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Abstract 

With the rapid growth of quantum computing, several quantum 
algorithms are being designed for a variety of applications. 
However, the application of quantum algorithms to image 

processing and computer vision has been rather restricted. The 
Quantum Fourier Transform (QFT) is one such algorithm that is 
used in applications such as discrete logarithms and period finding 
that posit employment in image processing, but cannot be used for 
traditional applications such as spectrum estimation and filtering. 
In this paper, we present a novel quantum version of the popular 
Hough Transform and show the advantages of the Quantum 
Hough Transform in terms of the computational and space 

requirements over the traditional formulation. Specifically, we 
transform accumulation in Hough space to implicit quantum 
superposition resulting in gains in space and speed requirements. 

Keywords: Quantum algorithms, Hough Transform, Quantum 

superposition, Quantum computing. 

1. INTRODUCTION 

Quantum computers offer the possibility of enhanced 
computing speeds for several types of computational problems 
that are inherently hard to solve on traditional computers. With 
recent developments in the field of theoretical quantum 
computing, efforts have also been made to identify algorithms 
designed for conventional computing that are particularly well-
suited for implementation on quantum computers. Some popular 
conventional algorithms that have found quantum computing 

implementations include prime factorization (Shor’s algorithm 
[1]), index search (Grover’s algorithm [2]), periodicity detection 
in modulo arithmetic (Simon’s algorithm [3]) and Quantum 
Fourier Transform [4]. These algorithms have been largely 
restricted to the domain of traditional artificial intelligence with 
few applications in the domain of image processing and computer 
vision. Quantum Fourier Transform (QFT) for example is used in 
the for Period Finding, Discrete Logarithms, Order Finding, 

Quantum Counting, Hidden Sub-Group problems, Encryption 
Decoding, but is not applicable to traditional fields of application 
of Discrete Fourier Transform (DFT) such as Spectrum Analysis, 
Filtering, Compression etc. This is because, quantum algorithms 
do not work directly in the space of the input vectors but on 
quantum states and the resulting outputs from the application of 
quantum algorithms are also quantum states with the only 
observable or measurable quantity being the state of the system 
and not its amplitude. For example, in the case of QFT, the 

measurable quantity is the quantum state in the encoded quantum 
fourier basis, while the amplitude of the frequency component can 
only be measured as the squared probability of occurrence of this 
state. Thus, it can be seen that it is rather difficult to build 
quantum versions of conventional algorithms and even in cases 
this is possible, the output is in a state that cannot be directly used 
in the traditional application of interest. However, it has been 
observed that quantum algorithms (in cases where the output can 

be directly used in the application of interest) provide orders of 

speed-up that are not possible with conventional algorithms. The 
most popular quantum algorithms operate in polynomial time 
whereas the corresponding conventional algorithms operate in 
exponential time, thereby resulting in an exponential order of 

speed-up. Much of the speed-up in the case of quantum 
algorithms is attributed to prior knowledge about the structure of 
the problem being used [10]. The accumulation of histories in the 
case of a classical problem to as much as 50% of the information 
required to solve a problem serves as a significant factor in the 
quantum speed-up.  

Two specific sub-fields of Quantum Computing are also 
relevant from the standpoint of computer vision. The first of these 
is Quantum Signal Processing (QSP) and the second is composed 
of quantum systems for optimization of object recognition 
problems. Besides these two sub-fields, there have been a few 
algorithms that draw inspiration from quantum state modeling 
towards solving conventional image processing and computer 
vision problems. Notable among these include the use of quantum 

interference analogies in mutation for genetic programming for 
image registration [5], use of qubit like structures called 
Conjugate Information Variables that have non-isotropic 
sensitivity regions employable for classification of rising, falling 
and flat regions of functions (or images) and hence be used for 
edge-sensitive adaptive filtering [6], quantum representations for 
4-color channel images (RGB-A) [7], quantum representations for 
joint color image encoding and image structure description for 

recognition [8] and the use of quantized states (though not 
quantum states) for Total Variation (TV) in a Mumford-Shah like 
energy formulation for image segmentation and denoising [9]. 

