (block 7) as the high-level
feature representation of the graphemes. As will be
discussed below, multiple networks we re-trained (fine-
tuned) as binary classifiers, to further improve their
dating performance. The tuning proceeded as above
(with block 8 replaced for the case of two labels),
for 100 epochs and with a very small learning rate of
1 x 1075,

Ensembles of Classifiers. As in [22], we discre-
tise the entire time line into V; = 19 bins (temporal
classes): between the years 1100-1400 each bin is 20
years long, in the 15th century the bins are 1400-1410,
1410-1420, 1420-1450, and in the 11th century, there
is only one bin 1025-1100.

We proceed by reducing the problem of multiclass
classification to training an ensemble of binary classi-
fiers and combining their results. Two most common
approaches are: one-vs-all (N classifiers are trained,
to differentiate each class from all other classes) and
one-vs-one (N (N — 1)/2 classifiers to differentiate be-
tween all possible pairs of classes) [12]. The relevant
more general theory here is the method of classifier en-
sembles based on error-correcting codes (ECOC) [12],
which considers arbitrary dichotomies of a multi-class
set into two-class sets. Using the ECOC terminol-
ogy [12], we represent a dichotomy of an N;-class set
as a binary vector d € {0, 1}"t, whose elements repre-
sent to which of the two new classes the original classes
correspond. Similarly, ensemble of N, classifiers, each
with its own dichotomy, can be represented by a binary
coding matriz Dy,xn,. Standard ECOC coding ma-
trices include [12] the above one-vs-all and one-vs-one
schemes (as a generalisation), random codes, and even
exhaustive codes (prohibitive in our case).

Zaliznyak [22] notes that, instead of gradually
evolving over time, writing style features first abruptly
appear (get invented), then remain in use for a number
of decades (co-existing and competing with other styles
for their relative frequency), then finally die down [22].
We take advantage of this fact and train an ensemble
where each classifier distinguishes between a particular
continuous segment in time and all other dates, with
one classifier for each possible segment: [1..1], [1..2],

1 (Ne=1)),12..2],[2.-3], ., [2. . (Ne=1)), .
[(Ne —2).. (N = 1)], [(Nt = 1)..(Ne — 1)]. Tt is easy
to see that there are Ny(N; +1)/2 — N¢/2 = Ny(N, —
—1)/2 = 171 such classifiers. With this arrangement,
we expect that for some of the classifiers in the ensem-

ble, their corresponding segments will coincide exactly
(modulo discretisation) with the lifetime of some paleo-
graphically significant features, hence making (at least
some of) the classifiers much more sensitive that in any
other regime.

We have trained, for each grapheme in the alpha-
bet, a full set of 171 classifiers using a basic linear
SVM using appearance model features, and a further
ensemble using CNN features. For each classifier, we
estimated its performance by computing the confusion
matrices Cyy2 on a small validation subset of the train-
ing set. (C(4,7) shows the number of samples known
to be from class i classified as belonging to class j.)
We have also computed the unweighted average recall
for each classifier:

AR(Crxk) (here, K =2) (1)

S Z E] 1 C(Z )

We then proceeded to fine-tune an ensemble of
CNNs as binary classifiers, for those dichotomies
for which corresponding SVM classifiers yielded a
“promising” performance (AR > 60%). We then re-
trained the ensemble of SVM classifiers from the thus
updated CNN features. The rationale for tuning is as
follows: the generic OCR network serves as a good
initialisation (and its features, as we noted, are al-
ready useful for dating), and tuning the ensemble of
networks, each to its assigned time segment, further
improves the sensitivity by improving the learned fea-
tures (at all levels) that may be specific to a particular
time segment.

Aggregating Evidence. We adopt Bayesian
inference as the most natural framework in which to
combine the evidence from multiple graphemes, and for
each grapheme — the predictions of multiple classifiers.
Given an unseen manuscript to be dated, we extract
all the graphemes and evaluate each of them with the
corresponding classifier ensemble. To fuse the evidence
from all classifiers, we maintain a discrete probability
mass function Pixy,, P(a) = P(a|Li, La,...), which
depends on observing graphemes Lq, Lo, ..., over the
discrete set of Ny = 19 temporal classes a € {1...N;}.

Out of necessity, we make the assumption that ob-
serving each next grapheme L; in the manuscript is an
event independent from observing other graphemes in
the same manuscript.

