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Abstract 

This paper discusses self-calibration method for a multi stereo-rig 

passive face recognition system with overlapping views of 

individual cameras. 

Two cameras fixed inside a rig can be easily calibrated in a 

factory environment so each rig will be considered individually 

calibrated.  It is incredibly important to estimate relative positions 

and orientations of the stereo rigs with respect to each other 

without using any calibration objects. We propose calibration 

method using point correspondences between all cameras. 

In this paper we present a novel more robust method that 

calculates metric reconstruction. Our method reconstructs 3D 

point set for every stereo rig from multiple dynamic scene images. 

Point correspondences are established by tracking points over all 

images captured simultaneously. So pairing between points is 

known but data keeping outliers. Then RANSAC technique is 

applied to reject outliers and finally 3D motion is estimated. 

In this paper it is shown that the presented method can be 

accepted as sufficient in accuracy. Our method can be easily 

adopted for various numbers of stereo rigs. 

Keywords: Self-calibration, 3D motion estimation, stereo-rig. 

1. INTRODUCTION

Passive 3D face recognition system is the area of intense research 

over the past decade. A wide range of 3D acquisition 

technologies, with different cost and operation characteristics 

exists [1,10].The most cost-effective solution is to use several 

calibrated 2D cameras fixed inside a rig to capture images 

simultaneously, and to reconstruct a 3D surface [11] (Fig.1A).  

Figure 1: Passive 3D faces recognition system: A – common 

view; B – stereo-rigs. 

The term stereo rig is used in this paper to refer to any two-

camera system, which comprises a set of two cameras (with 

overlapping views) that are physically connected together and 
capture images simultaneously (Fig.1B). 

Passive 3D face recognition system using stereo-rigs demands an 

accurate calibration of the devices which includes, first, intrinsic 

parameter measurement and estimation of the relative poses of the 

cameras with respect to each other inside a rig, second, estimation 

of relative positions and orientations of the stereo rigs with respect 

to each other. Our paper focuses on the second part of the 

calibration procedure (estimation of relative positions and 
orientations of the stereo rigs with respect to each other). 

Roughly speaking, there are two groups of calibration methods. 

The first group is based on using of some object with known 

geometry (calibration pattern) or moving single feature like an 
LED [13, 15, 19]. 

One of such methods can be used for a calibration of two cameras 

fixed inside each rig. Due to the fact that calibration can be 

performed in a factory environment, stereo rigs are considered 

individually calibrated in this paper. Since the goal of this paper is 

to calibrate a multi-camera system without using any calibration 
objects, methods from the first group are out of our consideration. 

The second and most suitable group of methods is self-calibration. 

Both the scene shape (3D structure) and the camera parameters 

(motion) consistent with a set of correspondences between scene 

and image features are estimated using this group of methods [3, 
8, 17, 20]. 

The main part of calibration literature from the mentioned second 

group of calibration methods concerns extrinsic calibration. The 

goal of extrinsic calibration is to determine the 3D rotation and 

translation (3D motion) parameters relative to a fixed coordinate 

system. The estimations are based on 2D point features as they 

appear in an image sequence. Such methods are called structure 

from motion (SFM) methods.  Usually 3D motion estimation 

methods involve two steps: first, 2D motion estimation that might 

be represented by 2D displacement vector field and, second, 
calculation of 3D motion from 2D displacements. 

We propose to use 3D displacements for 3D motion estimation in 

this paper instead of using 2D displacement. We have 2D features 

as an input of our algorithm. We reconstruct 3D point set for 

every stereo rig using given calibration. So we receive sets of 3D 

displacements (keeping outliers) that can be used for estimating of 

3D motion between 3D point sets (and consequently between 

stereo rigs). Such kind of 3D motion estimation methods using 3D 
points are sometimes called 3D alignment [16]. 

There are two main approaches to the problem of 3D motion 

estimation. If pairing between 3d points is known, closed form 

(analytic) solution is suitable [2, 6]. But analytic solution is 

breaking down in presence outliers (even if we have only one 

outlier). If pairing between points is unknown, iterative algorithms 

that start by matching nearby points and then update the most 

likely correspondence can be used [4].(See [13] for an overview 

of applications.). Iterative algorithms require good initialization 

and they are sensitive to overlap and outliers [4]. Some 

approaches are proposed to deal with 2D feature correspondences 
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selection for robust camera calibration [12, 14, 18, 20]. However, 
reliable and automatic SFM is a difficult problem so far [18]. 