The field of QSP [11] is aimed at developing new or 
modifying existing algorithms by applying some of the principles 
of quantum mechanics. Hence these are not true quantum 

algorithms that can be implemented on a quantum computer, but 
rather use principles that are borrowed from quantum literature. 
Hence, the algorithms developed using QSP are not limited by the 
constraints of quantum mechanics. Some of the original QSP 
applications include frame theory, quantization and sampling 
methods, compressed sensing matched filters, subspace coding, 
detection, parameter estimation, covariance shaping and multi-
user wireless communication systems. These QSP algorithms use 

a Quantum Input Mapping followed by the application of either 
Rank-One Measurements (ROM) or Subspace Measurements, 
again followed by an Output Mapping in order to achieve various 
required tasks. QSPs have been used in image processing, 
recently, for a number of tasks such as image half-toning, edge 
detection, cryptography - by mapping binary images into the    
 and     states of the quantum system and estimating the 

probabilities of these two states as     
  and     

  using an 

exponential function of the variables measured from the image 
intensity values [12]. Such a formulation has been used for 
structural element description for noise filtering in [13]. This has 
also been used in relation to neighborhood pixel intensities for 
defining features, corners and subsequently edges in [14]. 

The second sub-field includes quantum algorithms for 
optimization of object recognition problems. Primary among these 
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algorithms for image feature matching include those formulated as 
Quadratic Unconstrained Binary Optimization (QUBO) and 
solved using D-Wave Superconducting Adiabatic Quantum 
Computer (ADC) with the theory developed in [15,16,17] and 
hardware implementations demonstrated in [18,19]. Another 

“true” quantum algorithm that is focused on object recognition 
and de-noising that works on quantum states at all stages of the 
processing is [20]. 

2. ALGORITHM 

In this paper, we further the scope of application of quantum 

algorithms to image processing and computer vision by creating a 
quantum version of the Hough Transform [22], the conventional 
version of which has been used for numerous applications such as 
edge detection/selection and object template matching. It should 
be noted here that the algorithm proposed in this paper – Quantum 
Hough Transform or QHT is a “true quantum algorithm” that can 
be implemented on quantum computers as opposed to QSP which 
subsumes quantum inspired algorithms. Furthermore, using 
quantum complexity analysis, we demonstrate that time and space 

requirements of QHT are several orders of magnitude smaller than 
that required for traditional Hough transform (HT) 
implementations, thereby demonstrating the need and benefits of 
QHT over traditional HT.  

2.1 Hough Transform (HT) 

A popular algorithm used in image processing for detection of 
features such as edges, curves, circles, contours, planes, cylinders 

and even entire shapes is the Hough Transform. The Generalized 
Hough Transform (GHT) [23] in particular is extremely useful in 
template matching of arbitrary objects described using models. In 
the case of GHT, the problem is transformed to one of 
determination of spatial coordinates of the shape template being 
matched in the image of interest. An edge based implementation 
of GHT was first proposed by measuring the distance from points 
in the shape. While HT can be used for a variety of purposes, with 

the classical HT being used for analytic functions, the simplest 
variant of the HT which is used for the detection of edges in 
images remains the most popular and widely used application of 
HT. All variants of HT use a voting procedure in parameter space 
called the accumulator space from which object candidate are 
localized by extraction of local maxima. Since an accumulator has 
to be maintained across the entire parameter space of the function, 
HT typically takes a great amount buffer space for 

implementation. For example, for the task of finding edges in an 
image, wherein the HT uses the parametrization      , the space 

complexity of the HT is given by         , where    is the 

number of bins along the   parameter space and    is the number 

of bins along the   parameter space. Given that the range of   

spans the space from   to √     , where   and   are the image 

dimensions and   spans the entire range of angles from   to    , 

it can be seen that even for a simple 2 parameter accumulator 
space, the computational requirements can be quite high 
depending on the necessary resolution. While variants of Hough 
Transform exist that attempt at limiting the computational 
complexity by reducing the size of the accumulator search space 
or by using additional information from the image space such as 

image gradients to coarsely determine the HT parameters, we 
focus our attention in this paper on the simplest form of HT 
operating in the full accumulator space since most such 
optimization modifications are also applicable to the HT 
estimation method presented in this paper. 

