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Abstract 
We present a comparative study of GPU ray tracing 
implemented for two different types of ray-triangle intersection 
algorithms used with BVH (Bounding Volume Hierarchy) 
spatial data structure evaluated for performance on three static 
scenes. We study how number of triangles placed in a BVH leaf 
node affects rendering performance. We propose GPU-
optimized SIMD ray-triangle intersection method evaluated on 
GPU for path-tracing and compare it’s performance with plain 
Moller-Trumbore and Unit Triangle intersection methods.  
Keywords: ray-triangle intersection, GPU programming, 
Direct3D, DirectCompute, performance study, ray tracing, 
bounding volume hierarches. 

1. INTRODUCTION 
While modern graphics cards (GPUs) allow for general 
computation in a parallel manner, one of the most prominent 
applications for a GPU is image synthesis. This is thanks to the 
inherent parallel nature of ray tracing and other global 
illumination algorithms – the decomposition of images into 
pixels provides a natural way of creating individual tasks for 
many parallel processors. Unlike the GPUs a few years ago, 
modern ones allow us full programmability similar to general 
CPUs, while the streaming computation model has its own 
specific issues. This has to be taken into account when adopting 
the data structures, traversal algorithms and intersection test 
routines for ray tracing on GPU architecture. 
Testing framework for this paper is based on formerly 
published papers that implement ray-tracing with spatial data 
structures in GPU. We use bounding volume hierarchies as 
described in [Gün07] and few different ray-triangle intersection 
methods, especially Moller-Trumbore [Möl97] and Unit 
Triangle [Woo05] routine. While performance of each of those 
algorithms was successfully studied separately, little attention 
was paid to how triangle-intersection method can affect spatial 
data structure traversal performance and vice versa. 
Furthermore, the performance has not been carefully compared 
on a current programmable GPU architecture, especially using a 
cross-vendor APIs like OpenCL, DirectCompute or C++ AMP. 
In this paper we first present such a comparison study dealing 
with efficiency of two different types of ray-triangle 
intersection algorithms for ray tracing on GPU. 
This paper is further structured as follows. Section 2 
summarizes the previous work of ray-triangle intersection on 
both CPU and GPU and performance comparison on those 
algorithms. Section 3 describes our choices for implementation. 
Section 4 shows the result from measurements on two GPUs for 
a set of scenes. Further it discusses the bottlenecks of a 
contemporary GPU architecture for ray tracing algorithms. 
Section 5 concludes the paper with possible perspectives for 
future work. 

 
Figure 1: Testing scenes: Stanford Buddha, Bunny and Dragon. 
 

2. PREVIOUS WORK 
Due to important role in computer graphics plenty of research 
has been done in the field of intersection testing algorithms. 
Algorithms proposed by Snyder and Barr [Sny87], Badouel 
[Bad90], Moller-Trumbore [Möl97], Woop [Woo05], Wald and 
Shevtsov et al. [She07],  have been successfully compared and 
studied [Seg01], [Are88], [Bad90], [Möl97]. In our research we 
divide algorithms on those which use precomputed data and on 
those which do not. Based on previous work we decided to use 
Moller-Trubmore algorithm  as a minimal storage, fast non-
precomputed type and Swen Woop’s Unit Triangle Test as the 
precomputed one as it requires only 48 bytes per triangle and 
doesn’t need to store vertex list. In this section we describe 
chosen algorithms along with BVH spatial data structure. 
We omit ray-packet algorithms in our work, because the 
coherence of the rays within the packet is very important since 
the vector instructions are fully used only if all rays go through 
the same branch of computation. In situations like physical 
simulation, collision detection or ray-tracing in scenes, where 
rays bounces into multiple directions (spherical or bumpmapped 
surfaces), coherent ray packets break down very quickly to 
single rays or do not exist at all. Ray-packets have proven 
[Ail09], [Hav10] to be ineffective in the above mentioned tasks. 
 
