
Wavelet Lifting on Application Specific Vector Processor

David Barina Pavel Zemcik

Faculty of Information Technology
Brno University of Technology
{ibarina, zemcik}@fit.vutbr.cz

Abstract

With the start of the widespread use of discrete wavelet transform
the need for its efficient implementation is becoming increasingly
more important. This work presents a general approach of discrete
wavelet transform scheme vectorisation evaluated on an FPGA-
based Application-Specific Vector Processor (ASVP). This unit can
be classified as SIMD computer in Flynn’s taxonomy. The pre-
sented approach is compared with two other non-vectorised ap-
proaches. Using the frequently exploited CDF 9/7 wavelet, the
achieved speedup is about 2.6× compared to naive implementation.

Keywords: discrete wavelet transform, lifting scheme, SIMD, par-
allelization, vectorisation

1 Introduction

The discrete wavelet transform (DWT) is mathematical tool which
is able to decompose discrete signal into lowpass and highpass fre-
quency components. Such a decomposition can be performed at
several scales. DWT is often used as the basis of sophisticated
compression algorithms. This is the case of JPEG 2000 and Dirac
compression standards in which CDF 9/7 wavelet [5] is employed
for lossy compression. Responses of this wavelet can be computed
by a convolution with two FIR filters, one with 7 and the other with
9 coefficients. For the DWT computation, the well known Mallat’s
[9] filtering scheme can be used. Alternatively, one can use usually
faster scheme called lifting which was presented by I. Daubechies
and W. Sweldens in [6]. Lifting data flow graph consists of regular
grid computational scheme suitable for SIMD vectorisation. Both
of the algorithms can be performed over some approximation of
real numbers. This paper focuses on single-precision floating-point
(SP FP) format.

In the field of FPGA-based accelerators, the platform called
Application-Specific Vector Processor (ASVP) was recently pro-
posed [11], [10]. This platform uses several simple units referred
as Basic Computing Elements (BCEs). BCEs are able to accelerate
simple operations (like addition or multiplication) on long single-
precision floating-point vectors. Thus, these units can be classified
as SIMD computers in Flynn’s taxonomy. Lifting of CDF 9/7 trans-
form can be directly adapted on them.

In this work, we discuss vectorisation (parallelization) of discrete
wavelet transform on ASVP platform. The rest of the paper is orga-
nized as follows. More traditional approaches to DWT computation
together with ASVP platform are reviewed in Section 2. Section 3
gives the basics behind the lifting scheme. Section 4 describes op-
portunities for lifting scheme parallelizations and presents our pro-
posed approach. Introduced parallelization methods are compared
in section 5. Finally, Section 6 concludes the paper.

2 Related work

In 2000, the problem of minimum memory implementations of lift-
ing scheme was addressed in [4] by Ch. Chrysafis and A. Ortega.
This approach is very general and it is not focused on parallel pro-
cessing. The work was also later extended to [3] where same au-
thors addressed a problem of minimum memory implementation of
2-D transform. Also, variation of this approach was presented six
year later in [7] which is specifically focused on CDF 9/7 wavelet
transform.

In [8] R. Kutil et al. presented SIMD vectorisation of several fre-
quently used wavelet filters. This vectorisation is applicable only on
those filters discussed in their paper. Specifically, vectorisation of
CDF 9/7 wavelet computed using lifting scheme is vectorised here
by a group of four successive pairs of coefficients. For CDF 9/7
wavelet discussed in this paper, their measurements gave a speedup
of 2.65 for forward and 1.7 for backward transform on Intel Pen-
tium 4 with SSE extension.

bus

CPU

BCE

DMA

banks

SDRAM

sCPU VPU

memory

Figure 1: Organization of ASVP platform. Solid lines indicates
data paths. In our case, function of BCE is controlled by host CPU
(MicroBlaze). The sCPU means for simple CPU what is the Pi-
coBlaze processor here. Moreover, the BCE element consists of
four memory banks, each 1024 32-bit words long, and Vector Pro-
cessing Unit (VPU) which performs actual operations. The BCE
accesses RAM through DMA engine.