 

2.2 Quantum Representation of Hough Transform 
Space 

The first transformation required to build the quantum algorithm 
is the transformation of the input pixel co-ordinate space        
into the one dimensional complex vector space   , also called the 

 -plane. Hence, 

       (     )         

 

In order to enable the QHT to maintain the same ranges as that of 
HT, we use a discretized and bounded version of the complex 
space restricted in range to that of the original image space. 
Hence,   

   {   }    {   }  

 

Using the parametrization      , where   represents the shortest 

distance from the origin to the line and   represents the angle that 

the vector from the origin to the line (at its closest point) makes 
with the first coordinate axis, for the Hough lines to be 
determined, the original formulation for the Hough lines  

 

  ( 
    

    
)   (

 

    
) 

  

can be rewritten as 

                  

 

For an arbitrary point         on the line, the value of      is 

given by 

                    

 

Hence, the value of      from arbitrary pixels in the image 

containing the line can be expected to be roughly constant for a 
range of   values -   , typically from 0 degrees to 180 degrees, 

where   {              }. Hence, the required values of   
and   corresponding to the parameterization of a single Hough 

line can be determined as  

   
 

     

The analogous equations in the complex plane representation are 
given by 

                    
                 
                          
                       

                             

      
    

Representing the above equation using a dot product and 
introducing the matrix notation, along with the range subscript  , 

we have 

               [
        
        

]  

where [
        
        

] corresponds to      . 

Since    typically ranges from 0 degrees to 180 degrees (or   to 

 ) in incremental steps based on     , we have 

   
   

     
 

Hence, 
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where, 

   
   

     

is the     
th root of unity. 

Given a binary edge image of size     pixels with values        at 

the pixel          , the pixel indices corresponding to an image 

intensity value of 1 can be linearized into the following complex 
vector 

  

[
 
 
 
 
  

  

 
 
  ]

 
 
 
 

 

where    
     {     }. 

A conventional HT requires an accumulator space spanning the 
entire range of   and   in order to compute the Hough Transform. 

However, with the QHT, we simulate the accumulation process 
for finding the peak in the       space through quantum 

superposition. In order to describe the problem in a format 
suitable for quantum superposition, we break down the 
accumulator into two sub-matrix representations. 

The first sub-matrix representation (QHT1) involves the 

estimation of accumulated   for various values of  . 
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Simultaneously, the following outer-product (QHT2) or projection 
matrix is also computed using the partial product terms from the 
above matrix computation. 
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Now, representing the input complex pixel space vector    in the 

equivalent quantum superposition state, we have 

∑    ⟩

 

   

 

where   ⟩     ⟩    ⟩ are orthonormal basis vectors. Using the 

above representation, the first sub-matrix representation yields 

  ⟩  ∑     ⟩

    

   

 

which is a quantum superposition of the basis vectors in   ⟩. It 

should however be noted that the output of QHT1 cannot be 
measured directly in the space of   . In other words, the 

magnitude of    cannot be calculated due to the nature of quantum 

states. The only output that can be measured is the state   ⟩ itself 

(index) and the probability of measurement of this state   ⟩ is 

given by      . For the case of the HT, this is not a disadvantage, 
but rather a useful phenomenon. While, the use of QFT is 

restricted in the case of measurement of spectra due to the 
inability to measure the magnitude of frequency components as a 

result of this phenomenon, this constraint is not a drawback in the 
case of QHT, since the goal of QHT is the estimation of   ⟩ or   

and   that maximize   . Since the values of   that maximize    

are observed during quantum measurement with a very high 
probability, this enables the determination of the Hough peak. 
Furthermore, by performing several measurements, multiple 
(possible) candidate Hough peaks can be estimated. This also 

enables the estimation of multiple line segments in an image 
through the estimation of several Hough peaks. Thus, quantum 
superposition inherently acts as an accumulator, preserving the 
quantum states, without the need for an explicit one that demands 
high storage and computation requirements. 

