Medical Image Retrieval and Quantitative estimations via Ray-based Methods

Nasibeh Esmaeilishahmirzadi
Institute for Information Technologies, Mathematics and Mechanics
Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia

Abstract
The main goal of this paper is to review some existing text-based and content-based image retrieval systems and methods. The images should be indexed properly to be saved and retrieved. It is suggested although images have some features different from texts but some techniques in text retrieval such as artificial intelligence and relevance feedback can be used to improve the image retrieval systems. In addition, due to the importance of on-time diagnosis of lung cancer, an algorithm based on CT images processing is introduced. This proposed algorithm is described in order to determine area of tumor. The algorithm has three stages and result is shown in histogram of images.

Keywords: Content-Based Image Retrieval, relevance feedback, text-based retrieval, Medical image retrieval, Review.

1. INTRODUCTION
The most basic connection between human beings by the images. Kherfi and his colleagues have investigated the application of image in their paper. In their point of view text can’t describe and convey information in the description of an event, medical images, describing a place, etc as well as image. Images are widely used in the medical field as diagnosis, education and research. Kherfi and his colleagues (2004) noted the increasing use of images in articles, newspapers, advertising, architecture, medicine, etc the needs of organization of this information is necessary[1]. Enser (1995) [2] describes the different methods of indexing and search archives of images, mostly text-based system.

Tang and his colleagues (1999) had researched on review of intelligent content-based indexing. They had investigated on trace the development of visual information systems for healthcare and medicine from Picture Archiving and Communications Systems (PACS) to retrieve images based on color, texture, and shape [3,4]. In this paper with regard to the importance of organization and image retrieval techniques, system features and applications based on the content and assessment methods are discussed. Examples of the image retrieval system are introduced, then notes the use of image retrieval systems in medical images database.

2. Image retrieval
Image retrieval subject has been discussed since the early 70s Y.Liu has introduced four major methods for searching and retrieving images: [5]

I. A search for images based on attributes such as file name, creation date and other categories such as subject and file creator of the file. The main problem is that information is automatically generated images, they are not enough to describe the content and add data manually takes time.

II. The second method of detecting objects automatically, which is often used in certain domains such as medical images. This method is also time-consuming and very hard to do in general.

III. A way of taking advantage of the text to interpret the images and text, followed by the use of data recovery techniques. This method can be done in two ways: (1) manual interpretation (2) The automatic interpretation. First, professionals must interpret each image. The problem with this method does not work when the volume of images is high, in addition interpretation is subjective and incomplete.

IV. The fourth one is content based. Due to the increasing volume of video databases, biased and subjective and time-consuming and costly process of assigning tags to images, text indexing has become a relatively inefficient way. Trying to solve this problem led to the creation of a content-based image retrieval systems [6]. A low-level features have characteristics such as color, shape and texture and a high level of features have characteristics image semantic features. In general the image retrieval systems act in 2 stages: firstly the base visual features of images automatically are extracted, and then with the help of them images are indexed and secondly, after receiving the user's query image, low-level features or visual features extracted and visual characteristics database try to find the nearest images to the image query [7].

3. Visual features used in a retrieval system based on content
In addition, content-based image retrieval techniques most used features (colors, layout, texture and shape) are briefly discussed.

I. Retrieval based on color feature
Color histogram is the most important color display used in image retrieval. The most important techniques are: Histogram Intersection, compared histogram, and the Cumulated Color histogram (to reduce the effects of noise) [8]. The other additional features can be mentioned is Color Moments and Color Sets [8,9].

II. Retrieval based on color spatial features
Use only the color characteristics of the databases with high amount of images leads to increase the rate of error in responses and become ineffective.so the color spatial features is presented. The general idea of the color spatial feature is to extract certain areas of the image [10].

III. Retrieval based on texture features
Retrieval based on texture do not use alone But the similarities between areas of tissue that have the same color (such as sky, sea or leaves and grass) is very useful. Using the matrix of occurrence [11] was one of the first efforts in this area has a history that dates back to long before the topic of image retrieval. One of the most important method in this area is Tamura[12].

IV. Retrieval based on shape features
Retrieval based on shape is the most powerful visualization technique in retrieval systems. Protecting its identity against rotation, scaling and transmission is the most important feature, which make it suitable for image processing applications [13]. The shape features according to the extraction are divided into two categories: features based on edge and features based on areas. The most important characteristic features of objects that are used include aspect ratio, circularity, constant torque Fourier Descriptors (Use the edges of the Fourier transform) Consecutive Boundary Segments. Other methods have been proposed to adapt shapes are elastic deformation of templates, directional histogram for edge of image, skeletal representation of image objects which are compared with graph matching techniques, Finite Element Method, Turning Functions and wavelet descriptors[14].

4. MEDICAL IMAGE RETRIEVAL

One of the most important application of image is in medical. Muler reported that in of the University Hospital of Geneva alone produced more than 12,000 images a day [4]. Some content based system in medical and clinical field is ASSERT[8], IRMA and NHANES. Many medical image retrieval systems such as high-resolution images of CT-lungs, Mammography, CT images of the chest, X-ray images of the chest, X-ray images of the spinal cord and X-ray images of teeth are often used for some special part of body and specific imaging used And are not used for other applications. Conversely few of these systems (KMeD) and IRMA have been developed for general medical applications [15]. Most of the clinical retrieved image systems leads to content keywords like DICOM information header for retrieving. CBIR widely have been investigated in a variety of areas and provide a method to retrieve query based on image data with features such as color, shape and texture. With all these efforts available CBIR systems are not fully compatible in Health in wide database. At data entry time, numerical features are computed from each image stored within the database. Using the QBE approach, the same features are extracted from the query image and compared to the features stored within the database. The images that correspond to the most similar features are then retrieved from the database and presented to the user to answer his query [11].