2.1 Moller-Trumbore’s Algorithm 
The algorithm proposed by Moller and Trumbore does not test 
intersection with the triangle’s embedding plane and therefore 
does not require the plane equation parameters. This is a big 
advantage mainly in terms of memory consumption especially 
on the GPU execution performance. The algorithm goes as 
follows [Möl97]: 
1. In a series of transformations the triangle is first translated 
into the origin and then transformed to a right-aligned unit 
triangle in the y-z plane, with the ray direction aligned with x. 
This can be expressed by a linear equation 
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Where E1 = V1 – V0, E2 = V2 – V0, T = O – V0, P = D × E2 and 
Q = T × E1.  
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2. This linear equation can now be solved to find the barycentric 
coordinates of the intersection point (u,v) and its distance t from 
the ray origin. 
 
2.2 Unit Triangle Algorithm 
The so called Unit Triangle intersection algorithm performs ray 
transformations and consists of two stages [Woo05]. First the 
ray is transformed, using a triangle specific affine triangle 
transformation, to a coordinate system, in which the triangle 
looks like the unit triangle ∆unit with the edge points (1, 0, 0), (0, 
1, 0) and (0, 0, 0). In the second stage, a simple intersection test 
of the transformed ray with the unit triangle is done. The affine 
triangle transformation to a triangle ∆ = (a, b, c) is an affine 
transformation T∆(x) = m · x + n with  m ∈ MatR(3 × 3) and n ∈ 
R3 that maps the triangle ∆ to the unit triangle ∆unit. 
 
2.3 Bounding Volume Hierarchies 
Bounding volume hierarchies were successfully implemented 
on GPU. Thrane and Simonsen [Thr05] in fact compare kd-
trees, uniform grids, and bounding volume hierarchies 
implemented on a GPU (2005-year hardware). They conclude 
the performance of BVHs is low, however higher than the 
performance of other two data structures when no ray packets 
are used. Carr et al. [Car06] implemented a variant of BVHs in 
combination with geometry images. Günther et al. [Gün07] use 
ray packets and yield interactive performance comparable or 
exceeding CPU-based implementation, but only for primary and 
shadow rays. Recently, Lauterbach et al. [Lau09] present an 
algorithm for fast BVH construction on a GPU, where they 
report performance comparable to kdtrees [Zho08] only for one 
scene. Torres et al. [Tor09] published an algorithm for stack-
less BVH traversal, where the use of stack is replaced by ropes 
connecting the nodes of a BVH in a sibling order. 

3. IMPLEMENTATION 
We have implemented a standalone compact program called 
RenderBro, that does not need the support of other 3rd party 
libraries along with Autodesk 3DS Max Plugin (both can be 
obtained at http://renderbro.com). Standalone program is 
capable of loading 3D scene form OBJ file format along with 
MTL materials files. 3DS Max plugin is capable to work with 
any kind of geometry loaded into editor in question. While the 
data structures are built offline on a CPU, the created data 
structures and scene geometry are transferred to a GPU and 
used for ray tracing algorithm entirely on the GPU. This 
methodology is sufficient to study the efficiency of shooting 
rays with different intersection algorithms. The traversal and 
intersection algorithms were implemented using Microsoft 
DirectX DirectCompute (Compute Shaders). Although this 
implementation limits target platforms to Microsoft Windows, 
it gives freedom to choose any GPU vendor to run GPU ray 
tracing, such as ATI/AMD, NVIDIA, Intel. DirectCompute 
code can be translated to C++ AMP version, which can be 
executed on any OS. We designed our solution to support as 
many hardware as possible, though only DirectX 10 compatible 
or newer hardware is supported. All shaders were compiled 
using latest Windows SDK 8.0 D3DCompiler_45. 
In Moller-Trumbore setting the geometry of a scene consisting 
solely of triangles is represented by a list Lv of vertices and list 
of materials Lm, where each triangle has a list of three indices to 
Lv plus an index to the Lm. In the Unit Triangle Test each 
triangle is represented directly by the affine transformation 
matrix. For our tests we implemented path-trace setting with 
physically-based importance sampled shading including Phong, 
Blinn-Phong, Lambertian Diffuse, Oren-Nayar Diffuse, 
Ashikhmin-Shirley, Glass and Perfect Mirror BSDFs. 