The paper is organized as follows. The proposed method is 

described in Section 2. Experiments on several multi-camera 

sequences are presented in Section 3. Conclusions are given in 
Section 4. 

2. SELF–CALIBRATED METHOD

2.1 The overview of multi stereo-rig self-
calibration method 

The overview of multi stereo-rig self-calibration method we 

propose is shown in Fig.2.  

Figure 2: The overview of multi stereo-rig self-calibration 

method: A – captured image sequence, B – 2D features detection, 

C - 2D features matching, D – track generation 

The method mainly includes two stages, corresponding 3D feature 

extraction and robust 3D motion estimation. To obtain 

corresponding points, we let a person walks between stereo rigs 
(Fig.1A).  

By analyzing the motion of human body from synchronous video 

sequences, we can find 2D points suitable for corresponding point 

(Fig.1B). Matching is performed to find corresponding points on 
the images captured simultaneously (Fig.1C). 

Once we have pairwise matches, next step is to link up matches to 

form tracks (Fig.1D). Each track can potentially grow up to 

become eventually a 3D point. Some tracks might be inconsistent. 

Track should have length equal three in order to be consistent. 

We remove inconsistent tracks on the feature extraction stage. 

Then generated tracks are verified by 3D triangulation. On this 

step reconstructed 3D points should have distance from the 

appropriate stereo rig within certain reasonable range (for 

example, from 0.5 m to 1.5 m). 

The next stage of our method is robust 3D motion estimation. 

2.2 3D motion estimation algorithm based on 
RANSAC 

The basic 3D alignment algorithms presented in literature are 

sensitive to outliers in the data [16]. As 3D tracks (and appropriate 

points correspondences) automatically extracted from images will 

almost always contain false matches, robustness with respect to 

outliers is very important. In this section, we will describe 

algorithm for this. 

2.2.1 Problem definition 

  Given a set of point correspondences 

 {(         )   
    |     } measured in two 

Cartesian coordinate systems (left stereo rig, right stereo rig) find 

the rigid transformation (rotation and 

translation)    , between the two 

systems so that for corresponding points 

   (from left coordinate system) and   
(from right coordinate system) we have: 

        . 

To achieve robustness with respect to 

false correspondences, the well-known 

(adaptive) RANdom SAmple Concensus 

(RANSAC) approach [7, 9] can be 

applied. RANSAC is a very generic 

method for rejecting outliers. Here, we 

will describe a robust motion estimation 

algorithm based on RANSAC and one of 

the basic 3D alignment algorithms [6].  

2.2.2 RANSAC based algorithm 

The motion of point   from the left rig 

coordinate system can be expressed as 

   [        ]
       , where   

is the appropriate point in the right rig 

coordinate system, the orthogonal matrix 

  describes rotation and vector   

describes translation of   . We assume 

that camera geometry is described by perspective projection with 

intrinsic camera parameters  

  (
     
     
   

), where   and   are the effective focal 

lengths,   is the skew parameter, and (     )
 
 is the principal 

point. 

RANSAC repeatedly samples a small subset      containing 

  point correspondences, and generates a hypothesis for the 

solution using only the sample   .  

  has to contain at least four non-planar 3D points. Each of the 

multiple solution candidates generated by one of the appropriate 

algorithm [6] can be treated as a single hypothesis  . Each 

hypothesis   is describes appropriate motion (     ) which is in 

turn a candidate of a solution of the whole task.  

Each hypothesis is evaluated by counting how many 3D point 

correspondences are consistent with it. A correspondence 
(     )  is considered consistent with a hypothesis   if a 

suitable error measure   (     ) (error measure is presented 

further), is below a certain threshold  . 
We propose to use the following error measure   (     ) 
|
 
 
∑ |            | |        |(         )   

|    . 

The set of all consistent correspondences 

  {(     )   |  (     )   } is called the support set of 
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hypothesis  . The hypothesis with the largest support set    found 

during the iterations could be returned as the result of RANSAC. 

