
Robust Silhouette Shadow Volumes on Contemporary Hardware

Jan Pečiva, Tomáš Starka, Tomáš Milet, Jozef Kobrtek, Pavel Zemčı́k

Faculty of Information Technology Brno University of Technology Czech Republic ∗

Figure 1: The Figure shows the difference between the original algorithm and our robust algorithm. The right image of each couple shows
result of our robust algorithm. The first couple of images shows very simple model, where artefacts are most visible. The second couple shows
artefacts on more complex model, which could appear in real applications.

Abstract

The paper describes an algorithm, which produces shadow volumes
for an arbitrary triangle model without visual artifacts. The algo-
rithm has been implemented, optimized, and evaluated for a num-
ber of contemporary hardware platforms. The main contribution of
the paper is removal of visual artifacts caused by limited precision
of floating point arithmetics. The paper also presents an overview
of the implementation and result of the optimizations on individual
platforms. Finally, the conclusions are drawn and the future work
is outlined.

CR Categories: I.3.3 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Display Algorithms I.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism—Radiosity;

Keywords: shadow volumes, silhouette, OpenCL, GPGPU, ge-
ometry shader

1 Introduction

Shadow volumes (SV) method is a traditional and popular method
for shadow casting in computer graphics. It has been introduced
in 1977 [Crow 1977]. Later on, in 1991, SV algorithm was im-
plemented in stencil buffer hardware [Heidmann 1991]. This im-
plementation is generally called z-pass method. This method, how-
ever, is not robust. It produces incorrect shadows when the observer
is inside a SV itself. This problem was addressed in 2002 through
a method called z-fail [Everitt and Kilgard 2002].

An alternative for rendering shadows is shadow mapping [Williams
1978]. It is very frequently used as it generally offers high per-
formance; however, the shadow maps approach suffers from visual
imperfections caused by the limited shadow map resolution. The
shadow map approach is massively used in game industry where
high performance is critical and scenes can be adjusted so that vi-
sual artefacts are not too visible or do not occur. On the other hand,
these features limit the applicability of the approach in e.g. CAD
systems, where the scene is given by the model being constructed
and may be incompatible with the requirements of the shadow maps
approach to work well.

While the SV approach produces per-pixel correct results, they are
affected by some performance issues. In its simple form, the ap-
plications were using a SV generated for each triangle of the ob-

∗e-mail:{pecita,starka,imilet,ikobrtek,zemcik}@fit.vutbr.cz

ject geometry, which could be very rasterization demanding. This
fact lead to development of more sophisticated methods, which
construct a SV only from the possible silhouette edges of the oc-
cluder geometry, that has positive impact on fill-rate. The first one
to propose an algorithm of silhouette extractions using the con-
sumer graphics hardware was [Brabec and Seidel 2003]. Later on,
[McGuire et al. 2003] managed to implement the algorithm solely
using vertex shaders. Furthermore, [van Waveren 2005] extracted
the silhouette edges using the SSE2 instructions on CPU. Finally
in [Stich et al. 2007] the geometry shaders were used for silhouette
extraction.

Many of the of these algorithms expect 2-manifold objects as
their input. More general objects were considered by [Bergeron
1986], who focused on manifold objects with a boundary edge case.
[Aldridge and Woods 2004] further removed constraints on the in-
put model but oriented non-manifold meshes are expected. Finally,
[Kim et al. 2008] presented the algorithm that works with any non-
manifold mesh objects. The overview of above methods can be
found in [Kolivand and Sunar 2013]

Unfortunately, during the implementation of the algorithm pre-
sented in [Kim et al. 2008] we found out that the algorithm is not
completely robust and often produces result with visual artefacts.
This is caused by limited precision of floating point arithmetics.
Thus, we developed the proposed robust algorithm, based on [Kim
et al. 2008], that is free from visual artifacts. Additionally, we opti-
mized the algorithm for a number of contemporary hardware plat-
forms, such as modern CPUs and GPUs. The paper describes the
algorithm, presents an overview of the implementation of the pro-
posed improvements and optimizations and assesses performance.
Finally, the conclusions are drawn and the future work is outlined.