Algorithm 2 Bayesian aggregation step

Require: Prior distribution Pp,x1; classifier’s dichotomy
dn,x1 € {0,1}Nt, vote e € {0,1}, normalised confusion
matrix Cax2, smoothing parameter «, threshold ARyy;.
function UpdateBelief (P, d, v, C)
if Y2 O(1,i) =0or >2_, C(2,i) = 0 then
return P > uninformative classifier, abort
if 1(C(1,1) + C(2,2)) <ARyp, then
return P > below AR threshold, abort
Pnew(i) — 0N¢><1
for i <— 1 to IV¢ .
8 Phew (i) < P(2) - C(d(i) +1,e+ 1)
9 Pncw <~ Pncw/zi Pncw(i)
10 return (1 — @) Phew + aP

W N =

S U

> update belief

N|

> normalise
> apply smoothing
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Fig. 7. Example of dating with a classifier ensemble (BBM 436). Top: map of classifier segments.
Bottom: unweighted average recall of the classifiers. Red lines delineate individual letters (25 letters survived
thresholding in this example).

Using the independence assumption, we thus per-
form Bayesian update of P for each evidence e € {0,1}
from each classifier from each grapheme as follows:

P(et|la)Pi—1(a)

Pt(a|61) < P(et)

Vae{l...N:}). (2)
We can estimate P(e;la) and P(e;) from the classi-
fiers’ confusion matrices. Let C' be the row-normalised
confusion matrix for some classifier with coding vec-
tor d € {0,1}"¢, and assume the classifier outputted
evidence e € {0, 1}, then Eq. (2) becomes:

C’(d(a) + 1, €t -|— 1)Pt,1(a)

Pt(a|et) — A N N
i C(d(@) + 1,0 + 1) P (4)

®3)

The Bayesian update step is summarised in Algo-
rithm 2. As an additional measure to improve the
quality of evidence, we reject all classifiers for which
the average recall is below a threshold ARy, (lines 4-
5), as well as discarding completely uninformative clas-
sifiers (lines 2-3). To partially compensate for the vio-
lation of the independence assumption, we introduce a
smoothing parameter a which reduces the amount of
information each next classifier contributes (line 10).
(We optimised the smoothing parameter « and the re-
jection threshold ARy, on a small (validation) subset
of the training set.) Algorithm 2 is called to update
P for each grapheme in a manuscript, for each classi-
fier in the grapheme’s ensemble, yielding the estimated
date distribution for the manuscript.

Figure 7 illustrates the ensemble dating (Bayesian
aggregation) on an example of a particular manuscript
(BBM Ne436). It can be seen, in this example, that
graphemes “p”, “B”, and “@’ were among the most
significant for dating.

3. Results and Evaluation

We applied our method to the task of dating the
BBM corpus. We evaluate the performance of our
method using eight-fold cross-validation (7/8th of the
data in the training set, 1/8th in testing). Special care
has been taken to ensure that documents (or parts of a
document) written by the same hand are always in the
same set. To qualitatively measure the dating perfor-
mance of our system, we compute the mean absolute
error (MAE), and the cumulative score (CS,) which
measures the fraction of test documents for which the
date estimation error is no greater than «, as done
in [7-11]. We additionally compute the Kullback—
Leibler divergence (KDL) and the earth mover’s dis-

tance (EMD) between the ground truth and the pre-
dicted distributions.

" MAE=18.93
AM-+CNN

© MAE=20.01  MAE=23.78
AM CNN

Fig. 8. Confusion matrices for the different
combination of features.

We have evaluated our approach with both types
of features, AM and CNN, and their combinations:
at the feature level (AMUCNN) and at the decision
level (concatenating classifier ensembles), AM+CNN.
We have done this for both simple majority voting (as
a baseline) and Bayesian aggregation, with flat and
empirical priors. As a baseline, we also performed
aggregation by simple majority voting. The results
are summarised in Table 2, the corresponding cumu-
lative scores in Fig. 9 (left), and the resulting con-
fusion matrices in Fig. 8. The best MAE achieved
was 18.93 years with AM+CNN features and empir-
ical prior. (Overall, using empirical prior gave minor
improvement over flat prior, except for AMUCNN fea-
tures.) Bayesian aggregation overall yielded much bet-
ter results than majority voting. Individually, CNN
features performed better than AM. Combination at
the decision level produced better result than at the
feature level. We compare of our method (Ta-
ble 3) with other relevant computer paleography stud-
ies [7-9, 11, 14], however exact comparison is difficult
due to the different nature and amount of material

CNN emp.
—e— AMUCNN fi.
‘‘‘‘‘‘‘‘ AMUCNN emp.
< AM+CNN fl.

AM+CNN emp.

