Оценка состояния венул по MPT SWI изображениям с применением масок белого и серого вещества

И. Архипов¹, А. Ятченко², А. Гаврилов³, И. Куликов³, И. Кротенкова⁴, В. Брюхов⁴, Р. Коновалов⁴, А. Суслин⁴ ¹РНЦХ РАМН, ²факультет вычислительной математики и кибернетики, ³НИИЯФ МГУ им. М.В. Ломоносова, ⁴Отделение лучевой диагностики ФГБУ «НЦН» РАМН, Москва, Россия

Аннотация

В данной статье предлагается метод, позволяющий определить объем венул на SWI изображениях. Метод включает в себя выделение вокселей венул, а также метод постобработки выделенных структур для избавления от шума. Приведен результат работы алгоритма в области интереса – в белом веществе головного мозга.

Ключевые слова: МРТ, SWI, сегментация сосудов, скелетизация.

1. ВВЕДЕНИЕ

SWI (Susceptibility Weighted Imaging), или изображения, взвешенные по магнитной восприимчивости – это относительно новая импульсная последовательность (MPT), магнитно-резонансной томографии впервые описанная Haacke и коллегами в 2004 г. [4]. В качестве контрастного агента используется магнитная восприимчивость таких веществ, как деоксигемоглобин, железо и кальций. Таким образом, МРТ в режиме SWI позволяет визуализировать следы мелких кровоизлияний по истечении длительного времени, отложения железосодержащих веществ в отдельных структурах головного мозга, а также хорошо контрастировать венозную Вышеописанные характеристики режима кровь. SWI позволяют применять его в диагностике различных неврологических заболеваний [1].

В последнее время широкое распространение приобрели исследования, направленные на оценку венозной системы головного мозга при рассеянном склерозе (PC) [2], [3]. В режиме SWI у пациентов с PC отмечается выраженное снижение контрастности между венозными сосудами и веществом головного мозга. Причина таких изменений до конца неясна, но вероятно, это говорит о снижении концентрации деоксигемоглобина в венозной крови. Таким образом, определение общего объема вен головного мозга может быть маркером в определении обширного гипометаболического статуса пациента.

Для лучшей визуализации венул врачи-диагносты используют технологию проекции минимальной интенсивности, при которой воксели изображений в достаточно толстом слое – 10 – 15 мм проецируются на плоскость по правилу минимального значения. Такие изображения дают хорошее представление о количестве венул в головном мозге, о перфузии тех областей, которые омываются данными сосудами. Пример такого изображения показан на рисунке 1 (а). Режим регистрации МРТ SWI позволяет наблюдать артериальные и венозные сосуды. Артериальные сосуды на таких изображениях регистрируются как светлые продолговатые структуры, а венозные сосуды – как темные продолговатые структуры (рис. 1 (b)).

Однако данный метод дает только качественное представление о состоянии венул. И врачу сложно оценить, попадает ли визуализированная венула в белое или серое вещество мозга. Для количественной оценки состояния пациента требуется оценить объем венозного русла в белом веществе мозга. В данной статье предлагается метод,

Рис. 1: (а) - SWI снимок; (b) - артерии и венулы на фрагменте изображения

позволяющий определить объем венул на SWI изображениях. Метод включает в себя выделение вокселей сосудов при помощи алгоритма, описанного в [8], а также метод постобработки выделенных вокселей для избавления от шума. Приведен результат работы алгоритма в области интереса – в белом веществе головного мозга.

2. МЕТОД

МРТ изображения на сегодняшний день редко имеют хорошую разрешающую способность для анализа мелких структур, поскольку врач-диагност всегда стоит перед выбором между качеством получаемых изображений и временем, которое занимает исследование. Исходные срезы, на которых описан метод, имеют разрешение 0.5мм по осям X, Y и 1.2 мм – по оси Z – такое разрешение является компромиссом для рутинного исследования головы на современном томографе.

Структуры, которые следует оценить, имеют размер, сравнимый с разрешением по оси Z, поскольку венулы имеют диаметр 0.5 – 3.5 мм. Для того чтобы такие мелкие структуры не сильно страдали от низкого разрешения по оси Z, исходные данные интерполируются с помощью метода Non-Local upsampling [5], приводят данные к анизотропному кубу с разрешением 0.5 мм по всем осям (рис. 2)

Для сегментации белого вещества головного мозга использовалась реализация в пакете SPM для неврологических исследований. Для этого исходные данные сегментируются по порогу для отсечения областей, содержащих воздух и кости. Далее полученная область обрабатывается морфологическими операциями. Результат сегментации белого вещества загружается в виде NIFTY данных (пример результата сегментации белого вещества см. на рис. 3)

Для сегментации сосудов используется тот факт, что для областей в окрестности сосудов ярко выражено одно направление в матрице Гессе. Для определения таких вокселей был использован метод, описанный в [8].

