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Abstract 
A simple but effective multiframe demosaicking method is 
proposed. Its primary goal is to replace more expensive 
mechanical motion compensation systems. Therefore, it is 
designed to be easily implemented in hardware for consumer 
devices. The described multiframe demosaicking algorithm is 
suitable for mass production devices such as mobile phones or 
digital cameras. It is compared to a multiframe noise reduction 
of similar complexity. The comparison is based on computer-
based simulation of a camera being (unintentionally) shaken by 
a human operator. The following error measurements were 
taken: Mean Squared Error (MSE), Peak Signal to Noise Ratio 
(PSNR) and Normalized Color Difference (NCD) errors 
measurements were taken. 
Keywords: demosaicking, noise reduction, bilateral filtering, 
multiframe processing 

1. INTRODUCTION 

Digital cameras and so-called camera-phones are now widely 
spread. Although, image quality from them has improved 
drastically in recent years, still, it is not comparable to human 
vision capabilities especially under low light conditions. One of 
the main problems is sensor noise. 
Current cameras perform at their physical limits and photon 
noise is dominant. On a physical level, this type of noise can be 
reduced by increasing the number of photons detected by each 
cell on a sensor. Usually, the solutions are: increasing the 
optical efficiency of a lens system or increasing exposure times.  
Improving optical efficiency is expensive as the complexity of 
the lens grows disproportionately relative to its quality, not to 
mention that the camera often needs to be small in its 
application (e.g. a camera-phone). Longer exposures, in turn, 
produce motion blur which can be compensated mechanically 
or electronically. 
Taking into account the generally falling cost of electronic 
components electronic motion compensation becomes more and 
more attractive in terms of quality per unit cost. 
Both frame-based demosaicking and multiframe noise reduction 
are well developed areas in their own right. The combination of 
these two methods only recently received a proper attention [1]. 
However, there is still a lack of simple but effective methods 
which can be implemented in existing devices. 
In this paper a new method of multiframe demosaicking is 
proposed and compared to combination of simple frame-based 
demosaicking and multi-frame noise reduction. The comparison 
is carried out using computer-based simulation of a series of 
shots which are shifted and rotated, then mosaicked. After that, 
Poisson noise is added to simulate the photon noise of a photo 
sensor. This algorithm is an extension of the work described in 
[2]. 

2. ALGORITHM REQUIREMENTS 

The original prerequisite for the proposed algorithm is that it 
can be put into a camera image processing pipeline without a 
significant increase in cost. This leads to the following 
requirements: 
(a) The method should not consume too much memory (not 
more than 4 image frames) even if the technique involves 
merging many more frames. 
(b) It should be real-time or, in other words, the user should 
receive the result just after the shot (no time-consuming post 
processing is allowed). 
It is clear from the requirements that algorithm should be stream 
based and data should be accumulated and processed “on the 
fly”. 
Having many images of the same scene it is possible to use a 
wide variety of super-resolution algorithms. However, the 
requirements for memory and computational power restrict 
application of those methods inside digital still cameras and 
mobile phones. 

3. TEMPORAL BILATERAL DEMOSAICKING 

Having the classical bilateral filtering equation for image 
( )xf as in [3]: 

 ( ) ( ) ( ) ( ) ( )( )∫ ∫
+∞

∞−

+∞

∞−

− −−= ξxξxξξx dffscfkh d
1  (1) 

and normalization coefficient dk : 
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where ( )xξ −c  is the geometric closeness between the 
neighborhood centre x  and a nearby point ξ , ( ) ( )( )xξ ffs −  
measures the photometric similarity between the pixel at the 
neighborhood centre x  and that of a nearby point ξ . 

For the task of multiframe demosaicking it is possible to 
introduce an additional pixel weight coefficient responsible for 
trustworthiness of a pixel ( )ξw . In the situation when several 
frames are merged together some pixels may contain more 
pixels of a particular color. The greater the number of values in 
a given pixel position, the better the accuracy. Thus equations 
(1) and (2) become: 
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where ( )ξf̂  are the resultant mean values of the colors in the 
given locations, t is the index of the frame in a sequence, T is 
total number of frames available for fusion . By converting the 
equation in discrete space we have 
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Usually the photometric similarity function is defined as: 
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where 

 ( ) ( )( ) ( ) ( )yxfjifyxfjif ,,,, −=−δ  (8) 

Usually, ( ) ( )yxfjif ,, −  is selected as a suitable measure of 
distance between the two color values. In the scalar case, this 
may be simply the absolute difference of the pixel values or, 
since the photon noise increases with intensity, an intensity 
dependant version of it. It is possible to determine what the 
photometric similarity function should be in case of Poisson 
noise.  
In order to simplify the formulae and minimize the amount of 
computations the image samples can be converted to a space 
where the noise has a normal distribution (i.e. Gaussian). Also, 
it is assumed for simplicity that image under consideration has 
only one channel. The equations below can be easily extended 
for multi-channel images. The probability function relating to 
the difference of two image samples which are close in space is: 
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where 2σ  is variance of a random variable and µ  is the mean 
or its expected value. The probability that these two samples 
have the same value is 

 ( ) ( ) ( )










+
−

−
+

=−
= 22

2

22 2
)(exp

2

1

baba

babap
ba σσσσπ

µµ  (10) 

It can also be demonstrated that the standard deviation of both 
variables are the same 
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which is similar to equation (7). For the experiment the 
following conversion to the space with a normal distribution 
was used 

 ( ) ( )yxfyxf pn ,, =  (13) 

where pf  are the samples with a Poisson distribution and nf  
are the samples with a normal distribution. 