The BVHs were built in top-down fashion with surface area 
heuristics using the centroids of bounding boxes for scene 
triangles, following the paper by Günther et al. [Gün07]. Each 
BVH node consists of AABB extents and indices to child 
nodes. If it’s a leaf node, child indices are replaced with triangle 
offset along with triangle count. Those parameters are packed in 
32 byte BVH node structure. As a BVH does not need to store 
the min and max intersection distances along the ray, only the 
node address is saved to the stack. Stack does not need to be 
shortened to only several entries, which minimizes the number 
of traversal steps. Serialization of write operation may occur as 
threads record their information. Each BVH node can contain 
any number of triangles. This hypothetically reduces the 
number of nodes of a hierarchy along with GPU memory 
needed and gives space for GPU traversal optimization. 
Traversal is done with “while-if” method and listed in appendix 
8.3.  
 
3.1 GPU Optimized Intersections 
Moller-Trumbore and Unit triangle intersection tests are pretty 
straight-forward to implement and require a little knowledge of 
GPU architecture (see appendix, section 8.1). Such methods can 
experience poor register usage in architectures like VLIW 
which is used in many AMD GPUs. 
In this work we introduce a method that strongly benefit from 
denser GPU register usage. The main idea is to exploit the wide 
vector width SIMD (Single Instruction Multiple Data)  by 
testing intersection with one ray and four triangles at a time. 
Firstly, at precompute time we need to try to fill BVH with four 
triangles per node, so each node will contain four pointers to 
triangle list. If this is not possible we would have one triangle 
per node at worst. Secondly, we need to align GPU scene data 
according to BVH node structure. So if particular node has only 
one triangle, we need to place three degenerate triangles in a 
triangle list to fulfill the alignment. Of course, this will result in 
a GPU memory footprint by the means of performance. Thirdly, 
when performing BVH traverse we will be able to linearly fetch 
four triangles. Here we will need to construct additional vectors, 
like: 
 
// fetch triangle vertices 

float3 v01, v11, v21; 

float3 v02, v12, v22; 

float3 v03, v13, v23; 

float3 v04, v14, v24;  

... 

// construct per-component dir & orig vectors 

float4 dir4x = ray.dir.xxxx; 

float4 dir4y = ray.dir.yyyy; 

float4 dir4z = ray.dir.zzzz; 

float4 orig4x = ray.orig.xxxx; 

float4 orig4y = ray.orig.yyyy; 

float4 orig4z = ray.orig.zzzz; 

 

This allows us to compute temporary values on per-component 
SIMD basis, so all non SIMD operations like scalar addition 
and multiplication can be performed on each triangle 
simultaneously. For example, when performing scalar 
multiplication on GPU we use only one computing block while 
using new approach we will perform four multiplication 
operations by the same cost (see appendix 8.2 for full listing): 
 
// one triangle per pass 

float divisor = dot(pvec, e1); 

 

// four triangles per pass 

float4 divisor4 = pvecx*e1x + pvecy*e1y + 

pvecz*e1z; 
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Scene # Triangles per 
BVH node 

GPU Scene Size, 
MB 

Moller-Trumbore, 
seconds (average) 

Unit Triangle, 
seconds (average) 

Quad Moller-
Trumbore, 

seconds (average) 

Quad Unit 
Triangle, seconds 

(average) 

Buddha, 
100.006 
triangles 

1 9,35 103,33 103,94 - - 
2 7,26 95,13 95,44 - - 
3 6,38 92,72 93,07 - - 
4 5,89 90,91 91,17 89,67 85,36 
8 5,15 92,57 94,01 - - 
16 4,73 104,53 108,83 - - 