The platform used in this paper is Application-Specific Vector Pro-
cessor (ASVP, originally EdkDSP) recently presented in [11], [10],
[1] and [2]. This heterogeneous multi-core platform employs up to
several units called Basic Computing Element (BCE) which can ac-
celerate floating-point vector operations. For organization of ASVP
see Figure 1. These elements use a combination of a simple Pi-

Russia, Vladivostok, September 16-20, 2013 83

mailto:ibarina@fit.vutbr.cz
mailto:zemcik@fit.vutbr.cz
http://www.fit.vutbr.cz/


coBlaze CPU (sCPU in Figure 1) with a configurable pipelined dat-
apath. The computation performed by BCE can be changed through
replacing the PicoBlaze firmware. Moreover, the ASVP platform
contains host CPU (MicroBlaze in this case) that is executing the
main program. Thus, the computation is distributed between host
CPU and one or more BCE units. This change of the BCE firmware
can be made from MicroBlaze CPU in runtime. The BCE contains
four memory banks each of 1024 words long (one word denotes
32-bit SP FP). Before BCE can start its program, the input data
must be transferred from main DDR memory into BCE’s memory
banks. Similarly, the output data should be transferred back when
BCE computation is done. These data are transferred by DMA con-
troller. The operations performed by BCE are element-wise move,
addition, multiplication, etc.

3 Lifting scheme

According to the number of arithmetic operations, the lifting
scheme [6] is today’s most efficient scheme for computing discrete
wavelet transforms. Any discrete wavelet transform with finite fil-
ters can be factored into a finite sequence of N pairs of predict and
update convolution operators Pn and Un. Each predict operator Pn
corresponds to a filter p(n)i and each update operator Un to a filter
u
(n)
i .

Pn(z) =

gn∑
i=−ln

p
(n)
i z−i (1)

Un(z) =

fn∑
i=−mn

u
(n)
i z−i (2)

This factorisation is not unique. For symmetric filters, this non-
uniqueness can be exploited to maintain symmetry of lifting steps.

Consider the decomposition of the signal of length of L samples.
Without loss of generality one can assume only signals with even
length L. Possible remaining coefficient can treated separately in
the prolog or epilog phases together with border extension. Thus,
the transform contains S = L/2 pairs of resulting wavelet coeffi-
cients (s, d). The s coefficients represent a smoothed signal. On
the contrary, the d coefficients form a difference or detail signal.

In their paper [6], Daubechies and Sweldens demonstrated an ex-
ample of CDF 9/7 transform factorisation which resulted into four
lifting steps (N = 2) plus scaling of coefficients. In this example,
the individual lifting steps use 2-tap symmetric filters for the pre-
diction as well as the update. In all figures shown in this paper, the
coefficients of these four 2-tap symmetric filter are denoted α, β, γ
and δ respectively.

When coefficient scaling is omitted, the calculation of a pair of the
DWT coefficients at the position l (sl and dl) is performed through
four lifting steps. Intermediate results (s(n)l and d(n)l ) can be appro-
priately shared between neighbouring pairs of coefficients (sl and
dl). Finally, the calculation of the complete CDF 9/7 DWT is de-
picted in Figure 2. This is an in-place implementation, which means
the DWT can be calculated without allocating auxiliary memory.
Resulting coefficients (sl and dl) are interleaved in place of the in-
put signal.

α

β

γ

δ

Figure 2: Complete data flow graph of CDF 9/7 wavelet trans-
form. The input signal is on top, output at the bottom. The graph
borders must be treated in a special way using prolog and epilog
phases.

4 Vectorisation

The calculation scheme described in the previous section can be re-
alized in a number of different ways. In this work, two of such ways
are described. The main difference between them is in the order of
lifting steps evaluation. Alternatively, the data flow graph in Figure
2 can be split into areas that are evaluated sequentially according to
their data dependencies.

4.1 Horizontal vectorisation

The naive approach of data flow graph evaluation directly follows
the lifting steps (n). Thus, all intermediate s(1) and d(1) coeffi-
cients are evaluated in the first step. Then, all s(2) and d(2) are
evaluated in second step, etc. Unfortunately, this algorithm requires
several reads and writes of the intermediate results s(n)l and d(n)l .
For long signals, these intermediate results will be several times
evicted from the CPU cache in favor of other intermediate results.
Consequently, many cache misses during such a computation will
occur.

α

β

γ

δ

Figure 3: The horizontal vectorisation of the CDF 9/7 data flow
graph. The scaling of coefficients was omitted. The computation
within the highlighted areas can be processed in parallel.

In this paper, this method is called the horizontal vectorisation. This
name reflects the fact that the data flow graph is split in horizontal
areas as in Figure 3. In each area, the elementary calculations are

The 23rd International Conference on Computer Graphics and Vision

84 GraphiCon'2013



independent and can be computed in parallel. For simplicity, the
scaling of coefficients and the prolog and epilog phases were omit-
ted in the referenced figure. An entire signal of 2S samples must be
loaded into the memory which is not suitable for memory limited
systems.