In order to reduce the amount of computations used a simplified 
spatial penalty function was used: 
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The multiframe bilateral demosaicking algorithm was applied 
on a 5×5 neighborhood with 2== MN . 

The described equations can be optimized in order to minimize 
memory usage on a computational device. Equations (5) and (6) 
allow accumulation of the intermediate results frame buy frame.  

By storing numerator and denominator dk  of equation (5) as 
two separate frames in memory it is possible accumulate data 
frame by frame. When no more frames are expected in a 
sequence the final result of computation can be achieved by 
dividing accumulated numerator  
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by denominator dk  from equation (6). 

4. GLOBAL MOTION ESTIMATION ON 
MOSAICKED IMAGES 

As the global motion estimation was not an essential part of the 
comparison and the simplest exhaustive search was taken as a 
basis. 
It is important to stress out that there was no novelty introduced 
for global motion estimation in this paper. Motion estimation 
was not a goal of this research. Any state of the art research 
results on global motion estimation could be used here. 
Therefore the comparison of accuracy of used global motion 
estimation (ME) algorithm was outside of the scope of this 
paper. 
The same global motion estimation coefficients were used for 
both compared methods and therefore the relative accuracy of 
demosaicking methods should be unaffected by the accuracy of 
the global motion estimation. However, the algorithm for 
motion estimation is explained below for the reproducibility of 
the results. 
It was assumed that global motion of the frame can be described 
as an affine transform with a relatively small number of 
coefficients so that for small area of image it can simply be 
defined as a shift in two dimensions (see Figure 1). 

 

Figure 1:  Global motion estimation using block matching. The 
proposed model assumes that if rotation is small ( °−° 20 ) it 

can be neglected for motion blocks (32x32 pixels). Only shifts 
are taken into account. 
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Equation (15) and condition (16) define this: 
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where  

 1,1 1221 <<<< aa  (16) 

 
A limited number of blocks with maximal contrast were 
selected. The target is to find shifts in these blocks and to 
calculate the global motion using linear regression [4] or robust 
fitting. Figure 1 illustrates this. 
The exhaustive search block matching algorithm was adapted 
from [5]. It was modified to introduce a penalty term for large 
motion vectors. In cases where two vectors exist with an equal 
cost the shortest will be selected. 
The precision of motion estimation can be optimized further 
with a priori knowledge that the transform contains only 
rotation and shift. This condition can be described as follows: 
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As the rotation is small, the αcos  component can be replaced 
by 1 . Let c  be: 

 αsin=c  (18) 

Hence: 
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The number of transform coefficients is thereby reduced from 6 
to 3 making linear regression methods more effective. 
The difference between classical motion estimation techniques 
and the proposed approach is that it is required to work with 
mosaicked images. The mosaicked images can be demosaicked 
before motion estimation but this is not the most precise or 
most computationally efficient way. The proposed method uses 
mosaicked (RAW) images for motion estimation. It will be 
shown that it is possible to obtain pixel precise motion estimate 
vectors using mosaicked data. 
The basic operation in motion estimation is a measure of 
similarity between two regions of images. In our case the mask 
of existence of the given color in a given position is available, 
which simplifies the task. Let us assume that the penalty is the 
absolute difference between the two colors at a given pixel. 
Then it is possible to say that having no particular color in the 
mask should not add a penalty. This can be formalized as 
follows 
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where C  is number of colors used in a sensor (usually 3 or 4), 
( )2211 ,,, yxyxp  is the penalty term for pixels in locations 11, yx  

and 22 , yx  respectively. Also, 1s  denotes a sample of the first 

image, 1m  is a mask value for the first image, 2s  and 2m  are 
defined similarly for the second image. 
For some offsets there will be situations when all pixels 
between two block of image are unmatched according to color 
masks. In such conditions the penalty will be zero no matter 
what are the contents of the image. 
In order to avoid such conditions the values of pixels are 
blurred spatially (separately by color planes) together with 
corresponding color masks. 
The experiments carried out by the author show that Gaussian 
filtering with a small 3×3 kernel of one of the images (including 
mask) improves the accuracy of the motion estimation for Bayer 
pattern. 

