
28 Фролов В.А., Галактионов В.А.

Простой и недорогой подход к реализации регенерации путей∗
В.А. Фролов1,2, В.А. Галактионов1

vfrolov@graphics.cs.msu.ru|vlgal@gin.keldysh.ru
1Институт прикладной математики им.М.В.Келдыша, Москва, Россия;

2Московский государственный университет им.М.В.Ломоносова

Монте-Карло Трассировка Путей является цетральным алгоритмом расчёта освещенности, вокруг ко-
торого строятся более современные методы (такие как BDPT, MLT, ERPT, VCM и другие). Одна из
основных проблем, стоящих на пути к реализации эффективной трассировки путей на GPU – малая за-
грузка GPU вычислениями вследствие сильно различной глубины трассировки: небольшое число потоков
трассируют пути на большой глубине, в то время как остальные потоки простаивают. Обычно для
решения этой проблемы используется техника, называемая регенерацией путей. Мы предлагаем новый
подход к реализации регенерации путей, названный нами «блочной регенерацией по месту». По сравнению
с предыдущими подходами наш алгоритм обладает более низкой стоимостью и не перемещает данные
лучей в памяти, за счёт чего упрощается его интеграция в более сложные методы (такие как BDPT,
MLT, ERPT, VCM и другие) или фотонные карты. Мы протестировали наш алгоритм для Монте-Карло
трассировки путей, используя CUDA и OpenCL.

Ключевые слова: OpenCL, трассировка путей, регенерация пути

Cheap and simple in-place block based path regeneration∗

V.A. Frolov1,2, V.A. Galaktionov1

1Keldysh Institute of Applied Mathematics RAS, Moscow, Russia;
2 Moscow State University, Moscow, Russia

Monte Carlo Path Tracing is a core light transport technique which is used for modern methods (like BDPT, MLT,
ERPT, VCM and others). One of the main challenge of efficient GPU Path Tracing implementation is inefficient
workload caused by paths of different lengths; few threads process the long paths, while other threads are idle. A
work distribution technique called “Path Regeneration” is commonly used to solve this problem. We introduce
a novel GPU implementation of path regeneration technique called “in place block based path regeneration”. In
comparison to previous approaches our algorithm possesses two main advantages: it has lower self-cost and it
does not move any per-ray data along threads in memory, thus, our algorithm can be easily integrated to any
advanced path tracing technique (like BDPT, MLT and other) or photon mapping. We tested our solution with
path tracing using both CUDA and OpenCL.

Keywords: OpenCL, Path Tracing, Path Regeneration

Path tracing (PT) generates Monte Carlo samples by
simulating light transport via random path walk in
the scene. A path starts with a primary ray at cam-
era, traces in to the scene, randomly reflects several
times and finishes at light, some Lambertian surface
or an environment. The other light transport methods
start a path at the light (Light Tracing, Photon Map-
ping) or both at the eye and light (BDPT). Due to
the stochastic nature of all modern light transport al-
gorithms, an effective GPU implementation with high
trace depth becomes a challenge: deep reflection lev-
els have only several active paths while GPU has to
execute mostly all of them. Due to SIMD nature even
inactive threads (i.e. terminated paths) have to be ex-
ecuted, as long as there is at least one active thread in
their warp. Moreover, a completely dead warp could
still waste multiprocessor resources reading “inactive”
flag from intermediate data in DRAM (see “multiple-

Работа выполнена при финансовой поддержке РФФИ, грант
13-01-00454; Президентской программы ПП-4053.2013.5. и
опубликована при финансовой поддержке РФФИ, грант 15-
07-20347

kernel” further) or due to inefficient work distribution
implementation in driver when the whole block is still
occupies multiprocessor resources until all of its warps
become inactive (one possible solution refers to “per-
sistent threads” [1]).