Usually, in the final step, the result is estimated from   . However 

this approach is based on the assumption that    is outlier-free, 

which in general cannot be guaranteed. So in our algorithm the 

result is estimated from  . As the influence of noise is typically 

lower when estimating from a large set of data (as opposed to the 

very small samples   ) we sampled a subset      containing 

more than 4 point correspondences (as usual – 10 point 

correspondences). 

Let us assume the data   contains a proportion   of outliers. The 

probability of getting at least one outlier-free sample    is 

     (  (   )
 ) , where   denotes the number of 

RANSAC iterations. In order to get at least one outlier-free 

sample       with a probability of (at least)   , we hence need 

to perform at least        (   ) (    )  iterations.

Typically, the proportion of outliers   is unknown. The number of 

iterations of the RANSAC algorithm can optionally be adapted 

on-line basing on the following approach [2]. Let us assume the 

largest support set    is founded during previous iterations. It can 

be used to derive an upper bound for  [2]:   
|  |

| |
. 

Hence, the required number of iterations is [2]: 

    |
   (    )

   (  (  
|  |

| |
)
 

)

|. 

If the proportion of outliers is very high, however,     might 

always stay very large leading to a very big running time. In order 

to enforce a certain limit on the running time, we specify a 

maximum number of iterations in the beginning and make sure 

that N not increased by using the following adaptation rule [2]: 

      (     ). 

When we have 3D motion (  and  ) calculated we can easily 

calculate position and orientation of all cameras relatively to each 

other. 

3. EXPEROMENTAL RESULTS

The algorithm described above was tested with synthetic and 

experimental data.  Synthetic data allows us to study the algorithm 

with respect to 3D image noise and to assess the conditions under 
which reliable results are expected. 

We used two types of experimental data: calibration points and 

real points. Calibration points are obtained from the images of 3D 

calibration object (chessboard pattern). Since the sizes of this 

pattern are known, we can use standard camera calibration 

algorithm and compare the results obtained with our self-

calibration algorithm with standard camera calibration algorithm. 

Calibration points are so accurate that the motion parameters 

obtained with this data and with the standard calibration algorithm 
may be considered as the ground-truth. 

The synthetic data consists of a hundred 3D points. The points in 

the set were chosen randomly from a uniform distribution within a 

cube of size 750x750x750 mm centered about the origin. The 

synthetic data was formed by adding noise to the individual points 

and transforming them to a new location. Then a percentage of 

outliers was injected in the point set. The noise added to each 

component was uncorrelated, isotropic and Gaussian, with zero 

mean and variable standard deviation. For each noise level one 

hundred trials were performed. The average response of algorithm 

over this hundred trials was used to compute several different 

error statistics for the calculated transformations. For absolute 

accuracy error estimation in this article we propose mean 3D 

position error. It is given by       
 

 
∑ |      ̂      ̂|
 
 ,

where  ̂ is rotation estimation,  ̂ is translation estimation.

3.1.1 Noise sensitivity analysis 

The noise added to the 3D points is Gaussian with standard 

deviation varying from 0.05 to 2.5 mm. A percentage of outliers 

that was injected in the dataset was established as 25%.  

We studied the behavior of the algorithm as a function of 3D point 

noise while s percentage of outliers is fixed. 

Fig.3A shows mean 3D position error with various standard 

deviation.  

Figure 3: Mean 3D position error: A - synthetic data for different 

standard deviation of noise; B – synthetic data for different outlier 

percentage; C – real data: images of moving human body; D – real 

data: images of static chessboard pattern. 

From fig.3A we can deduce the stability of self-calibration 

method against noise on the poses of the input 3D features.  

3.1.2 Outliers sensitivity analysis 

Percentage of outliers that was injected in the dataset was varying 

from 0 to 50 %. The noise added to the 3D points is Gaussian with 

standard deviation that was established as 1.0 mm. 

Fig.3B shows mean 3D position error with various percentages of 

outliers. From fig.3B we can deduce the quality of the estimation 

is independent of the outlier percentage. 

3.1.3 Experiments with real data 

Real experiments were conducted using image sequences of a 

moving person. Two stereo-rigs were calibrated by using 

chessboard pattern. Feature points of the body were found, filtered 

and reconstructed. Motion of these points was estimated using the 

proposed method.  
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Figure 4: 3D image of a head: A - two stereo rigs are not 

calibrated so two 3D images of the head are not aligned. B – after 

self-calibration. Two 3D images of the head are aligned after self-

calibration has performed using the proposed method.  