Then, the penalty or difference measure ( )2211 ,,, yxyxP  for the 
block of pixels with dimensions N  and M  will be 
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j
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Square blocks of pixels with dimensions M = N = 32 were used 
for in this research. 
The resultant motion estimation algorithm used in this research 
can be described as following steps: 

1. Split the first frame in the sequence into blocks 32 by 
32 

2. Select 50% of these blocks with maximal contrast 
3. Let us assign the index k for each block having 

[ ]Kk K1∈ , where K  is total number of selected 
blocks 

4. Store integer coordinates of the centers of the blocks 
as ( )kk yx ,  

5. For each block with coordinates of the ( )kk yx ,  find 
the corresponding block on a given frame (different 
from first one) with integer coordinates ( )kk yx ′′ ,  
which minimizes ( )kkkk yxyxP ′′ ,,,  

6. Using multivariate linear regression algorithm [4] on 
initial and resultant sets of coordinates ( )kk yx ,  and 

( )kk yx ′′ ,  find coefficients c , 13a , and 23a  for this 
frame 

5. COMPARRISON OF THE RESULTS USING 
SIMULATION OF NOISE AND SHAKE 

There methods were compared using raw images generated 
from “Kodak Image Set” [6]. Images were downscaled in order 
to reduce simulation time. The aim was to reproduce the image 
sequence from the real camera. Using real image sequence it is 
difficult to evaluate the accuracy of described methods as it is 
impossible to get the original reference image. By contrast 
when using a simulation the reference image is known in 
advance.  
The following assumptions were used for the simulation 
process: 

1. Overall exposure time of a sequence of shots is less 
than ¼ second 

2. There is only rotation and shift of the image taking 
place (no scaling or second order distortions) 

3. Rotation is no more than 5 degrees between any two 
images in a sequence 
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For error measurements MSE, PSNR, NCD formulae were 
used. MSE and PSNR are: 
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It is assumed that color values are within the range [ ]1,0 . 

NCD stands for Normalized Color Difference. It was used 
previously to quantify the perceptual color difference and is 
defined as follows: 
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where rL , ru , rv are lightness and chrominance components of 
the result image in CIELUV color space [7] at the pixel’s 
location ( )yx, , oL , ou , ov  are the same color components that 
were in the original image. 
The simulation was performed for different number of frames in 
a sequence varying from 1 to 49. The results are shown in 
Table I. The Multiframe Bilateral Demosaicking shows best 
results for MSE, PSNR and NCD measures. 
Variable Number of Gradients Demosaicking [8] is one of the 
best non-iterative algorithms described in scientific 
publications. The operational neighborhood for both these 
methods is 5×5 pixels. However, the computational efficiency 
of Multiframe Temporal Demosaicking is better than for 
Temporal Variable Number of Gradients Demosaicking. 
Reference, noisy, and processed images are shown in Figure 2. 

(a) (b) (c) (d) 

Figure 2:  From left to right: (a) original image, (b) one of the noisy images form the sequence of 9 images, (c) result of temporal 
variable number of gradients demosaicking using 9 images, (d) result of proposed method using 9 images.  

TABLE I: ACCURACY OF THE RESULTS OF TEMPORAL VARIABLE 
NUMBER OF GRADIENTS DEMOSAICKING COMPARED TO MULTIFRAME 
BILATERAL DEMOSAICKING ON THE KODAK IMAGE SET USING MSE, 

PSNR, AND NCD ERROR MEASUREMENTS 

Temporal Variable Number 
of Gradients 

Multiframe Bilateral 
Demosaicking 

Number of 
images in a 
sequence 

MSE PSNR NCD MSE PSNR NCD 

1 0.00966 20.22 0.301 0.00414 24.19 0.181 

4 0.00262 25.90 0.154 0.00236 26.57 0.116 

9 0.00151 28.38 0.110 0.00151 28.50 0.091 

16 0.00111 29.80 0.089 0.00108 29.97 0.076 

25 0.00091 30.76 0.077 0.00079 31.29 0.065 

36 0.00083 31.27 0.069 0.00066 32.12 0.059 

49 0.00077 31.67 0.065 0.00057 32.81 0.055 

 

 
Figure 3:  Dependence of normalized color difference from 

number of images available for fusing. 
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As can be seen from Table 2 and also from Figure 2, multiframe 
demosaicking is more effective than temporal noise reduction 
for a small number of frames. As the number of frames 
increases these two methods show comparable performance. On 
the other hand, multiframe temporal demosaicking is at least 
marginally better for each case in the simulation. 
As can also be seen from the graph in Figure 3 both methods 
become more effective as the number of frames in the set 
increases. 
It is important to note that the proposed method of Multiframe 
Bilateral Demosaicking is not based on the specific structure of 
a classic Bayer filter layout and can be easily adapted for 
alternative filter patterns. 

6. CONCLUSION 

The proposed method of multiframe demosaicking has shown 
an advantage over temporal noise reduction on sequences with 
number of frames varying from 1 to 49. It is also simple to 
implement in the hardware of modern digital camera or a 
mobile phone. To get better results with a small number of 
images in a set, multiframe demosaicking can be improved in an 
adaptive way such as a spatial filtering kernel for uniform 
surfaces and temporal filtering for edges. It should be 
mentioned that one of the disadvantages of the proposed 
method is absence of local motion estimation. The method can 
be significantly improved by detecting the areas of local motion 
between the frames. Thus, by matching the moved areas it 
would be possible to reduce the noise without introducing 
motion blur. 
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