Bunny, 
69.678 

triangles 

1 6,51 72,18 73,52 - - 
2 4,87 65,48 66,67 - - 
3 4,45 62,07 63,94 - - 
4 3,99 60,98 62,17 57,35 52,84 
8 3,45 62,1 63,29 - - 
16 3,14 69,67 70,61 - - 

Dragon, 
100.012 
triangles 

1 9,35 210,89 211,67 - - 
2 7,26 210,71 211,61 - - 
3 6,35 210,68 211,44 - - 
4 5,86 210,52 211,21 173,37 168,85 
8 5,11 210,69 211,37 - - 
16 4,65 210,91 211,66 - - 

Table 1:  Test scene properties, number of triangles per BVH leaf node, rendering times for different ray-triangle intersection method 
for Path Trace setting with 500 samples and max ray depth of 16. GPU NVIDIA GeForce GT 240M. Image resolution: 800x600. 

 

Scene # Triangles per 
BVH node 

GPU Scene Size, 
MB 

Moller-Trumbore, 
seconds (average) 

Unit Triangle, 
seconds (average) 

Quad Moller-
Trumbore, 

seconds (average) 

Quad Unit 
Triangle, seconds 

(average) 

Buddha, 
100.006 
triangles 

1 9,35 49,27 49,43 - - 
2 7,26 49,78 50,31 - - 
3 6,38 51,94 52,18 - - 
4 5,89 54,15 55,16 34,3 31,37 
8 5,15 66,3 68,64 - - 
16 4,73 95,22 98,38 - - 

Bunny, 
69.678 

triangles 

1 6,51 33,27 33,79 - - 
2 4,87 33,57 34,41 - - 
3 4,45 34,68 35,55 - - 
4 3,99 38,05 39,06 23,9 20,64 
8 3,45 46,57 47,86 - - 
16 3,14 60,26 62,56 - - 

Dragon, 
100.012 
triangles 

1 9,35 99,27 99,75 - - 
2 7,26 99,41 100,96 - - 
3 6,35 104,6 105,61 - - 
4 5,86 108,35 111,5 57,99 54,91 
8 5,11 132,57 138,06 - - 
16 4,65 188,55 198,07 - - 

Table 2: Test scene properties, number of triangles per BVH leaf node, rendering times for different ray-triangle intersection methods 
for Path Trace setting with 500 samples and max ray depth of 16. GPU AMD Radeon HD 6870. Image resolution: 800x600. 

 

Scene # Triangles per 
BVH node 

GPU Scene Size, 
MB 

Moller-Trumbore, 
seconds (average) 

Unit Triangle, 
seconds (average) 

Quad Moller-
Trumbore, 

seconds (average) 

Quad Unit 
Triangle, seconds 

(average) 

Buddha 4 5,89 66,59 67,07 63,87 62,13 

Bunny 4 3,99 56,82 57,52 53,18 51,17 

Dragon 4 5,86 84,76 85,94 80,37 78,64 

Table 3:  Test scene properties, number of triangles per BVH leaf node, rendering times for different ray-triangle intersection methods 
for Path Trace setting with 1000 samples and max ray depth of 16. GPU NVIDIA GeForce GTX 560. Image resolution: 800x600. 

 

Scene # Triangles per 
BVH node 

GPU Scene Size, 
MB 

Moller-Trumbore, 
seconds (average) 

Unit Triangle, 
seconds (average) 

Quad Moller-
Trumbore, 

seconds (average) 

Quad Unit 
Triangle, seconds 

(average) 
Buddha 4 5,89 38,03 39,41 33,43 31,35 

Bunny 4 3,99 36,48 37,97 31,64 29,85 

Dragon 4 5,86 65,56 67,09 56,72 54,92 

Table 4:  Test scene properties, number of triangles per BVH leaf node, rendering times for different ray-triangle intersection methods 
for Path Trace setting with 1000 samples and max ray depth of 16. GPU AMD HD7850. Image resolution: 800x600. 
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4. RESULTS 
In this section we describe the results for measurement on three 
different scenes. We used scenes from individual objects 
courtesy of Stanford scene repository. These scenes are 
frequently used to test the performance of ray tracing and global 
illumination algorithms. Images were rendered in 800x600 
pixels resolution. All performance results in this paper were 
measured on 4 different GPUs: 
 