4.1 IRMA (Image Retrieval in Medical Applications)

IRMA is a cooperative project of the department of Diagnostic Radiology, the Department of medical informatics, and division of medical image processing and chair of computer science at the Aachen University of Technology. Aim of the project is the development and implementation of high-level methods for content-based image retrieval with prototypical application to medico-diagnostic task on a radiologic image archive [5]. IRMA has 3 online demos that are IRMA Query demo which provides evaluating CBIR in several databases, IRMA Extended Query Refinement demo which is contain 10000 images of CBIR and Spine Pathology and Image Retrieval Systems (SPIRS) which is designed by NLM/NIH (USA) and have 17000 spine and chest X-ray image [16].

4.2 MedGIFT (GNU Image Finding Tool)

MedGIFT project began at the University of Geneva, Switzerland in 2002 and at the Institute for Business Information Systems at the University of auxiliary Switzerland (HES-SO). The MedGIFT project aims at providing an open source framework of reusable component for a variety of medical application. It’s based strongly on the GNU image finding tool (GIFT) as its central piece. Main developments are on the integration of various new components to create domain specific search and navigation tool [17]. This project includes Talisman lung image retrieval system, case-based image retrieval system, Medical image retrieval system using grid computing, ImageCLEF for validation and evaluation and MedSearch for user interface.

5. Proposed Algorithm

5.1 Boundary points

In image of both normal and abnormal lungs, key points are determined and for this, points located in edges of the image are used so that initially, all boundary points are determined and then, points which are critical are extracted from them. Of course, this stage is completed manually by an expert or it can be automated using a method such as artificial neural networks and genetic algorithm.

5.2 Lines between points

At this stage, points determined in previous step will be connected to each other. For this purpose, various algorithms based on MCP. Finally, points are considered as the vertices of the graph and the distance between two points is taken as the weight of the line between them. Final arrangement after applying algorithm is depicted in Fig. 2.

5.3 Determination of the area of tumor

In this step, graph obtained previously is processed. This step has two parts. First, boundaries of the tumor are highlighted by dashed line and second, area of the highlighted region is computed. These two stages are explained below.

This step is also accomplished in two parts. In first step, center of the image is determined and its distance from all vertices of the graph are computed and distances are arranged in array in a manner that highest point is taken as starting point and its distance from the center is written in the first cell and then, we move clockwise and find the values of other arrays. In Fig. 2, distance between points are determined.

At the end of this step, two arrays are created as a and b whose elements are the distances between the center of each image and graph vertices. In the next step, two arrays created in the first step are compared to each other and if the difference between two analogous elements exceeds a threshold value, it will be regarded
as the sign of the presence of an abnormal tumor in lung. This threshold is obtained using a trial and error method.

Therefore, at the end of this step, difference between distances are computed and compared to the threshold value and if it is more than the threshold, analogue vertices are marked as shown in Fig. 3 and consequently, tumor region is determined.

5.4 Area of tumor

For this step, triangulation method is used. As can be seen in Fig. 3, each image is divided into many triangles whose area can be calculated and by summing them up, overall area can be found. For this end, overall area relation is used. Calculation is performed for both images and then, area of both image is obtained and their difference will give the area of the tumor.

Previous stages are done using graphing method and area of the tumor is obtained. To determine that how precise is the work, above stages are completed using a method common in image processing. After elimination of these images and those having numerous lines, the average size of images is 15x15 pixels and actual average size of the image is about 10x10mm. Smallest nodules are about 3x3mm while largest size is more than 70x70mm. 88% of the images are below 20x20mm.

5.5 Separation of the tumor

For this purpose, separation by colors is used. In this way, difference in color of the normal and abnormal images determine the tumor. As can be observed in Fig. 3, dashed lined region of the Fig.4 is separated from the other parts using the method of color separation. Since middle colors are moderated, values of the elements of the array are in white and black middle and gray points are deleted. Consequently, by counting the number of pixels available in white region, area of the tumor will be obtained.

6. Conclusion

Images as a kind of information can transfer a large volume of information, especially in medicine, in education, research and diagnosis. The purpose of medical information retrieval system is providing relevant information at the right time to the right user. Images in research, indexing, storage and retrieval have been investigated. Content-based methods can be used on a large variety of images and in a wide area of applications. As mentioned in this paper text-based and content-based image retrieval systems, the application of the image systems especially in medicine. Some existing systems are described.

Owing to the importance of on-time diagnosis of lung cancer, an algorithm based on CT images processing is introduced. The algorithm has three stages. In first step, using the method of graphing, location and area of the tumor are determined. This stage is accomplished here by a manual way with using the an expert knowledge. It can be exchanged by the automated one.
using neural networks or genetic algorithm. On the next stage, using the image processing method, location of tumors are recognized, determined, and they are completely separated from other parts of the image. On the third stage the area of the separated part is calculated. Presented method is very effective in reduction of the human errors in diagnosis of tumors via images. In future works, we plan to reduce of the role of a human.

7. REFERENCES

About the author
Nasibeh Esmaeilishahmirzadi is a Ph.D. student at Lobachevsky State University of Nizhny Novgorod. Her contact email is nasibe.smaeili@gmail.com