Introduction

Single and multiple kernel There are two main
software architectures for GPU path tracing imple-
mentation. They are “single kernel” and “multiple
kernel”. The naive “single kernel” implementation
generally holds the whole algorithm in a single large
kernel, essentially the same as a standard CPU path
tracer implementation. Such implementation is ineffi-
cient due to the limited number of registers on GPUs
and register spilling via local memory [2]. The “Uber-
kernel” is modification of naive “single kernel” imple-
mentation that saves GPU registers converting tradi-
tional CPU-based code to a state-machine where huge
and complex code splits to some simpler parts – each
part per one state. NVIDIA OptiX [3] uses this way.
The multiple-kernel moves these parts to different ker-

Юбилейная 25-а Международная конференция (GraphiCon2015), Россия, Протвино (Парк Дракино), 22–25 сентября 2015 г.
25th Anniversary International Conference (GraphiCon2015), Russia, Protvino (Park Drakino), September 22–25, 2015

Недорогие и простые пути 29

nels, which leads to more efficient register usage and
significant performance gain for critical code such as
BVH traversal [2]. However, “multiple-kernel” imple-
mentation has to store explicitly intermediate per-ray
data (position, direction, hit normal, material refer-
ence, some flags etc.) to DRAM. Despite very simple
scenes, it does not affect the performance but can sig-
nificantly limit flexibility of light transport algorithm
implementation. For example, simulating recursion
via stack is easy in “single kernel” implementation but
is very difficult in “multiple kernel”. Since in “multi-
ple kernel” implementation per-ray data addresses are
usually strictly bound to thread index, the other good
examples where “multiple kernel” complicate things
are rays compaction, rays sorting, path regeneration.
During our research, we additionally found out that
OpenCL kernel compiler on some devices (HD 5770,
Intel and AMD CPUs) failed to compile huge single-
kernel path tracing or even multiple-kernel path trac-
ing with complex materials. Thus, “multiple-kernel”
path tracing is the natural way of splitting code com-
plexity to prevent “fresh” OpenCL compilers from un-
expected faults.

Regeneration overhead

Thus, both single and multiple-kernel PT have their
advantages and disadvantages. Wanting to have
a stable multi-platform implementation, we prefer
“multiple-kernel” approach rather than a “single ker-
nel”. Then we found that with “multiple-kernel” PT
implementation existing path regeneration approaches
were not stable in the sense of performance gain: while
several heavy and complex scenes benefit from path re-
generation, the majority of them are not. The reason
was that the PT regeneration wins less performance
for tracing rays than its self-cost. In some cases (fig.
3,4) total performance went down. Thus, the primary
motivation for our research was to propose lite-weight
path regeneration algorithm we can use without fear
for degrading performance. The second motivation
was flexibility and simplicity. Having big plans for
advanced Monte Carlo techniques we would like to
have simple and flexible PT core. The existing path
regeneration approaches lack of these properties.

Related work

Path regeneration

Novak et al. [4] introduce path regeneration technique
restarting the terminated paths and tracing additional
ones. The newly generated paths for same thread
come always from the same pixel when anti-aliasing
or DOF enabled. Major disadvantage of this approach
is branch divergence growth: regenerated rays (which
may be coherent for several bounces) mixed with in-
coherent rays in the same warp. This leads to signif-
icant performance penalty (2.x-3.x) for coherent rays
and eliminates performance gain of regeneration.

The Streaming PT regeneration approach [5] uses
compaction to move all active threads in the beginning
and fills inactive threads with new rays/paths. The co-
herent primary rays of the new paths in this approach
assigned to threads that executed together. However,
this approach has other disadvantages. They are self-
cost and complexity:
1. While the self-cost of regeneration approach from
[4] is near zero, compaction from [5] could simply eat
10-20% of ray tracing performance. Thus, the typi-
cal regeneration gain of 20-30% is suppressed by algo-
rithm self-cost. This is mostly because of the forced
necessity to move per-ray local data in memory or to
use indices. When “multiple-kernel” PT implemen-
tation considered, each per-ray data (like ray posi-
tion, path color, path throughput and etc.) location
is bound to thread index. For example, we can read
path color in analogue to (a). The compaction changes
actual thread index for active paths, so data must be
moved or indices should be used like (b). Beside addi-
tional indirection level indices in this way break mem-
ory coalescing.
(a) color = in color[threadId];
(b) color = in color[original threadId[threadId]];
2. An attempt to use indices for only several attributes
(many of per ray data live only one bounce) forces us
to remember which data are affected and which are
not. Each time we read attribute we must recall what
to use: (a) or (b).
3. More complex light transport algorithms (like
BDPT/VCM or MLT) make compaction even trickier
and slower. The necessity of storing per-path vertex
data replaces simple indices with lists (because sin-
gle path may change its thread index several times)
and makes “moving alternative” more expensive due
to larger per-ray data.
To address issue of inefficient global loads and stores
when path regeneration used with “multiple kernel”
Davidovic et al. use “single-kernel” path tracing [6].
We discussed “single kernel” disadvantages earlier.
Moreover, implementation from [6] has approximately
the same performance as [5].
Wald [7] concluded that terminated threads in a
warp incur no major performance penalties due to
the remaining threads executed faster. According
to [7] “certain limitations of today’s hardware lead to
sources of overhead that significantly affect the final
outcome, eventually leading to disappointingly small
speed-ups of only 12–16% for even the best perform-
ing of our kernels”. This slightly differs from [4, 5, 6]
results, but it is consistent with our experiments –
existing approaches do have too much overhead. We
should notice that there could be at least two reasons
for low path regeneration efficiency in [7]; they are
simple materials and low path length (maximum 8).
Laine et al. [8] further noticed the first reason and
introduced “wavefront path tracing” aiming efficient