1. NVIDIA GeForce GT 240M (2009), 48 CUDA cores on 
1210MHz, 1 GByte of memory with bandwidth of 54.4 GB/sec. 
2. AMD HD 6870 (2010), 2 TFLOPs, 1120 Stream Processors 
on 900MHz, 1GByte of memory with bandwidth of 134.4 
GB/sec. 
3. NVIDIA GeForce GTX 560 (2011), 2.1 TFLOPs, 336 CUDA 
cores on 1620-1900MHz, 1 GByte of memory with bandwidth 
of 128 GB/s. 
4. AMD HD 7850 (2012), 1.76 TFLOPs, 1024 Stream 
Processors on 860MHz, 2GByte of memory with bandwidth of 
153.6 GB/s. 
 
The static properties of data structures for all three scenes along 
with average computation time for path-tracing are shown in 
Tables 1 and 2. Performance results for BVHs build with 
different count of triangles per leaf node are shown in columns 
4 and 5. Those results demonstrate that both the number of 
triangles per leaf node and the selected intersection method 
remarkably affect the performance. Results lead us to 
assumption that 4 triangles per leaf node is the optimal number 
for BVH traversal. 
Moller-Trumbore kernel had proven to be up to 5% faster than 
Unit Triangle in all tests while Quad Unit Triangle kernel 
shown to be up to 14% faster than Quad Moller-Trumbore. 
Our proposed Quad Unit-Triangle method brings moderate 
improvements of 5% to 11% on different generations of 
NVIDIA hardware except for Dragon scene setup on GT 240M 
GPU where it gain about 18% (tables 1 and 3). The situation is 
better on VLIW AMD/ATi hardware where it had shown to be 
up to 2x times faster than Moller-Trumbore (table 2). 
Furthermore we managed to analyze performance of the latest 
GPU generation AMD HD 7850 (table 4). As we expected, it 
showed consistent results in spite of new architecture and 
showed that Quad Unit-Triangle is approximately 20% faster 
than Moller-Trumbore method. 
Good results are gained for VLIW architecture used in AMD 
GPUs where more functional units are available and may be 
scheduled by the compiler or hardware simultaneously. 
According to description of VLIW architecture, it’s possible to 
perform compute operations along with memory access. We 
assume that this result is mainly achieved by performing more 
linear memory access to GPU global memory, avoiding 
branching by unrolling triangle-intersection loop and taking 
advantage of denser GPU register usage. 
Things are bit different for NVIDIA GPUs like Fermi which 
internally operate in a SIMD manner by ganging multiple (32) 
scalar threads together into SIMD warps. If a warp’s threads 
diverge, the warp serially executes both branches, temporarily 
disabling threads that are not on that path. Thus, ray tracing 
performance certainly can benefit from loop unrolling and more 
linear memory access. But the true cause of performance 
improvement lies much deeper in the GPU architecture and 
goes beyond the scope of this article.  

5. CONCLUSION AND FUTURE WORK 
We have shown that triangle intersection routines that tend to 
have good performance when used separately can behave badly 

when used together with acceleration structures like BVH’s due 
to incoherent memory access, lack of registers, and so on. So 
we focus our work on finding the robust combination of triangle 
intersection method and spatial data structure. For now it’s the 
Quad Triangle intersection method used along with BVH.  
As future work, the implementation could be extended by 
several other data structures, such as Kd-Trees, Uniform Grids 
along with few different ray-triangle intersection methods that 
can be efficiently mapped to GPUs and are likely to show 
unexpected results when used together. 
Furthermore, shown results can hardly be called ambiguous as 
they are pretty much view dependent. Dragon scene showed 
18% performance improvement on NVIDIA GT 240M for one 
angle of view. For different angles performance may vary, 
showing both improvement and deterioration. So, a part of our 
future work will be devoted to analysis of more complex and 
dynamic scenes where view dependency is not that great.    
Unfortunately, we didn’t manage to make in-depth performance 
study on latest discreet NVIDIA and integrated Intel GPUs. We 
would like to complete out research by taking this GPUs into 
account as a part of future work. 
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8. APPENDIX 
 