Fig.4A shows motion that exists between two 3D images of a 

head reconstructed using images from different rigs since extrinsic 

calibration between stereo rigs was not known. Then 3D motion 

between point sets was estimated using the proposed method. 

Fig.4B shows that two 3D images of the head are aligned after 3D 

motion estimation. 

Fig.3C and Fig.3D show mean 3D position error in various 

experiments with real data. Fig.3C shows mean 3D position error 

for 3D motion calculated using proposed method and points 

detected and matched on images of moving human body. Fig.3C 

shows mean 3D position error for 3D motion calculated using 

classical calibration method [19].   

From fig.3C and fig.3D we can deduce that accuracy of the 

presented method is worse than accuracy of common calibration 

techniques but it can be accepted as sufficient for some practical 

purposes. For example, proposed method can be used when using 
of calibration objects is undesirable or impossible. 

4. CONCLUSION

A new self-calibration algorithm has been proposed for obtaining 

3D motion parameters of a multi stereo-rig system over time 

without using any particular calibration apparatus. The idea is to 

use previously valid stereo-rig calibration parameters and image 

point matches to perform an alignment of two 3D paired point sets 

that contains outliers. The method is tested in both artificial data 

and real video sequences. The results show that our method is 

robust in datasets with up to 50% of outliers. The advantage of 

our approach is the fact that no calibration objects are needed to 

perform metric calibration of the multi stereo rig system as most 

reference approaches demand.  

The proposed method was evaluated against standard method for 
multi-rig calibration and proved to have acceptable in accuracy.   

5. REFERENCES

[1] Mostafa Abdelrahman, Asem M. Ali, Shireen Y. Elhabian, 

Ham Rara, Aly A. Farag  “A passive stereo system for 3D human 

face reconstruction and recognition at a distance”, CVPR 
Workshops, 2012. 

[2] K.S. Arun, T.S. Huang, S.D. Blostein Least-squares fitting of 

two 3-D point sets. IEEE Trans Pattern Anal Machine Intell 

9:698–700, 1987. 

[3] F.Bajramovic “Self-Calibration of Multi-Camera Systems . 
PhD thesis”,  Friedrich Schiller University of Jena ,2010. 

[4] D. Chetverikov, D. Stepanov, P. Krsek “Robust Euclidean 

alignment of 3D point sets: the Trimmed Iterative Closest Point 

algorithm” , Image and Video Computing (2005), vol.23 (3), 
p.p.299–309. 

[5] D.  Colbry “Human Face Verification by Robust 3D Surface 
Alignment.  PhD thesis”,  Michigan  State University ,2006. 

[6] D.W. Eggert, A. Lorusso, R.B. Fisher “Estimating 3-D rigid 

body transformations: a comparison of four major algorithms”, 
Machine Vision and Applications (1997) vol. 9, p.p. 272–290. 

[7] M. Fischler and R. Bolles. Random sample consensus: A 

paradigm for model fitting with applications to image analysis 
and automated cartography. CACM, 24(6)(1981),p.p.381–395. 

[8] A. Fusiello “Uncalibrated Euclidean reconstruction: a 

review”, International Journal of Image and Vision Computing, 

vol. 18, No.6-7 (2000), p.p.555-563 

[9] Hartley, R. and Zisserman, “A. Multiple View Geometry in 

Computer Vision (2nd ed.)”,Cambridge: Cambridge University 
Press, 2003. 

[10] Akihiro Hayasaka, Takuma Shibahara, Koichi Ito, Takafumi 

Aoki, Hiroshi Nakajima, Koji Kobayashi “A Passive 3D Face 

Recognition System and Its Performance Evaluation”, IEICE 

Trans.Fund. v. E91-A, p. 1974-1981, 2008. 

[11] Svetlana V. Korobkova, Archil Tsiskaridze “Face 

recognition system using 2D and 3D information fusion” , 
Proceedings of Graphicon 2011, pp. 153—156,  2011. 

[12] Y. Ma, S. Soatto, J. Kosecka and Shankar Sastry. “An 

Invitation to 3D Vision: From Images to Models”. Springer 
Verlag, December 2003. 

