
GPU Ray Tracing – Comparative Study of Ray-Triangle Intersection
Algorithms

Vladimir Shumskiy
Moscow Institute of Physics and Technology

Air Graphics
v.a.shumskiy{@}gmail.com

Alexandre Parshin
Air Graphics

nomad{@}renderbro.com

Abstract
We present a comparative study of GPU ray tracing
implemented for two different types of ray-triangle intersection
algorithms used with BVH (Bounding Volume Hierarchy)
spatial data structure evaluated for performance on three static
scenes. We study how number of triangles placed in a BVH leaf
node affects rendering performance. We propose GPU-
optimized SIMD ray-triangle intersection method evaluated on
GPU for path-tracing and compare it’s performance with plain
Moller-Trumbore and Unit Triangle intersection methods.
Keywords: ray-triangle intersection, GPU programming,
Direct3D, DirectCompute, performance study, ray tracing,
bounding volume hierarches.

1. INTRODUCTION
While modern graphics cards (GPUs) allow for general
computation in a parallel manner, one of the most prominent
applications for a GPU is image synthesis. This is thanks to the
inherent parallel nature of ray tracing and other global
illumination algorithms – the decomposition of images into
pixels provides a natural way of creating individual tasks for
many parallel processors. Unlike the GPUs a few years ago,
modern ones allow us full programmability similar to general
CPUs, while the streaming computation model has its own
specific issues. This has to be taken into account when adopting
the data structures, traversal algorithms and intersection test
routines for ray tracing on GPU architecture.
Testing framework for this paper is based on formerly
published papers that implement ray-tracing with spatial data
structures in GPU. We use bounding volume hierarchies as
described in [Gün07] and few different ray-triangle intersection
methods, especially Moller-Trumbore [Möl97] and Unit
Triangle [Woo05] routine. While performance of each of those
algorithms was successfully studied separately, little attention
was paid to how triangle-intersection method can affect spatial
data structure traversal performance and vice versa.
Furthermore, the performance has not been carefully compared
on a current programmable GPU architecture, especially using a
cross-vendor APIs like OpenCL, DirectCompute or C++ AMP.
In this paper we first present such a comparison study dealing
with efficiency of two different types of ray-triangle
intersection algorithms for ray tracing on GPU.
This paper is further structured as follows. Section 2
summarizes the previous work of ray-triangle intersection on
both CPU and GPU and performance comparison on those
algorithms. Section 3 describes our choices for implementation.
Section 4 shows the result from measurements on two GPUs for
a set of scenes. Further it discusses the bottlenecks of a
contemporary GPU architecture for ray tracing algorithms.
Section 5 concludes the paper with possible perspectives for
future work.

Figure 1: Testing scenes: Stanford Buddha, Bunny and Dragon.

2. PREVIOUS WORK
Due to important role in computer graphics plenty of research
has been done in the field of intersection testing algorithms.
Algorithms proposed by Snyder and Barr [Sny87], Badouel
[Bad90], Moller-Trumbore [Möl97], Woop [Woo05], Wald and
Shevtsov et al. [She07], have been successfully compared and
studied [Seg01], [Are88], [Bad90], [Möl97]. In our research we
divide algorithms on those which use precomputed data and on
those which do not. Based on previous work we decided to use
Moller-Trubmore algorithm as a minimal storage, fast non-
precomputed type and Swen Woop’s Unit Triangle Test as the
precomputed one as it requires only 48 bytes per triangle and
doesn’t need to store vertex list. In this section we describe
chosen algorithms along with BVH spatial data structure.
We omit ray-packet algorithms in our work, because the
coherence of the rays within the packet is very important since
the vector instructions are fully used only if all rays go through
the same branch of computation. In situations like physical
simulation, collision detection or ray-tracing in scenes, where
rays bounces into multiple directions (spherical or bumpmapped
surfaces), coherent ray packets break down very quickly to
single rays or do not exist at all. Ray-packets have proven
[Ail09], [Hav10] to be ineffective in the above mentioned tasks.

2.1 Moller-Trumbore’s Algorithm
The algorithm proposed by Moller and Trumbore does not test
intersection with the triangle’s embedding plane and therefore
does not require the plane equation parameters. This is a big
advantage mainly in terms of memory consumption especially
on the GPU execution performance. The algorithm goes as
follows [Möl97]:
1. In a series of transformations the triangle is first translated
into the origin and then transformed to a right-aligned unit
triangle in the y-z plane, with the ray direction aligned with x.
This can be expressed by a linear equation

(

)

(

)

Where E1 = V1 – V0, E2 = V2 – V0, T = O – V0, P = D × E2 and
Q = T × E1.

EN2: Graphics

Russia, Moscow, October 01–05, 2012 61

2. This linear equation can now be solved to find the barycentric
coordinates of the intersection point (u,v) and its distance t from
the ray origin.

2.2 Unit Triangle Algorithm
The so called Unit Triangle intersection algorithm performs ray
transformations and consists of two stages [Woo05]. First the
ray is transformed, using a triangle specific affine triangle
transformation, to a coordinate system, in which the triangle
looks like the unit triangle ∆unit with the edge points (1, 0, 0), (0,
1, 0) and (0, 0, 0). In the second stage, a simple intersection test
of the transformed ray with the unit triangle is done. The affine
triangle transformation to a triangle ∆ = (a, b, c) is an affine
transformation T∆(x) = m · x + n with m ∈ MatR(3 × 3) and n ∈
R3 that maps the triangle ∆ to the unit triangle ∆unit.