The second transformation QHT2 transforms the input 

quantum state as follows 

  ⟩  

[
 
 
 
 
 
 
 
 
 
 ∑      ⟩

 

   

∑      ⟩

 

   
 
 

∑      
      ⟩

 

   ]
 
 
 
 
 
 
 
 
 
 

 

Once the candidate values of  , corresponding to the Hough peaks 

are determined from QHT1, the appropriate quantum state vectors 
can be selected using the measured   ⟩ states. The selected 

superposition state(s) vector, 

∑      
      ⟩

 

   

 

is then used as input to the Quantum Counting algorithm [21]. 

Parameters for discretizing the   space can also be directly 

incorporated into the counting algorithm. This algorithm counts 

the instances of each selected       
 up to a threshold and also 

returns the indices of  , thus not just enabling the detection of   

corresponding to the Hough peaks, but also the pixels in the image 

that correspond to the Hough line. Thus, detection of     as well 

pixel indices corresponding to the Hough Transform are computed 

using the Quantum formulation.  

2.3 Complexity Analysis 

It should be noted that the Quantum Counting algorithm uses only 

 (
 

 
√

 

 
) , where   is the number of selected    in the list. 

Furthermore, it should also be noted that in the computation of 
QHT1 and QHT2, each basis state index can be represented in the 
binary form (here,   is assumed to be a power of 2 -   for the 

sake of simplicity, though an approximation can be used for any 

value of    

  ⟩              ⟩ 
     ⟩      ⟩         ⟩ 

where, 

       
        

             

Since the product terms in QHT1 are powers of  , the 

computation of intermediate terms can be chained similar to that 
with QFT. Operations on   qubits can be factored into tensor 

products of   single qubit operations, which can be implemented 

using Hadamard gates ( ) and Controlled Phase Gates (  ). 

Figure 1 demonstrates the QHT circuit, along with the QHT1 and 
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QHT2 sub-matrix components and their tap points in blue and red 
respectively. Similar to QFT, it can be seen that the number of 
gates required for the implementation is given by 

      

 
       

(since each factor requires one   gate and one    gate more than 

the previous factor), which is polynomial in the number of qubits. 

On the other hand, HT typically requires at least       
computations, which is an exponential order more than that 
required for QHT. Furthermore, as discussed earlier, QHT 
performs accumulation implicitly through Quantum Superposition 
as opposed to HT that requires a space complexity of         , 
depending on the granularity of the parametrization. The only 
space requirement in the Quantum Hough domain computation 
comes from the space used by the Quantum Counting method to 

estimate most probable values of  . However, since   has already 
been chosen at this stage of computation, the space requirements 

for the Quantum Counting algorithm is linear in      (       )  

 
Figure 1. QHT Circuit Implementation 

3. CONCLUSION 

In this paper, we have presented a novel quantum version of the 
popular Hough Transform and shown the advantages of the 

Quantum Hough Transform in terms of computational and space 
requirements over the traditional formulation. A circuit has also 
been designed for the implementation of the algorithm. The 
transformation of the accumulation in Hough space into an 
implicit quantum superposition results in gains in space and speed 
requirements. It should however be noted that the determination 
of Hough peaks using QHT has been done through a two-step 
process that determines peaks in the dependent   space, before re-

estimating peaks in the   space. Future work will involve 

reformulation of the problem to estimate peaks in the joint 
    space and comparison of performance and trade-offs between 

the two approaches. In addition, further work is planned towards 

the goal of implementing and evaluating the algorithm on a 
quantum computer. 

4. REFERENCES 

[1] Shor, Peter W. "Polynomial-time algorithms for prime 
factorization and discrete logarithms on a quantum computer." 
SIAM journal on computing 26.5 (1997): 1484-1509. 

[2] Grover L.K.: A fast quantum mechanical algorithm for 
database search, Proceedings, 28th Annual ACM Symposium on 
the Theory of Computing, (May 1996) p. 212. 

[3] Simon, D.R. (1994), "On the power of quantum computation", 
Foundations of Computer Science, 1994 Proceedings., 35th 
Annual Symposium on: 116–123 

[4] L. Hales , S. Hallgren, An improved quantum Fourier 
transform algorithm and applications, Proceedings of the 41st 

Annual Symposium on Foundations of Computer Science, p.515, 
November 12–14, 2000. 