2 Algorithm description and Robustness im-
provement

The algorithm, described in [Kim et al. 2008], generates the output
shadow silhouette based on the triangular mesh representing the
model and the position of light source.

2.1 Description of the algorithm

The algorithm can be briefly described as follows:

Input: model represented as a triangular mesh and light source
position.

The 23rd International Conference on Computer Graphics and Vision

56 GraphiCon'2013

Output: silhouette represented by a set of edges selected from the
input model.
Algorithm:

1. The triangular model is converted into an edge representation.
Every edge occurs only once even though it is shared among
more triangles. Each edge in the new representation is de-
scribed by its vertices and list of all opposite vertices (OVs).
The OVs are vertices of the triangles sharing the edge that do
not belong to the Edge. See Figure 2.

2. For each edge from the edge set, an oriented light plane (LP)
is evaluated from edge vertices and the position of the light
source.

3. For each OV belonging to the edge, multiplicity is calculated
as +1 or -1 depending on which side of LP the OV lies. If the
OV lies exactly on the LP, its multiplicity is 0. The final mul-
tiplicity of an edge is given by the sum over the multiplicities
of every OV. See Figure 2.

4. Finally, the set of edges forming the silhouette is a subset of
all the edges such that their multiplicity is not 0.

+ +

-
Figure 2: Multiplicity of Edge P0-P1 for the Opposite Vertices
(OVs) T0-T2.

2.2 Implementation and problems

The above mentioned algorithm processes the model with the ”by
edge” approach. The multiplicity could also be calculated with the
”by triangle” approach (with identical results). In parallel imple-
mentation, the ”by edge” approach, used in this paper, is better than
”by triangle” implementation, although the later may seem more
natural. The main reason is that the edges are independent to each
other, so this avoids concurrent memory writes. While the ”by trian-
gle” approach would lead to usage of atomic operations. Therefore,
the ”by edge” implementation is exploited.

The algorithm assumes that the evaluation of multiplicity is con-
sistent within each triangle. Unfortunately, this is not the case for
floating point arithmetics used in HW. Let us consider an example
as shown in Figure 3 In the ”by edge” approach, the multiplicities
could be evaluated inconsistently for the triangle which is (almost)
parallel to the LP. While the error was demonstrated for a single
triangle model, such error can occur in a more complex model for
individual triangles and ruin the whole silhouette leading into visi-
ble artefacts in shadows (see Figure 1).

2.3 The proposed robust algorithm

The proposed algorithm resolves the above issue connected with the
inconsistency of triangle edges multiplicity evaluation. The main
idea of the improvement is that the triangles, where the inconsis-
tency can occur, are removed from the silhouette calculation. Be-
cause these triangles are (almost) parallel with the LP (their shadow
volume would be zero), they cannot affect the shape of the resulting
shadow. In fact, the removal of the triangles is equivalent to eval-
uation of its edges multiplicity to 0 which would occur in triangles
parallel to the LP if the precision was not limited.

Figure 3: The grey triangle generates a SV. The green and red tri-
angles represent the two orientations of the light plane (LP). The
lower part shows erroneous calculation. In the upper right part,
triangle is in front of LP with respect to the viewer. In the lower
right, this is incorrectly evaluated, therefore the vertex V0 is as-
sumed to be behind.

The question is ”What is the most efficient way to remove such
triangles?”. Note that while the ”by triangle” approach permits to
simple discard the computed triangle, the ”by edge” approach does
not. One possible solution would be to evaluate ”how close to par-
allel” the triangle is to the LP but in this case, the evaluation would
have to be consistent for each triangle edge leading more or less to
the same problem. Therefore, a solution was taken to ”simulate”
evaluation of the ”other two edges” of the triangle formed by the
edge and each OV. Our modification to the original algorithm is
modification of step 3:

3. For each OV belonging to the edge a triangle is formed from
OV and the edge. The multiplicity is evaluated for every side
of this triangle and its remaining vertex as +1 or -1 depending
on which side of LP the vertex lies. If the vertex lies exactly
on the LP, its multiplicity is 0. If the evaluation of the mul-
tiplicity is inconsistent, the triangle is disregarded (the OV
multiplicity is set to 0). Note also, that the same order of ver-
tices and edges in triangles must be preserved for each edge
evaluation. The final multiplicity of an edge is given by the
sum over the multiplicities of every OV. See Figure 2.

