
Heterogeneous System Architecture (HSA): Software Ecosystem for

CPU/GPU/DSP and other accelerators

Timour Paltashev

Graphics IP Engineering Division

Advanced Micro Devices, Sunnyvale, California, U.S.A.

{timour.paltashev}@amd.com

Abstract

This STAR report describes the essentials of Heterogeneous

System Architecture (HSA) with introduction and motivation for

HSA, architecture definition and configuration examples. HSA

performance advantages are illustrated on few sample workloads.

Kaveri APU - first AMD HSA-based product is briefly described.

Keywords: GPU, CPU, DSP, APU, heterogeneous architecture.

1. INTRODUCTION

HSA is a new hardware architecture that integrates heterogeneous

processing elements into a coherent processing environment.

Coherent processing as a technique ensures that multiple

processors see a consistent view of memory, even when values in

memory may be updated independently by any of those

processors. Memory coherency has been taken for granted in

homogeneous multiprocessor and multi-core systems for decades,

but allowing heterogeneous processors (CPUs, GPUs and DSPs)

to maintain coherency in a shared memory environment is a

revolutionary concept. Ensuring this coherency poses difficult

architectural and implementation challenges, but delivers huge

payoffs in terms of software development, performance and

power. The ability for CPUs, DSPs and GPUs to work on data in

coherent shared memory eliminates copy operations and saves

both time and energy. The programs running on a CPU can hand

work off to a GPU or DSP as easily as to other programs on the

same CPU; they just provide pointers to the data in the memory

shared by all three processors and update a few queues. Without

HSA, CPU-resident programs must bundle up data to be

processed and make input-output (I/O) requests to transfer that

data via device drivers that coordinate with the GPU or DSP

hardware. HSA allows developers to write software without

paying much attention to the processor hardware available on the

target system configuration with or without GPU, DSP, video

hardware and other types of specialized compute accelerators.

Figure 1: Generic HSA Accelerated Processing Unit (APU)

Fig.1 depicts generic HSA APU with multiple CPU cores and

accelerated compute units (CU) which may include any type.

2. HSA ESSENTIAL FEATURES FOR USERS

Essential HSA features include:

 Full programming language support

 User Mode Queueing

 Heterogeneous Unified Memory Access (hUMA)

 Pageable memory

 Bidirectional coherency

 Compute context switch and preemption

Shared page table support. To simplify OS and user software,

HSA allows a single set of page table entries to be shared between

CPUs and CUs. This allows units of both types to access memory

through the same virtual address. The system is further simplified

in that the operating system only needs to manage one set of page

tables. This enables Shared Virtual Memory (SVM) semantics

between CPU and CU.
Page faulting. Operating systems allow user processes to access

more memory than is physically addressable by paging memory to

and from disk. Early CU hardware only allowed access to pinned

memory, meaning that the driver invoked an OS call to prevent

the memory from being paged out. In addition, the OS and driver

had to create and manage a separate virtual address space for the

CU to use. HSA removes the burdens of pinned memory and

separate virtual address management, by allowing compute units

to page fault and to use the same large address space as the CPU.
User-level command queuing. Time spent waiting for OS kernel

services was often a major performance bottleneck in prior

throughput computing systems. HSA drastically reduces the time

to dispatch work to the CU by enabling a dispatch queue per

application and by allowing user mode process to dispatch

directly into those queues, requiring no OS kernel transitions or

services. This makes the full performance of the platform

available to the programmer, minimizing software driver

overheads.
Hardware scheduling. HSA provides a mechanism whereby the

CU engine hardware can switch between application dispatch

queues automatically, without requiring OS intervention on each

switch. The OS scheduler is able to define every aspect of the

switching sequence and still maintains control. Hardware

scheduling is faster and consumes less power.
Coherent memory regions. In traditional GPU devices, even

when the CPU and GPU are using the same system memory

region, the GPU uses a separate address space from the CPU, and

the graphics driver must flush and invalidate GPU caches at

required intervals in order for the CPU and GPU to share results.

HSA embraces a fully coherent shared memory model, with

unified addressing. This provides programmers with the same

coherent memory model that they enjoy on SMP CPU systems.

Unified Coherent Memory

CPU

1

CPU

N
…

CPU

2

HSA
CU

1

HSA
CU

2

HSA
CU

M-1

HSA
CU

M …

HSA
CU

3

HSA
CU

M-2

The 23rd International Conference on Computer Graphics and Vision

48 GraphiCon'2013

This enables developers to write applications that closely couple

CPU and CU codes in popular design patterns like producer-

consumer. The coherent memory heap is the default heap on HSA

and is always present. Implementations may also provide a non-

coherent heap for advance programmers to request when they

know there is no sharing between processor types.