[5] Talbi, H., Draa, A., & Batouche, M. C. (2004, April). A 
genetic quantum algorithm for image registration. In Information 
and Communication Technologies: From Theory to Applications, 
2004. Proceedings. 2004 International Conference on (pp. 395-
396). IEEE. 

[6] Nölle, M., & Suda, M. (2011). Conjugate Variables as a 
Resource in Signal and Image Processing. arXiv preprint 
arXiv:1108.5720. 

[7] Sun, B., Le, P. Q., Iliyasu, A. M., Yan, F., Garcia, J. A., Dong, 
F., & Hirota, K. (2011, September). A multi-channel 
representation for images on quantum computers using the RGBα 
color space. In Intelligent Signal Processing (WISP), 2011 IEEE 
7th International Symposium on (pp. 1-6). IEEE. 

[8] Venegas-Andraca, S. E. (2005). Discrete quantum walks and 
quantum image processing (Doctoral dissertation, Univ Oxford). 

[9] Shen, J., & Kang, S. H. (2007). Quantum TV and applications 
in image processing. Inverse Problems and Imaging, 1(3), 557. 

[10] Castagnoli, G. (2009). Discussing the explanation of the 
quantum speed up. arXiv preprint arXiv:0910.2313. 

[11] Eldar, Y. C., & Oppenheim, A. V. (2002). Quantum signal 
processing. Signal Processing Magazine, IEEE, 19(6), 12-32. 

[12] Tseng, C. C., & Hwang, T. M. (2003). Quantum digital 
image processing algorithms. In 16th IPPR Conference on 
Computer Vision, Graphics and Image Processing (CVGIP 2003). 

[13] Zhou, C., Hu, Z., Wang, F., Fan, H., & Shang, L. (2010). 
Quantum Collapsing Median Filter. In Advanced Intelligent 
Computing Theories and Applications (pp. 454-461). Springer 
Berlin Heidelberg. 

[14] Liang Chen, Xu-ming Ye, Li Yu, Bo-xia Xu, Xin-min Shi 

(2010). A novel feature detector based on quantum-inspired 
method. In International Conference on Machine Vision (ICMV). 

[15] Neven, H., Rose, G., & Macready, W. G. (2008). Image 
recognition with an adiabatic quantum computer I. Mapping to 
quadratic unconstrained binary optimization. arXiv preprint 
arXiv:0804.4457. 

[16] Neven, H., Denchev, V. S., Rose, G., & Macready, W. G. 
(2008). Training a binary classifier with the quantum adiabatic 
algorithm. arXiv preprint arXiv:0811.0416. 

[17] Neven, H., Denchev, V. S., Rose, G., & Macready, W. G. 
(2009). Training a large scale classifier with the quantum 
adiabatic algorithm. arXiv preprint arXiv:0912.0779. 

[18] Neven, H., Denchev, V. S., Drew-Brook, M., Zhang, J., 
Macready, W. G., & Rose, G. (2009). NIPS 2009 demonstration: 

Binary classification using hardware implementation of quantum 
annealing. Quantum, 1-17. 

[19] Denchev, V. S., Ding, N., Vishwanathan, S. V. N., & Neven, 
H. (2012). Robust Classification with Adiabatic Quantum 
Optimization. arXiv preprint arXiv:1205.1148. 

[20] Schaller, G., & Schützhold, R. (2006). Quantum algorithm 
for optical-template recognition with noise filtering. Physical 
Review A, 74(1), 012303. 

[21] Brassard, Gilles, Peter Høyer, and Alain Tapp. "Quantum 
counting." Automata, Languages and Programming. Springer 
Berlin Heidelberg, 1998. 820-831. 

[22] Duda, R. O. and P. E. Hart, "Use of the Hough 
Transformation to Detect Lines and Curves in Pictures," Comm. 
ACM, Vol. 15, pp. 11–15 (January, 1972) 

[23] D.H. Ballard, "Generalizing the Hough Transform to Detect 
Arbitrary Shapes", Pattern Recognition, Vol.13, No.2, p.111-122, 
1981    

H

.

.

.

.     .     .

.

.

.

The 23rd International Conference on Computer Graphics and Vision

98 GraphiCon'2013