The actual multiplicity evaluation for the edge AB for the light
source position L and set O of all OV, each in homogeneous co-
ordinates, is as follows:

The LP itself is defined as:

V = (Lx −AxLw,Ly −AyLw,Lz −AzLw)

N = normalize((A−B)×V)

LP = (Nx,Ny,Nz,−N ·A) (1)

The multiplicity of the edge is:

m =
∑
o∈O

sgn(LP · o) (2)

Where |m| denotes the number of times the side of SV, extruded
from this particular edge, is actually drawn/rendered.

Of course, the evaluation of the above set of expressions, for each
edge of the triangle (instead of just once for each triangle), intro-
duces a computational overhead. While some subexpression results
can be reused, a significant overhead remains. However, it turns

Russia, Vladivostok, September 16-20, 2013 57

GF650Ti AMD7950 HD3000 HD4000
CPU 4.9 / 5.0 12.9 / 13.9 9.9 /11.2 6.3 / 5.9
AVX+OMP 4.9 / 5.1 11.8 / 13.5 10.0 / 12.4 6.6 / 8.6
GS 30 / 40 92 / 98 n/a 4.4 / 8.7
OpenCL 42 / 41 83 /80 n/a 7.6 / 7.7

Table 1: Results of experiment (the first value shows FPS of the
robust implementation, the second value is the original implemen-
tation)

out that the cost of additional arithmetics, especially in case of ex-
ploitation of powerful computational platform, is less costly than
increased memory traffic or synchronization operations needed in
alternative approaches.

3 Experiments and Results

The experiments were conducted in order to evaluate the achieved
results, to assess feasibility of exploitation of the presented ap-
proach at the above mentioned platforms and in different applica-
tions, and to verify that the approach works well.

The performance of the algorithm was tested under these condi-
tions: the robust version compared to the original version with
no robustness, objects of simple shape compared to more complex
shapes with similar number of triangles, varying levels of geometric
complexity of the same object and scenes containing several sepa-
rated objects.

3.1 Robust versus traditional implementation

The purpose of this test was to evaluate whether at all and how much
the implementation of the robustness of the algorithm adversely af-
fects performance. The conditions for the test were made similar
to the real applications conditions in terms of the size of the scene
(∼105-106 triangles). The test was performed on a scene that did
not exhibit significant occurrence of visual artefacts caused by the
traditional implementation not being robust.

The results of experiments are shown in the Table 1. Note that
performance of the robust algorithm was slightly worse than in the
traditional implementation (the adverse effect of additional calcu-
lations was less than 10% at all platforms) but this is true only in
case of scenes exhibiting no or little visual artefacts. In scenes with
larger amount of artefacts, performance of the robust implementa-
tion was mostly better and the larger the amount of artefacts, the
worse the traditional implementation perform also from the com-
putational time point of view probably due to the fact that that the
artefacts caused increase in the fill rate. Overall, quite surprisingly,
the decrease of performance in the robust method is not a problem
on any platform.

3.2 Simple versus complex shapes

The purpose of the next test was to evaluate how the shape of the
objects influences the rendering times. Therefore, scene consisting
of simple shapes, spheres, and scene consisting of complex shapes,
bunnies, similarly large in terms of triangles, were compared. The
size of the scene in this case was about the usual application size
(∼6.5 · 105 triangles). One measurement was performed for the
scene consisting of more (10) objects, one for the scene consisting
of a single object but with the same complexity as in the previous
case; this was done in order to check whether the number of objects
affects the calculation speed.

GF650Ti AMD7950 HD3000 HD4000

CPU 4.9 5.0 12.9 7.8 9.9 11.0 6.3 5.4
5.5 5.5 13.3 9.6 12.2 10 9.6 5.5

AVX+OMP 4.9 5.1 12.9 4.3 9.9 6.2 6.3 6.0
5.5 5.5 12.8 5.2 12.8 5.1 11.9 6.2

GS 30 30 92 95 n/a n/a 4.4 n/a
34 34 156 124 n/a n/a 6.0 n/a

OpenCL 42 52 83 96 n/a n/a 8.1 8.2
54 67 142 147 n/a n/a 11.3 6.0

Table 2: Results for one particular GPU and one platform consist-
ing of 4 tests on different scenes: 10 individual bunnies (top left),
10 baked bunnies (top right), 10 individual spheres (bottom left),
and 10 baked spheres (bottom right).