Рис. 2: (a), (c) – линейная интерполяция; (b), d) – NonLocal upsempling

На рис. 4 отображен результат выделения вокселей в зоне интереса. Для расчета использовались следующие параметры: sigma = 1.0 мм, alphal = 0.5, alpha2 = 2.0.

Так как исходное разрешение изображений по оси Z сравнимо с размером структур, которые нам необходимо сегментировать, то при выделения трубчатых структур порог сегментации необходимо выбирать достаточно низким, чтобы не пропустить лишние воксели. В результате, помимо сосудов, в сегментацию попадает достаточно большое количество шума.

Сегментированная область содержит в себе большое количество односвязных областей. После сегментации внутри белого вещества мозга таких областей ~3000. Объем таких структур сильно колеблется от структур в несколько вокселей до структур с объемом 10000 вокселей (~1см³).

Эксперименты показали, что чистка шума по порогу объема дает неприемлемый результат, поскольку сосудистые структуры могут иметь разрывы. В текущей работе предложен алгоритм, убирающий шумы и при этом оставляющий небольшие структуры на концах венул.

3. АЛГОРИТМ СОЕДИНЕНИЯ СТРУКТУР

Первым этапом все найденные участки разбиваются по признаку связности. Для того чтобы формализовать дерево сосудов каждый участок скелетонизируется. Для скелетизации используется связность по вершинам. Скелетизация в трехмерном пространстве довольно сложная задача. Существует множество алгоритмов скелетизации в двухмерном пространстве, однако для 3D их не так много [6], [7], [9]. В данной реализации для определения скелетов выделенных структур используется алгоритм [6]. Скелет каждого односвязного участка представляется в виде направленного простого графа-дерева. Скелет может

Рис. 3: (а) - сегментированное белое вещество головного мозга,; (b) – 3D визуализация

содержать небольшие отростки, которые появляются из-за неровности поверхности сосуда. Поэтому после скелетизации производится стрижка графа, при которой удаляются все отростки, длина которых меньше определенного порога L_{cut}. Вершины графов, из которых выходит ровно одно ребро, будем называть крайними, или листьями. После чистки производится соединение отдельных графов в одну структуру. Для этого между некоторыми вершинами конечных ветвей графов добавляются ещё ребра, что позволяет исправить разрывы структуры венозного русла. Для каждого листа графа оценивается, возможно ли определить касательную участку к скелета. соответствующему ребру, выходящему из этой вершины. Для этого введем величину L₀ – это величина длины скелета, при которой мы считаем, что на концах участка мы достоверно можем определить направление участка сосуда. Если длина скелета меньше L₀, то лист мы добавляем в группу сомнительных листов.

Для определения касательных в начале и конце скелета определяется прямая, соединяющая лист и узел графа, который отстоит на L_0 вокселей по скелету. Далее вводится величина L_w , которая характеризует, на каком расстоянии от конца скелета мы можем соединять сомнительные участки. Вводится величина *U*, которая характеризует, насколько может отклониться касательная к скелету участка при экстраполяции к концу сомнительного участка. Для каждого участка производим поиск ближайшего участка из группы сомнительных. Соединяем концы найденных скелетов, удовлетворяющие условиям выше и помечаем все воксели, которые попадают на прямую как воксели венозного русла. Сомнительные участки, скелеты которых ни с чем не соединены, помечаются как шум и исключаются из сегментации.

Для того чтобы из анализа исключить ложные структуры, участки, объем которых превышает значение V_{max}, исключаются из анализа. Также исключаются те структуры, касательные к скелету которых направлены вдоль границы исходной области интереса

Рис. 4. Результат сегментации венул

Рис. 5: (а) – разрыв структуры сосуда; (b), (с) – ошибочно сегментированные участки

Рис. 6. Разрыв структуры сосуда

Заметим, что использование сегментированных объектов белого и серого вещества как области интереса значительно уменьшает количество ложных структур, которые попадают в результирующий объем венозного русла.

Рис. 7: (а) – сегментированное сосудистое русло; (b) – ярким цветом выделены области, детектированные как шум; (с) – сегментированное сосудистое русло с убранными шумами

4. РЕЗУЛЬТАТЫ

Эксперимент был проведен на МРТ серии, полученной из НИИ неврологии. Серия содержит 72 среза. При помощи SPM пакета для обработки неврологических данных сотрудниками НИИ неврологии была построена маска белого и серого вещества мозга. Маска из SPM экспортируется как файл с данными сегментаций NIFTI. В белом веществе были определены трубчатые структуры. При сегментировании сосудов использовались параметры sigma = 1.0мм, alphal = 0.5, alpha2 = 2.0. Затем для каждой односвязной области был построен простой граф. Во время предварительной чистки были удалены те области, у которых длина скелета не превосходит пороговой (L_{cut} = 5 mm) и рядом с листьями графа которого нет листьев графов скелетов из соседних областей (~15 mm).