8.1 Casual Moller-Trumbore GPU Ray-Triangle 
Intersection Routine (HLSL code) 
 
float intersect(float3 orig, float3 dir, float3 v0, 

float3 v1, float3 v2) 

{ 

  float3 e1 = v1 - v0; 

  float3 e2 = v2 - v0; 

 

  float3 normal = normalize(cross(e1, e2)); 

  float b = dot(normal, ray.dir); 

 

  float3 w0 = ray.orig - v0; 

  float a = -dot(normal, w0); 

  float t = a / b; 

 

  float3 p = ray.orig + t * ray.dir; 

  float uu, uv, vv, wu, wv, inverseD; 

  uu = dot(e1, e1); 

  uv = dot(e1, e2); 

  vv = dot(e2, e2); 

 

  float3 w = p - v0; 

  wu = dot(w, e1); 

  wv = dot(w, e2); 

  inverseD = uv * uv - uu * vv; 

  inverseD = 1.0f / inverseD; 

 

  float u = (uv * wv - vv * wu) * inverseD; 

  if (u < 0.0f || u > 1.0f) 

    return -1.0f; 

 

  float v = (uv * wu - uu * wv) * inverseD; 

  if (v < 0.0f || (u + v) > 1.0f) 

    return -1.0f; 

 

  UV = float2(u,v); 

  return t; 

} 

 

8.2 Quad Moller-Trumbore GPU Triangle-Ray 
Intersection Routine (HLSL code) 
 
float intersect(float3 orig, float3 dir, float3 v01,             

float3 v11, float3 v21, float3 v02, float3 v12, float3 

v22, float3 v03, float3 v13, float3 v23, float3 v04, 

float3 v14, float3 v24) 

{ 

  float3 e11 = v11 - v01; 

  float3 e21 = v21 - v01; 
  float3 e12 = v12 - v02; 

  float3 e22 = v22 - v02; 
  float3 e13 = v13 - v03; 

  float3 e23 = v23 - v03; 
  float3 e14 = v14 – v04; 

  float3 e24 = v24 - v04; 

  float4 v0x = float4(v01.x, v02.x, v03.x, v04.x); 

  float4 v0y = float4(v01.y, v02.y, v03.y, v04.y); 

  float4 v0z = float4(v01.z, v02.z, v03.z, v04.z); 

  float4 e1x = float4(e11.x, e12.x, e13.x, e14.x); 

  float4 e1y = float4(e11.y, e12.y, e13.y, e14.y); 

  float4 e1z = float4(e11.z, e12.z, e13.z, e14.z); 

  float4 e2x = float4(e21.x, e22.x, e23.x, e24.x); 

  float4 e2y = float4(e21.y, e22.y, e23.y, e24.y); 

  float4 e2z = float4(e21.z, e22.z, e23.z, e24.z); 

  float4 dir4x = ray.dir.xxxx; 

  float4 dir4y = ray.dir.yyyy; 

  float4 dir4z = ray.dir.zzzz; 

  float4 pvecx = dir4y*e2z - dir4z*e2y; 

  float4 pvecy = dir4z*e2x - dir4x*e2z; 

  float4 pvecz = dir4x*e2y - dir4y*e2x; 

  float4 divisor = pvecx*e1x + pvecy*e1y + pvecz*e1z; 

  float4 invDivisor = float4(1, 1, 1, 1) / divisor; 