[13] F. Pedersini, A. Sarti, S. Tubaro “Accurate and simple 

geometric calibration of multi-camera systems”,  Signal 
Processing vol. 77, No.3 (1999), p.p. 309-334. 

[14] N. Snavely, S. M. Seitz, and R. Szeliski. Photo tourism: 

exploring photo collections in 3d. In SIGGRAPH ’06: ACM 
SIGGRAPH 2006 Papers, pages 835–846, 2006. 

[15] T. Svoboda “Quick guide to multi-camera self-calibration. 

Technical report”, Computer Vision Lab, Swiss Federal Institute 
of Technology, Zurich, 2003. 

[16] R. Szeliski “Computer Vision: Algorithms and 
Applications”. Springer, 2010. 

[17] B. Triggs “Autocalibration from Planar Scenes”.

Proceedings of the European Conference on Computer Vision 

(ECCV), vol. 1(1998),p.p. 89–105 

[18] X. Zhang, Y. Zhang, X. Zhang, T. Yang, X. Tong, H. Zhang A 

convenient multi-camera self-calibration method based on human 

body motion analysis. Proceedings of the Fifth International 

Conference on Image and Graphics, ICIG 2009, China, p.3-8, 

2009. 

[19] Z. Zhang. A flexible new technique for camera calibration. 

IEEE Transactions on Pattern Analysis and Machine Intelligence, 
Vol.22, No.11(2000), p.p. 1330-1334 

[20] Z. Zhang. “Motion and Structure From Two Perspective 

Views: From Essential Parameters to Euclidean Motion Via 

Fundamental Matrix”. Journal of the Optical Society of America , 

Vol.14, no.11, pages 2938-2950, 1997. 

About the author 

Oleg Stepanenko (Ph.D, Associate Professor) is a scientist at 

Vocord Company, Department of Advanced Developing. His 

contact email is oleg.stepanenko@vocord.ru 

Russia, Vladivostok, September 16-20, 2013 23

http://dblp.kbs.uni-hannover.de/dblp/Visualization.action?authorName=Mostafa+Abdelrahman
http://dblp.kbs.uni-hannover.de/dblp/Visualization.action?authorName=Asem+M.+Ali
http://dblp.kbs.uni-hannover.de/dblp/Visualization.action?authorName=Shireen+Y.+Elhabian
http://dblp.kbs.uni-hannover.de/dblp/Visualization.action?authorName=Ham+Rara
http://dblp.kbs.uni-hannover.de/dblp/Visualization.action?authorName=Aly+A.+Farag
http://dblp.kbs.uni-hannover.de/dblp/Search.action?q=passive+3D+face+recognition&_sourcePage=CtZmDYLqQIA1v6XhPePiCUOA6VJOBk-Ab5XuRxVhJ3c%3D&__fp=lzwawVEEDag%3D
http://dblp.kbs.uni-hannover.de/dblp/Search.action?q=passive+3D+face+recognition&_sourcePage=CtZmDYLqQIA1v6XhPePiCUOA6VJOBk-Ab5XuRxVhJ3c%3D&__fp=lzwawVEEDag%3D
http://dblp.kbs.uni-hannover.de/dblp/Search.action?search=&q=in%3A%22CVPR+Workshops%22
http://dblp.kbs.uni-hannover.de/dblp/Search.action?search=&q=in%3A%22CVPR+Workshops%22
http://dblp.kbs.uni-hannover.de/dblp/Search.action?search=&q=in%3A%222012%22
http://academic.research.microsoft.com/Author/3671911/akihiro-hayasaka
http://academic.research.microsoft.com/Author/3569727/takuma-shibahara
http://academic.research.microsoft.com/Author/47198436/koichi-ito
http://academic.research.microsoft.com/Author/1013303/takafumi-aoki
http://academic.research.microsoft.com/Author/1013303/takafumi-aoki
http://academic.research.microsoft.com/Author/45330293/hiroshi-nakajima
http://academic.research.microsoft.com/Author/6911990/koji-kobayashi
mailto:oleg.stepanenko@vocord.ru

	Graphicon2013_proceedings 20
	Graphicon2013_proceedings 21
	Graphicon2013_proceedings 22
	Graphicon2013_proceedings 23