30 Фролов В.А., Галактионов В.А.

evaluating extremely complex BSDFs with “multiple
kernel” implementation. However, only “small perfor-
mance benefit” from path regeneration is still marked
in their work.

Proposed method relations

Before considering proposed algorithm we should men-
tion two techniques that are not directly related to
path regeneration, but, in general, related to efficient
path tracing implementation on GPU. They are tile-
based work distribution for path tracing [2] and “per-
warp Russian Roulette” [9].

The tile-based work distribution [2] splits an entire
screen to 16x16 tiles and use them as an atomic unit
of work distribution. Tiles are important because they
reduce work-distribution algorithm self-cost by divid-
ing actual operations number by 256 (16x16).

Per-warp Russian roulette introduced in [9]. The orig-
inal Russian roulette randomly terminates a path to
restrict its depth – trace fewer paths on high depth
but takes them into account with greater weight. For
GPU this additionally increases amount of “sparse
warps” [4] with dead threads. Per-warp Russian
roulette decides to terminate (or not to terminate) the
whole warp by slightly changing weights computation
scheme.

By combining tiles idea from [2] and “per-warp Rus-
sian roulette” from [9] we introduce a new path re-
generation method that is as simple and flexible as
approach from [4], as efficient as [5] in the sense of ray
tracing performance gain, and cheap in the sense of
self-cost.

Suggested approach

The proposed algorithm is designed under the as-
sumption that to achieve high actual occupancy
we don’t need completely dense thread pool. There
is no significant performance penalty if some contin-
ues gaps (25-50% of total tiles number in thread pool)
with dead threads exist in it. Our algorithm combines
several ideas:

1. Similar to [2] we subdivide screen to tiles of 16x16
pixels. Thus, pixels are separated from threads.
Each screen tile is mapped to continuous sequence
of 256 rays in thread pool.

2. Similar to [4] we perform “in place” path regenera-
tion, assigning new paths to dead threads. In con-
trast to [4] we never regenerate single thread but
always regenerate the whole 16x16 tile simultane-
ously, i.e. all 256 continuous threads. A thread
block always processes other screen tile when it
has been regenerated.

3. To terminate the whole block we extend “per-
warp” Russian roulette to a “per-block” Russian
roulette. This efficiently terminates a block of
threads allowing a new tile to come in the same

place (replacing dead tile) when low actual occu-
pancy met for an old tile.

4. During path tracing we store for each tile its max-
imum trace depth and sort all tiles according to
that value before starting next pass. Thus, tiles
with high trace depth always come to thread pool
first and hang there as long as they are needed.
In contrast to that, tiles with low depth come
much later and usually process several bounces
only. Such strategy reduces total number of kernel
launches in range of 30 – 60% depending on scene
and maximum trace depth.

5. We don’t regenerate each bounce. For each second
bounce we check a number of tiles we want to re-
generate. If this number is greater than a threshold
(half of a current active tiles number), we invoke
regenerate kernel. We call this “threshold based
regeneration”.