4.2 Vertical vectorisation

Another way of lifting data flow graph evaluation is the double-loop
approach [7]. This approach is referred to as the vertical vectori-
sation. Earlier, it was described in [4] focusing on low memory
systems but without vectorisation.

The Pn and Un filters need not be causal. In general, non-causal
systems requires storing the whole input signal into memory (as can
be seen from Figure 3). This is not suitable for fast or memory lim-
ited signal processing nor for a vectorisation. Therefore, it would
be appropriate to convert non-causal lifting steps (Pn and Un) to
causal systems. The key to force these filtering steps to be causal is
the introduction of appropriate delays.

Pn(z) = z−lnPn(z) =

gn+ln∑
i=0

p
(n)
i−lnz

−i (3)

Un(z) = z−mnUn(z) =

fn+mn∑
i=0

u
(n)
i−mn

z−i (4)

α

β

γ

δ

Figure 4: Vertical vectorisation of the CDF 9/7 data flow graph.
The computation within the highlighted areas cannot be processed
in parallel due to data dependencies.

The transition from non-causal to causal system introduce a delay
z−ln on both inputs of the prediction filtering step Pn. In the bot-
tom input s, the delay can be distributed into both branches. This
leads to a causal system Pn as in (3). Analogously, a delay of mn

samples is introduced on both inputs of update step Un. Again, this
delay can distributed into branches of upper input d. The resulting
equation is shown in (4). For simplicity, the adjacent delays can
combined into single one. Finally in (5), delays of ηn, µn and νn
samples appear around each pair of filtering steps Pn and Un. The
resulting block diagram is shown in Figure 5.

ηn = ln (5a)
µn = ln +mn (5b)
νn = mn (5c)

In this method, the lifting computation is transformed into one loop
instead of multiple loops over all the coefficients. Therefore, one
pair of lifting coefficients sl and dl is computed in each iteration
of such a single loop. However, the computations within each of
these areas cannot be directly parallelized due to data dependen-
cies. Even so, this procedure is advantageous because the coeffi-
cients are read and written only once. Consequently, this prevents
unnecessary cache misses. In our 1-D case, the SIMD vectorisa-
tion of this method lies in processing of several adjacent areas in
parallel like in [8]. The data flow graph is split in vertical areas of
width of two coefficients as in Figure 4. Furthermore, this approach
is particularly useful for multidimensional (e.g. 2-D) transform on
PC platform where several data rows are processed in single loop at
once using n-fold SIMD instructions.

5 Results

The implementations of the approaches described in the previous
section was compared on ASVP platform. This comparison was
performed on forward DWT using CDF 9/7 wavelet. All the imple-
mentations work over a sequence of single-precision floating point
numbers. According to platform performance, a length of the se-
quence was progressively extended from vector of 32 samples with
geometrical step of 1.28 up to 240 thousands of samples. The trans-
form was computed including a final coefficient scaling.

Our configuration contains 32-bit MicroBlaze as host CPU and two
BCE acceleration units (only one used for 1-D transform). Used
bitstream fits into Spartan-6 SP605 FPGA kit. We use PetaLinux
as operating system on host CPU. The evaluated programs had
been compiled by GCC 3.4.1 with -O2 -mno-xl-soft-mul
-mhard-float options.

z−νN−1

UN−1(z)

z−µN−1

PN−1(z)

z−ηN−1z−ν0

z−µ0

U0(z)P0(z)

z−η0↓2z−1

. . .

s

d

x

↓2

Figure 5: Block diagram of vertical lifting scheme vectorisation. The part bounded with dashed line correspond to the area of parallel
computation.

Russia, Vladivostok, September 16-20, 2013 85



100n

1µ

10µ

100µ

10.0 100.0 1.0k 10.0k 100.0k 1.0M

se
co

nd
s/

sa
m

pl
e

horizontal BCE
vertical

samples

horizontal CPU

Figure 6: Comparison of three described approaches on the ASVP
platform. The horizontal parallelization was implemented on the
CPU as well as on the BCE unit. Using the BCE unit, horizon-
tal parallelization is clearly the fastest method with up to 2.6×
speedup.