AMUGNN emp.
s~ AM3CNN i 5
AM+CNN emp

5

N

40 60 ) 100 0 50 75 100 150 200
Absolute error, years Length of a manuscript (graphemes)

Fig. 9. Left: Cumulative scores (CS) for the
different features. Right: Dating error as a function
of the manuscript length.
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Feat. AM CNN AMUCNN AM+CNN

Agg. voting Bayes voting Bayes voting Bayes voting Bayes
Prior fl. emp. fl.  emp. fl. emp. fl.  emp. fl. emp. fl. emp. fl. emp. fl. emp.
MAE 96.71 77.39 28.83 29.01 41.19 47.84 24.10 23.78 46.80 51.80 22.41 22.68 50.23 42.43 20.34 18.93
EMD 121.15 116.47 31.08 30.83 110.53 104.13 25.15 24.25 118.54 113.54 23.99 23.22 108.16 95.26 20.30 18.91
KLD 9.11 9.07 5.36 5.33 9.01 8.92 7.88 T7.75 9.07 9.05 7.14 7.04 8.99 9.07 6.47 6.28
CSys  37.84 36.94 75.68 75.68 60.36 47.75 67.57 72.07 56.76 45.05 75.68 72.97 54.95 47.75 81.08 81.08
CSso  49.55 54.05 82.88 82.88 74.77 65.77 83.78 90.09 70.27 63.96 85.59 85.59 69.37 68.47 91.89 91.89

Table 2. Summary of the results. The dating performance is shown for the appearance (AM) and neural
network (CNN) features, and their combination at feature level (ANUCNN) and decision level (AM+CNN).
The results are shown for both voting and Bayesian aggregation, with flat (f.) and empirical (emp.) priors.

Fig. 10.
measured by the dating CNN response. Left:
individual importance maps for 16 graphemes that
cause the strongest response. Right: average map
with grapheme outline superimposed. Odd rows:
response to <1300, even rows: >1300.

Importance map of grapheme parts as

AM

CNN

Fig. 11. Embeddings of the CNN and AM features
in R? using t-SNE [19] (grapheme “R”). Colour
indicates age.

rability of classes by plotting the embedding of feature
vectors into a low-dimensional space. We accomplish
this with t-SNE algorithm [19]. Figure 11 shows the

Study MAE CS25 CSs0 .

- embeddings for AM and CNN features (grapheme “B”).
[7] 35.4 63.5% (~ 85%)" At least in thi le. ONN feat
] 20.9 5 88,50 east in this example, eatures appear more
[14] 20.5 _ _ clearly separable. Importantly, the different topologies
8] 14.1/41.0%  74.3%/53.3% (= 80%/70%) of the embeddings suggest that the AM and CNN fea-
[11] 15.9 85.4% (= 90%) tures capture different aspects of graphemes’ appear-
Our 18.9 81.1% 91.9% ance and are complementary. Further, having fine-

Table 3. Comparison with other studies.
(*)JNumbers in brackets are not given in the paper,
but estimated from the plots.

(our BBMs are orders of magnitude shorter) and the
differences in time scales. Our method performs bet-
ter than [7,9,14] both in terms of MAE and CS. The
MAE in [8] (14.1) and [11] (15.9) are lower than our
best result (18.9), but our CS scores are substantially
better that [8], indicating higher reliability. Further,
results in [8] drastically drop to MAE=41.0 () when
they apply dating across cities. Only the study [11]
surpasses our result in MAE and CSs5, but we note
that their range of dates is narrower and random guess
in [8,11] yields MAE=85.3 (in our case random guess
MAE=124.2 years), therefore it is more meaningful
to compare the results as percentages of the random
MAE: scaled to our range, the results of [8,11] would
yield 20.5 and 23.2 years respectively — thus the rela-
tive accuracy with our method is still better.

Given that the success in estimating age depends on
the amount of available evidence (graphemes), we plot
the MAE as a function of manuscript length in Fig-
ure 9 (right). It is also prudent to visualise the sepa-

tuned the CNNs on binary dating task, we can ex-
plore what features in the graphemes contribute to the
network’s response, thus potentially revealing human-
interpretable features. We have done so by system-
atically occluding parts of a grapheme image with a
8 x 8 black box, and measuring the change in acti-
vations in the final classification layer [23]. We show
the results in Fig. 10 (for the 16 samples that produce
the strongest responses (left), and the average (right)).
Remarkably, the most significant areas approximately
correspond to to the location of some of the features in
paleographic tables [22], e.g. a triangle-shaped loop in
“P” is characteristic of the later period, and for “B” the
connection of the diagonal stroke to the vertical stem.

Conclusion We have investigated paleographic
dating using an elastic model of graphemes’ deforma-
tion, features learned by CNNs, and Bayesian aggrega-
tion of results from an ensemble of specially tuned clas-
sifiers. The experimental results clearly demonstrate
the efficiency of our approach (MAE=18.93 years).
Our method may corroborate and refine the existing
paleographic analysis by human experts.
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