GF650Ti AMD7950 HD3000 HD4000

CPU 3.9 35 5.1 81 5.3 34 37 20
3.4 27 8.4 61 6.5 32 4.4 18.5

AVX+OMP 3.9 35 5.7 81 4.9 32 4.2 23
3.4 28 9.3 63 6.7 34 5.0 24

GS 23 165 85 650 n/a n/a 3.7 15
18.7 100 84 482 n/a n/a 3.1 19.3

OpenCL 43 192 91 430 n/a n/a 6.0 19.3
13.4 26 22 54 n/a n/a 4.4 9.1

Table 3: Computational performance based on the number of tri-
angles in the scene. Results for one particular GPU and one plat-
form consisting of 4 tests on different scenes: one sphere with 106

(top left), one sphere with 105 triangles (top right), 10x10 spheres
each with 104 (bottom left), and 10x10 spheres with 103 triangles
(bottom right).

3.3 Number of triangles in the scene

The consequent test was focused on the behavior of the algorithm in
rendering of the scene depending on the number of triangles in the
scene. The goal was to learn how the algorithm performs when the
number of triangles changes from relatively low (∼105 triangles)
to relatively high (∼106 triangles).

It can be seen that, as expected, performance of the algorithm de-
creases with the increased size of the object in terms of triangles.
However, what was not as expectable is the fact that on different
platforms, performance does not decrease uniformly and also that
performance is not affected uniformly in different implementations
on the same platforms. Additionally, in cases where the number of
triangles is large, performance is also adversely affected by subdi-
vision of the scene into separate objects as described below.

3.4 Number of isolated objects in the scene

The goal of this final test was to demonstrate how the algorithm
performs in dynamic scenes where typically a scene is composed
from a number of (∼10-100) independently movable objects and
cannot be represented by a single object to enable for easy indepen-
dent motion of the objects. The test was performed along with the
above mentioned testing of performance with changing number of
triangles in the scene. It shows that the number of isolated objects
does have impact on results especially in case of some platforms,
probably due to synchronization and data transfer issues.

3.5 Hardware platforms

The implementation was tested on following platforms:

The 23rd International Conference on Computer Graphics and Vision

58 GraphiCon'2013

• AMD Radeon HD 7950 (driver version: 13.1)

• GeForce 650 Ti (driver version: 314.07)

• HD3000 integrated Intel GPU (driver version: 9.17.10.3062)

• HD4000 integrated Intel GPU (driver version: 9.18.10.3071)

First three GPUs were tested with Intel i7-2600K with 16GB RAM.
The HD4000 was tested with Intel i5-3570K with 8GB RAM. All
the measurements were carried out on Windows 7 x64 SP1.

3.6 Interpretation of results

Some of the results observed in the above tests are especially worth
mentioning and they are listed below:

• Performance of ”OpenCL” implementation is very good on
all the platforms for which OpenCL is available at all. The
current solution heavily suffers from the synchronization be-
tween OpenCL and OpenGL contexts. This mainly occurs
in scenes containing many separate objects because synchro-
nization must be performed for each object. Unfortunately,
OpenCL solution is not supported by the HD3000.

• The ”Geometry Shader” implementation performs well in
scenes with many separate objects. The performance declines
with increasing complexity of models more than in OpenCL
implementation.

• CPU+AVX+OMP performance is sometimes surprisingly less
than the standard CPU implementation. On the other hand,
measurements carried out on i5-3570K (Ivy Bridge architec-
ture) showed 4-30% performance increase (16% in average),
compared to standard one. Despite the fact that our CPU is ca-
pable of processing 8(4) threads concurrently, maximum per-
formance increase is only 30% in its peak. The reason is that
not all parts of the algorithm can be parallelized or rewritten
using AVX intrinsics.