Evaluation on ASVP platform is summarized in Figure 6. The hor-
izontal axis of this graph indicates the sequence length. The ver-
tical axis specifies computation time per one signal sample. Both
approaches from previous section as implemented on MicroBlaze
CPU are plotted in this graph. Furthermore, another implementa-
tion of the horizontal parallelization accelerated using BCE unit is
plotted here. Clearly, the horizontal parallelization is the fastest
method when BCE is used. Without BCE, the fastest approach
seems to be the vertical parallelization. The speedup of horizon-
tal approach with BCE over baseline horizontal approach on CPU
is up to 2.6×.

vectorisation t samples b coefficients q operations
horizontal 2S 2S S
vertical 2T 2N T

Table 1: Memory consumption of vectorisation methods. Each
method needs t samples to start iteration and b memory words to
pass intermediate results between them. In each iteration, up to q
operations can be evaluated in parallel.

vectorisation µs/sample speedup
CPU horizontal 1.1 1.0
CPU vertical 0.8 1.4
BCE horizontal 0.4 2.6

Table 2: Execution times per sample measured for 240 thousands
of samples. All times are related to the CDF 9/7 transform.

6 Conclusion

In this paper, two known methods of lifting scheme evaluation was
compared on ASVP platform. The achieved speedup is up to 2.6×
using Application Specific Vector Processor. The best results were
obtained using horizontal parallelization performed on one BCE
computing unit. This unit can accelerate operations on vectors with
up to 1024 elements of length. Operations on longer vectors have

to be split into several fragments. The resulting firmware consists
of 15 individual operation calls (addition, multiplication) including
scaling of lifting coefficients.

Our next research will focus to an adaptation of the proposed ap-
proach to the 2-D wavelet transform. Specifically, we will use the
single-loop approach proposed by R. Kutil in [7].

Acknowledgements

This work has been supported by the EU FP7-ARTEMIS project
IMPART (grant no. 316564) and the national TAČR project RO-
DOS (code TE01020155).

References

[1] R. Bartosinski, M. Daněk, J. Sýkora, L. Kohout, and
P. Honzı́k. Foreground detection and image segmentation in a
flexible ASVP platform for FPGAs. In Conference on Design
and Architectures for Signal and Image Processing (DASIP),
pages 1–2, 2012.

[2] R. Bartosinski, M. Daněk, J. Sýkora, L. Kohout, and
P. Honzı́k. Video surveillance application based on appli-
cation specific vector processors. In Conference on Design
and Architectures for Signal and Image Processing (DASIP),
pages 1–8, 2012.

[3] C. Chrysafis and A. Ortega. Line-based, reduced memory,
wavelet image compression. IEEE Transactions on Image
Processing, 9(3):378–389, 2000.

[4] C. Chrysafis and A. Ortega. Minimum memory implementa-
tions of the lifting scheme. In Proceedings of SPIE, Wavelet
Applications in Signal and Image Processing VIII, volume
4119 of SPIE, pages 313–324, 2000.

[5] A. Cohen, I. Daubechies, and J.-C. Feauveau. Biorthogonal
bases of compactly supported wavelets. Communications on
Pure and Applied Mathematics, 45(5):485–560, 1992.

[6] I. Daubechies and W. Sweldens. Factoring wavelet transforms
into lifting steps. Journal of Fourier Analysis and Applica-
tions, 4(3):247–269, 1998.

[7] R. Kutil. A single-loop approach to SIMD parallelization of 2-
D wavelet lifting. In Proceedings of the 14th Euromicro Inter-
national Conference on Parallel, Distributed, and Network-
Based Processing (PDP), pages 413–420, 2006.

[8] R. Kutil, P. Eder, and M. Watzl. SIMD parallelization of com-
mon wavelet filters. In Parallel Numerics ’05, pages 141–149,
2005.

[9] S. Mallat. A Wavelet Tour of Signal Processing: The Sparse
Way. With contributions from Gabriel Peyré. Academic Press,
3 edition, 2009.

[10] J. Sýkora, R. Bartosinski, L. Kohout, M. Daněk, and
P. Honzı́k. Reducing instruction issue overheads in
Application-Specific Vector Processors. In Proceedings of the
15th Euromicro Conference on Digital System Design (DSD),
DSD ’12, pages 600–607, 2012.

[11] J. Sýkora, L. Kohout, R. Bartosinski, L. Kafka, M. Daněk,
and P. Honzı́k. The architecture and the technology character-
ization of an FPGA-based customizable Application-Specific
Vector Processor. In IEEE 15th International Symposium
on Design and Diagnostics of Electronic Circuits Systems
(DDECS), pages 62–67, 2012.

The 23rd International Conference on Computer Graphics and Vision

86 GraphiCon'2013