The HSA platform is designed to support high-level parallel

programming languages and models, including C++ AMP, C++,

C#, OpenCL, OpenMP, Java and Python, as well as few others.

HSA-aware tools generate program binaries that can execute on

HSA-enabled systems supporting multiple instruction sets

(typically, one for the LCU and one for the TCU) and also can run

on existing architectures without HSA support.

Program binaries that can run on both CPUs and CUs contain

CPU ISA (Instruction Set Architecture) for CPU unit and HSA

Intermediate Language (HSAIL) for the CU. A finalizer converts

HSAIL to CU ISA. The finalizer is typically lightweight and may

be run at install time, compile time, or program execution time,

depending on choices made by the platform implementation.

HSA architecture example platform is depicted on Figure 2.

Figure 2: HSA architecture example platform.

3. HSA IMPLEMENTATION AND CONCEPTS

Unified Programming Model. General computing on GPUs has

progressed in recent years from graphics shader-based

programming to more modern APIs like DirectCompute and

OpenCL™. While this progression is definitely a step forward,

the programmer still must explicitly copy data across address

spaces, effectively treating the GPU as a remote processor.

Task programming APIs like Microsoft’s ConcRT,

Intel’s Thread Building Blocks, and Apple’s Grand Central

Dispatch are recent innovations in parallel programming. They

provide an easy to use task-based programming interface, but only

on the CPU. Similarly, Thrust from NVIDIA provides a similar

solution on the GPU.

HSA moves the programming bar further, enabling

solutions for task parallel and data parallel workloads as well as

for sequential workloads. Programs are implemented in a single

programming environment and executed on systems containing

both CPUs and CUs.

HSA provides a programming interface containing

queue and notification functions. This interface allows devices to

access load-balancing and device-scaling facilities provided by

the higher-level task queuing library. The overall goal is to allow

developers to leverage both CPU and CU devices by writing in

task-parallel languages, like the ones they use today for multicore

CPU systems. HSA’s goal is to enable existing task and data-

parallel languages and APIs and enable their natural evolution

without requiring the programmer to learn a new HSA-specific

programming language. The programmer is not tied to a single

language, but rather has available a world of possibilities that can

be leveraged from the ecosystem.

Queuing. HSA devices communicate with one another using

queues. Queues are an integral part of the HSA architecture.

CPUs already send compute requests to each other in queues in

popular task queuing run times like ConcRT and Threading

Building Blocks. With HSA, both CPUs and CUs can queue tasks

to each other and to themselves.

The HSA runtime performs all queue allocation and destruction.

Once an HSA queue is created, the programmer is free to dispatch

tasks into the queue. If the programmer chooses to manage the

queue directly, then they must pay attention to space available and

other issues. Alternatively, the programmer can choose to use a

library function to submit task dispatches.

A queue is a physical memory area where a producer places a

request for a consumer. Depending on the complexity of the HSA

hardware, queues might be managed by any combination of

software or hardware. Queue implementation internals are not

exposed to the programmer.

Hardware-managed queues have a significant performance

advantage in the sense that an application running on a CPU can

queue work to a CU directly, without the need for a system call.

This allows for very low-latency communication between devices,

opening up a new world of possibilities. With this, the CU device

can be viewed as a peer device, or a co-processor.

CPUs can also have queues. This allows any device to queue

work for any other device.

4. CONCLUSION

The current state of the art of GPU/DSP and other high-

performance computing is not flexible enough for many of today’s

computational problems.

HSA is a unified computing framework. It provides a single

address space accessible to both CPU and GPU (to avoid data

copying), user-space queuing (to minimize communication

overhead), and preemptive context switching (for better quality of

service) across all computing elements in the system. HSA

unifies CPUs and GPU/DSPs into a single system with common

computing concepts, allowing the developer to solve a greater

variety of complex problems more easily.

5. REFERENCES

[1] Heterogeneous System Architecture: A Technical Review,

Advanced Micro Devices, Rev. 1.0.

[2] http://developer.amd.com/resources/heterogeneous-

computing/

About the author

Timour Paltashev is a professor at Northwestern Polytechnic

University, College of Engineering and Senior Manager in

Advanced Micro Devices. His contact email is

timpal@mail.npu.edu.

CPU

GPU

Audio

Processo
r

Video

Hardware

DSP Image

Signal
Processing

Fixed

Functio
n

Acctr

Encode

Decode

Sh
ar

ed
 M

em
o

ry
 C

o
h

er
en

cy
, U

se
r

M
o

d
e

Q
u

eu
es

Russia, Vladivostok, September 16-20, 2013 49

http://developer.amd.com/resources/heterogeneous-computing/
http://developer.amd.com/resources/heterogeneous-computing/
mailto:timpal@mail.npu.edu