  float4 orig4x = ray.orig.xxxx; 

  float4 orig4y = ray.orig.yyyy; 

  float4 orig4z = ray.orig.zzzz; 

  float4 tvecx = orig4x - v0x; 

  float4 tvecy = orig4y - v0y; 

  float4 tvecz = orig4z - v0z; 

  float4 u4; 

  u4 = tvecx*pvecx + tvecy*pvecy + tvecz*pvecz; 

  u4 = u4 * invDivisor; 

  float4 qvecx = tvecy*e1z - tvecz*e1y; 

  float4 qvecy = tvecz*e1x - tvecx*e1z; 

  float4 qvecz = tvecx*e1y - tvecy*e1x; 

  float4 v4; 

  v4 = dir4x*qvecx + dir4y*qvecy + dir4z*qvecz; 

  v4 = v4 * invDivisor; 

  float4 t4; 

  t4 = e2x*qvecx + e2y*qvecy + e2z*qvecz; 

  t4 = t4 * invDivisor; 

  float t = -1.0f; 

 

  if(t4.x < t && t4.x > 0) 

    if(u4.x >= 0 && v4.x >= 0 && u4.x + v4.x <= 1)           

      t = t4.x; 

 

  if(t4.y < t && t4.y > 0) 

    if(u4.y >= 0 && v4.y >= 0 && u4.y + v4.y <= 1) 
      t = t4.y; 

     

  if(t4.z < t && t4.z > 0) 

    if(u4.z >= 0 && v4.z >= 0 && u4.z + v4.z <= 1) 
      t = t4.z; 

 

  if(t4.w < t && t4.w > 0) 

    if(u4.w >= 0 && v4.w >= 0 && u4.w + v4.w <= 1) 
      t = t4.w; 

     

  return t; 

} 

 

8.3 BVH Traversal Routine (HLSL code) 
 

struct BvhCell 

{ 

  float4 vmin; //float3 min + uint children 

  float4 vmax; //float3 max + uint count 

}; 

bool RayIntersectScene(Ray ray) 

{  

  uint stack[64], stackPos = 0, node = 0; 

  float t  = FLT_MAX; 

  bool intersect = false; 

  BvhCell cellLeft, cellRight; 

  BvhCell current = GetNode(node); 

 

  while(1) 

  {  

    uint count  = GetNodeTriangleCount(current); 

    if(count > 0) 

    { // Leaf Node  

      uint offset = GetNodeTriangleOffset(current); 

      intersect = RayTrisTest(ray, t, offset, count); 

      if(stackPos > 0) 
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      { 

        node = stack[--stackPos]; 

        current  = LoadNode(node); 

      } 

      else return intersected; 

    } 

    else 

    { 

      uint  leftNode  = GetLeftChildID(node); 

      uint  rightNode = GetRightChildID(node); 

      float lMin, rMin; 

      cellLeft  = GetNode(leftNode); 

      cellRight = GetNode(rightNode); 

      bool wantLeft = RayAABBTest(ray, cellLeft, lMin); 

      bool wantRight = RayAABBTest(ray, cellRight, 

                                   rMin); 

      if(wantLeft && wantRight) 

      { 

        bool firstLeft = leftMin < rightMin; 

        if(firstLeft) 

        { 

          current = cellLeft; 

          node    = leftNode; 

          stack[stackPos++] = rightNode; 

        } 

        else 

        { 

          current = cellRight; 

          node    = rightNode; 

          stack[stackPos++] = leftNode; 

        } 

      } 

      else if(wantRight) 

      { 

        current = cellRight; 

        node    = rightNode; 

      } 

      else if(wantLeft) 

      { 

        current = cellLeft; 

        node    = leftNode; 

      } 

      else 

      { 

        if(stackPos > 0) 

        { 

          node = stack[--stackPos]; 

          current = GetNode(node); 

        } else return intersected; 

      } 

    } 

  } 

  return intersected; 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

8.4 BVH Data Layout 
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