6. Particularly, for ray-tracing kernels we use local
thread compaction via shared memory inside the
256-thread block. Because these kernels are very
light-weight in the sense of reading and writing
per-ray data, local thread compaction has no valu-
able overhead. However, due to compaction re-
duces sparse warps number it speeds up ray trac-
ing performance in average by 8-15%. Such local
thread permutations inside block do not lead to
per-ray data movements because it changes thread
indices only inside trace kernel.

Thus, when too many tiles are dead, according to
point (5) we regenerate (fig. 1). Threshold based re-
generation (5) decreases regeneration code cost and
increases actual occupancy due to when regenera-
tion kernel launched, we know that significant num-
ber of continues sequences of threads does regenerate,
thus, we prevent empty kernel calls when a kernel is
launched but no threads are doing actual work.

F E A B 6 7 9 5 D 3 2 1 0 4 8 C

X X X X X X X X | F E A B 6 7 ...

F E A B 6 7 9 5 | D 3 2 1 8 C

F E A B 6 7 9 5 | D 3 2 1 8 C

F E A B 6 7 9 5 | D 3 2 1 8 C (9,5)->(D,3)

F E A B 6 7 D 3 | 2 1 0 4 ..(A,6,7)->(2,1,0)

F E 2 B 1 0 D 3 | 4 8 C

F E 2 B 1 0 D 2 | 4 8 C (1,0)->(4,8)

F E 2 B 4 8 D 2 | C (4,8)->(C,X)

F E 2 B C X D 2 | (C)->(X)

F E 2 B X X D 2 | (D,2)->(X,X)

F E 2 B X X X X |

...

X X X X X X X X |

Listing 1. Simplified algorithm walkthrough (without
“threshold-based regeneration”). A thread buffer holds 8
tiles (8x256 rays). The total number of tiles is 16. The left

Недорогие и простые пути 31

Figure 1: An example of image subdivided to 16 tiles.
Each tile is enumerated with hexadecimal number
from 0 to F. We sort all tiles basing on their maximum
trace depth. Tiles E and F have very large maximum
trace depth. They come to the thread buffer first and
finish last. Opposite to that tiles 0,1,4,8,C have low
maximum trace depth equals to one. They come last
and live just 1 bounce in the buffer. Thus, we reduce
total kernel calls number.

part represents active tiles in thread buffer. The right part
after the slash is a queue of tiles that waiting for process.
Symbol “X” represents dead tiles. The notation
“(9,5)->(D,3)” means that tiles “9” and “5” were died and
new paths were regenerated replacing “9” with “D” and
“5” with “3”.

Implementation details

We used the same kernel set in CUDA and OpenCL.
Our path-tracing pipeline has 7 kernels in total. They
are: regenerate, trace, surfEval, lightSample, shadow-
Trace, shade, nextBounce. Such fine-grained “multiple
kernel” was used due to heavy feature list. Merging ker-
nels in this case leads to poor performance and unexpected
faults for OpenCL on some drivers. Almost all of our ker-
nels are heavy in the sense of code complexity: surfEval
kernel has Parallax Occlusion Mapping for surfaces with
relief; lightSample implements huge sets of light including
complex lights with HDR environment and IES distribu-
tion; Shade and nextBounce use material tree for flexible
material architecture with different type of BRDS in leafs
and different types of blending in non-leaf nodes. This is
like a “Mila material” in Mental Ray [10]. Thus, in our
case not only tracing rays was a kernel that benefits from
path regeneration.

Results and discussion

Test setup

Our test setup focuses on different cases when performance
benefit should come from different reasons (Fig.A-D). Test
1 has simple geometry but infinite possible reflections. It
is an ideal way to compare different regeneration (and path
tracing in general) implementations efficiencies and over-
heads with no relation to ray tracing performance. Test
2 is simple in all senses and should not benefit of re-
generation at all. It helps us to measure pure regeneration
overhead. Tests # 3 (specular/glossy walls) and # 4 are
typical real-word examples when path regeneration is ap-
plied due to high maximum trace depth.