Для чистки сегментированного сосудистого русла от шумов использовались следующие параметры: $L_0 = 3 \text{ мм}, L_w = 2.5 \text{ мм}, U = 35^\circ \text{ и Vmax} = 1.5 \text{ см}^3.$

Результат сегментации венозного русла в белом веществе до и после чистки приведен на рис. 7.

Вклад в объем отсеянных областей составляет величину около ~25% (с отсеиванием 14.2 см³, без отсеивания 20.5 см³); это говорит о том, что пост-обработка сегментированных областей для оценки объема является необходимым шагом. В результате был разработан метод количественной оценки объема вен на SWI MPT изображениях. Метод был реализован как модуль к рабочей станции MultiVox, применяемой для просмотра, 3D визуализации сегментированных областей.

5. ССЫЛКИ

- Gasparotti R., Pinelli L., Liserre R. New MR sequences in daily practice: susceptibility weighted imaging. A pictorial essay // Insights Imaging Vol. 2(3), 2011. - P. 335 - 347.
- [2] Ge Y., Zohrabian VM., Robert I. Diminished visibility of cerebral venous vasculature in multiple sclerosis by susceptibilityweighted imaging at 3.0 T. // Journal of magnetic resonance imaging Vol. 29(5), 2009. – P. 1190 - 1194,
- [3] Haacke EM., Makki M., Ge Y., Maheshwari M., Sehgal V., Hu J., M Selvan, Z Wu, Z Latif, Y Xuan, O Khan, J Garbern, Robert I. Characterizing iron deposition in multiple sclerosis lesions using susceptibility weighted imaging // Journal of magnetic resonance imaging, Vol. 29(3), 2009. – P. 537 - 544,.
- [4] Haacke EM., Xu Y., Cheng YN., JR Reichenbach. Susceptibility weighted imaging (SWI) // Magnetic Resonance in Medicine, Vol.52(3), 2004. – P. 612 - 618.
- [5] Manjon JV., Coupe P., Buades A., Fonov V., Collins DL., Robles M. Non-Local MRI Upsampling // Medical Image Analysis, Vol. 14(6), 2010. – P. 784 - 92.
- [6] Manzanera A., Bernard TM. N-dimensional skeletonization: a unified mathematical framework // J. of Electronic Imaging, Vol. 11, 2002. – P. 25 - 37.
- [7] Mian P., Gisela K. A revision of a 3D Skeletonization algorithm // CITR, The University of Auckland, New Zealand, Research Tech. Rep. 143, 2004.
- [8] Sato Y., Nakajima S., Atsumi H., Koller T., Gerig G., Yoshida S., Kikinis R. 3D multi-scale line filter for segmentation and visualization of curvilinear structures in medical images // Lecture Notes in Computer Science Vol. 1205, 1997. – P. 213 – 222.
- [9] Ятченко А.М., Крылов А.С., Гаврилов А.В., Архипов И.В. Построение 3D модели кровеносных сосудов по серии КТ изображений печени // ГрафиКон'2009. – М., 2009. – С. 344 -347.

ABSTRACT

The method for venule volume determination in the human brain have been proposed. This method uses SWI MRI images Метод включает в себя выделение вокселей венул, а так же метод постобработки выделенных структур для избавления от шума. Также в статье приведен результат работы алгоритма в области интереса - в белом веществе головного мозга.

Об авторах

Архипов Иван – ведущий программист РНЦХ РАМН. E-mail: arkhivania@gmail.com

Ятченко Артем – к.ф.-м.н. н.с. лаб. мат. методов обработки изображений ф-та ВМиК МГУ. E-mail: artyom@yatchenko.com.ua

Гаврилов Андрей – к.т.н. зав. лаб. мед. комп. систем отдела микроэлектроники НИИЯФ МГУ. email: agavrilov49@gmail.com

Куликов Игорь – программист лаб. мед. комп. систем отдела микроэлектроники НИИЯФ МГУ.

E-mail: igor@multivox.ru

Кротенкова Ирина – аспирант отделения лучевой диагностики $\Phi \Gamma \delta {\bf Y}$ «НЦН» РАМН.

E-mail: irina.krotenkova@mail.ru

Брюхов В. – к.м.н., н.с. отделения лучевой диагностики ФГБУ «НЦН» РАМН.

E-mail: in-ray@yandex.ru

Коновалов Родион – с.н.с. отделения лучевой диагностики ФГБУ «НЦН» РАМН. E-mail: krn 74@mail.ru

Суслин Александр – н.с. отделения лучевой диагностики ФГБУ «НЦН» РАМН. E-mail: in-ray@yandex.ru