It is most suitable to use OpenCL implementation (where available)
for scenes which do not contain too many (less than 100) objects.
Geometry shader solution can be used in situations where the scene
contains larger number of separated objects. CPU+AVX+OMP im-
plementation should be used on modern CPUs in situations where
the above solutions are not available. Standard CPU implementa-
tion should be used otherwise.

4 Conclusions

This paper presented a novel approach to Shadow Silhouette
Shadow Volumes that leads into a more robust implementation,
which has been tested and evaluated on a number of different hard-
ware platforms.

The proposed approach proved to be working well and producing
quality shadows with no visual artifacts. At the same time, it ex-
hibits high performance in variety of hardware platforms. As shown
in the paper, it can be efficiently implemented in CPU both using
the traditional instructions and the SIMD instructions as well as in
GPU using Geometry Shaders as well as using OpenCL.

The most efficient achieved implementation was in OpenCL for a
scene containing 106 triangles, followed by the Geometry Shader
implementation that is usable also with Intel HD 4000 platform.
However, the OpenCL implementation suffers from synchroniza-
tion slowdowns in case the scene is divided into more independent
objects. As for the CPU implementations, while they are gener-
ally lower performance than the GPU ones, the SIMD instructions

(AVX) and parallelism boosts performance on the latest CPU archi-
tectures.

Overall, the proposed approach performs very well and at the same
time it is robust and precise in terms of per pixel precision of the
shadows. Therefore, it represents a very good alternative to shadow
methods.

Future work includes improvements of the OpenCL implementa-
tion in terms of synchronization in scenes containing more objects,
general improvements of the triangle tests. The future work also
includes more thorough evaluation on more platforms and more
scenes.

Acknowledgements

The work has been made possible thanks to the co-funding by the
IT4Innovations Centre of Excellence, Ministry of Education, Youth
and Sports, Czech Republic, MŠMT, ED1.1.00/02.0070, V3C - Vi-
sual Computing Competence Center, Technology Agency of the
Czech Republic, TAČR, TE01020415V3C, and RODOS - Trans-
port systems development centre, Technology Agency of the Czech
Republic, TAČR, TE01020155.

References

ALDRIDGE, G., AND WOODS, E. 2004. Robust, geometry-
independent shadow volumes. In Proceedings of the 2nd inter-
national conference on Computer graphics and interactive tech-
niques in Australasia and South East Asia, ACM, New York, NY,
USA, GRAPHITE ’04, 250–253.

BERGERON, P. 1986. A general version of crow’s shadow volumes.
IEEE Computer Graphics and Applications 6, 17–28.

BRABEC, S., AND SEIDEL, H.-P. 2003. Shadow volumes on pro-
grammable graphics hardware. Computer Graphics Forum (Eu-
rographics) 2003, 433–440.

CROW, F. C. 1977. Shadow algorithms for computer graphics. In
Proceedings of the 4th annual conference on Computer graphics
and interactive techniques, ACM, New York, NY, USA, SIG-
GRAPH ’77, 242–248.

EVERITT, C., AND KILGARD, M. J. 2002. Practical and robust
stenciled shadow volumes for hardware-accelerated rendering.

HEIDMANN, T. 1991. Real shadow real time. IRIS Universe,
28–31.

KIM, B., KIM, K., AND TURK, G., 2008. A shadow volume algo-
rithm for opaque and transparent non-manifold casters.

KOLIVAND, H., AND SUNAR, M. S. 2013. A survey of shadow
volume algorithms in computer graphics. IETE Tech Rev 2013
30, 38–46.

MCGUIRE, M., HUGHES, J. F., EGAN, K., KILGARD, M., AND
EVERITT, C. 2003. Fast, practical and robust shadows. Tech.
rep., NVIDIA Corporation, Austin, TX, Nov.

STICH, M., WÄCHTER, C., AND KELLER, A. 2007. Efficient
and robust shadow volumes using hierarchical occlusion culling
and geometry shaders. In GPU Gems 3, Addison Wesley Profes-
sional, H. Nguyen, Ed., 239–256.

VAN WAVEREN, J., 2005. Shadow volume construction.

WILLIAMS, L. 1978. Casting curved shadows on curved surfaces.
SIGGRAPH Comput. Graph. 12, 3 (Aug.), 270–274.

Russia, Vladivostok, September 16-20, 2013 59