Comparison to previous approaches

We compare our approach to Streaming PT from [5] (call
it “sm” on Fig. 2-5) and path tracing with no regen-
eration at all (“no regeneration”). For both Streaming
PT and “no regeneration” PT we used per block Russian
roulette. For Streaming PT we used indices instead of
moving per-ray data and each 4-th/8-th bounce for re-
generation to have approximately the same regeneration
kernel call number on each test scene that we got in our
implementation. Otherwise, (each bounce regeneration)
Streaming PT costs much and gives us no benefit at all.
We used “thrust::copy if” implementation of Streaming
compaction in CUDA and self-implemented compaction
based on NVSDK prefix sum sample in OpenCL.

Compared to [5] our algorithm has same performance gain
(Test 3, 4) from regeneration but it has lower overhead
(Test 1, 3, 4). Main reasons for this are points (1-2), (4),
(5). Blocks/tiles (1-2) reduce operation cost by factor of
256. It allows in-place regeneration, though, no per-ray
data movement or indices is required. Blocks sorting (4)
decreases total kernel calls number. Threshold base regen-
eration (5) additionally decreases regeneration code self-
cost. Besides performance benefit, our algorithm is sim-
pler for implementation because it doesn’t change actual
thread indices for rays. Once a tile comes into the thread
pool, all its rays gain fixed thread index which will not be
changed during any number of bounces. So, per-ray data
could be stored at fixed memory locations.

Conclusion

Our experiments showed that path regeneration gives es-
sential benefit only for large trace depth values (greater
than 20). For low trace depth values our results in general
are consistent with Wald experiments [7].

Thus we believe that reduction of thread divergence within
warps (solved via regeneration in [4], [5]) could be suc-
cessfully solved with per-warp/per-block Russian Roulette
only. Path regeneration is needed only when active warps
number became lower than the value of warps that GPU
process simultaneously with high actual occupancy.

Bibliography

[1] K. Gupta, J. A. Stuart, J. D. Owens. A Study of Per-
sistent Threads Style GPU Programming for GPGPU
Workloads // In proceedings of Innovative Parallel
Computing. May 2012. San Jose, CA.

32 Фролов В.А., Галактионов В.А.

[2] Frolov V., Kharlamov A., Ignatenko A. Biased Global
Illumination via Irradiance Caching and Adaptive Path
Tracing on GPUs. // Proceedings of GraphiCon’2010
international conference on computer graphics and vi-
sion. St. Petersburg, 2010, pp. 49–56.

[3] S. G. Parker, J. Bigler, A. Dietrich, H. Friedrich, J.
Hoberock, D. Luebke, D. McAllister, M. McGuire, K.
Morley, A, Robison, and M. Stich. OptiX: a general
purpose ray tracing engine // In ACM SIGGRAPH
2010 papers: ACM, NY, Article 66, 13 pp.

[4] Nocak, J., Havran, V., and Daschbacher Path regener-
ation for interactive path tracing // In EUROGRAPH-
ICS 2010, short papers, pp.61–64.

[5] Van Antwerpen. Unbiased physically based rendering
on the GPU // M.S. thesis, Delft University of Tech-
nology, the Netherlands, 2011.

[6] Tomas Davidovic, Jaroslav Krivanek, Milos Hasan,
and Philipp Slusallek. Progressive Light Transport
Simulation on the GPU: Survey and Improvements //
ACM Trans. Graph. 33, 3, Article 29 (June 2014), 19
pages.

[7] Wald, I. Active thread compaction for GPU path trac-
ing // High Performance Graphics, 2011, pp. 51–58.

[8] Laine, S., Karras, T., and Aila, T. Megakernels con-
sidered harmful: Wavefront path tracing on GPUs //
Proc of High-Performance Graphics 2013, pp. 137–143.

[9] Novak J. Global Illumination Methods on GPU with
CUDA // MS Thesis: Ph. D. thesis.: Czech Technical
University, Prague, 2009.

[10] NVIDIA Mental Ray // 2014. http://www.nvidia.

com/object/nvidia-mental-ray.html

Недорогие и простые пути 33

Figure A. Test 1, mirror corridor Figure B. Test 2, cornel box. Figure C. Test 3, arch. Figure D. Test 4, glass.

Figure 2. Test 1, mirror corridor paths per second (referred to fig. A).

Figure 3. Test 2, cornel box paths per second (referred to fig. B).

Figure 4. Test 3, arch 1; paths per second (referred to fig. C).

Figure 5. Test 4, glass; paths per second (referred to fig. D).