2.3 Bounding Volume Hierarchies
Bounding volume hierarchies were successfully implemented
on GPU. Thrane and Simonsen [Thr05] in fact compare kd-
trees, uniform grids, and bounding volume hierarchies
implemented on a GPU (2005-year hardware). They conclude
the performance of BVHs is low, however higher than the
performance of other two data structures when no ray packets
are used. Carr et al. [Car06] implemented a variant of BVHs in
combination with geometry images. Günther et al. [Gün07] use
ray packets and yield interactive performance comparable or
exceeding CPU-based implementation, but only for primary and
shadow rays. Recently, Lauterbach et al. [Lau09] present an
algorithm for fast BVH construction on a GPU, where they
report performance comparable to kdtrees [Zho08] only for one
scene. Torres et al. [Tor09] published an algorithm for stack-
less BVH traversal, where the use of stack is replaced by ropes
connecting the nodes of a BVH in a sibling order.

3. IMPLEMENTATION
We have implemented a standalone compact program called
RenderBro, that does not need the support of other 3rd party
libraries along with Autodesk 3DS Max Plugin (both can be
obtained at http://renderbro.com). Standalone program is
capable of loading 3D scene form OBJ file format along with
MTL materials files. 3DS Max plugin is capable to work with
any kind of geometry loaded into editor in question. While the
data structures are built offline on a CPU, the created data
structures and scene geometry are transferred to a GPU and
used for ray tracing algorithm entirely on the GPU. This
methodology is sufficient to study the efficiency of shooting
rays with different intersection algorithms. The traversal and
intersection algorithms were implemented using Microsoft
DirectX DirectCompute (Compute Shaders). Although this
implementation limits target platforms to Microsoft Windows,
it gives freedom to choose any GPU vendor to run GPU ray
tracing, such as ATI/AMD, NVIDIA, Intel. DirectCompute
code can be translated to C++ AMP version, which can be
executed on any OS. We designed our solution to support as
many hardware as possible, though only DirectX 10 compatible
or newer hardware is supported. All shaders were compiled
using latest Windows SDK 8.0 D3DCompiler_45.
In Moller-Trumbore setting the geometry of a scene consisting
solely of triangles is represented by a list Lv of vertices and list
of materials Lm, where each triangle has a list of three indices to
Lv plus an index to the Lm. In the Unit Triangle Test each
triangle is represented directly by the affine transformation
matrix. For our tests we implemented path-trace setting with
physically-based importance sampled shading including Phong,
Blinn-Phong, Lambertian Diffuse, Oren-Nayar Diffuse,
Ashikhmin-Shirley, Glass and Perfect Mirror BSDFs.

The BVHs were built in top-down fashion with surface area
heuristics using the centroids of bounding boxes for scene
triangles, following the paper by Günther et al. [Gün07]. Each
BVH node consists of AABB extents and indices to child
nodes. If it’s a leaf node, child indices are replaced with triangle
offset along with triangle count. Those parameters are packed in
32 byte BVH node structure. As a BVH does not need to store
the min and max intersection distances along the ray, only the
node address is saved to the stack. Stack does not need to be
shortened to only several entries, which minimizes the number
of traversal steps. Serialization of write operation may occur as
threads record their information. Each BVH node can contain
any number of triangles. This hypothetically reduces the
number of nodes of a hierarchy along with GPU memory
needed and gives space for GPU traversal optimization.
Traversal is done with “while-if” method and listed in appendix
8.3.

3.1 GPU Optimized Intersections
Moller-Trumbore and Unit triangle intersection tests are pretty
straight-forward to implement and require a little knowledge of
GPU architecture (see appendix, section 8.1). Such methods can
experience poor register usage in architectures like VLIW
which is used in many AMD GPUs.
In this work we introduce a method that strongly benefit from
denser GPU register usage. The main idea is to exploit the wide
vector width SIMD (Single Instruction Multiple Data) by
testing intersection with one ray and four triangles at a time.
Firstly, at precompute time we need to try to fill BVH with four
triangles per node, so each node will contain four pointers to
triangle list. If this is not possible we would have one triangle
per node at worst. Secondly, we need to align GPU scene data
according to BVH node structure. So if particular node has only
one triangle, we need to place three degenerate triangles in a
triangle list to fulfill the alignment. Of course, this will result in
a GPU memory footprint by the means of performance. Thirdly,
when performing BVH traverse we will be able to linearly fetch
four triangles. Here we will need to construct additional vectors,
like:

// fetch triangle vertices

float3 v01, v11, v21;

float3 v02, v12, v22;

float3 v03, v13, v23;

float3 v04, v14, v24;

...

// construct per-component dir & orig vectors

float4 dir4x = ray.dir.xxxx;

float4 dir4y = ray.dir.yyyy;

float4 dir4z = ray.dir.zzzz;

float4 orig4x = ray.orig.xxxx;

float4 orig4y = ray.orig.yyyy;

float4 orig4z = ray.orig.zzzz;

This allows us to compute temporary values on per-component
SIMD basis, so all non SIMD operations like scalar addition
and multiplication can be performed on each triangle
simultaneously. For example, when performing scalar
multiplication on GPU we use only one computing block while
using new approach we will perform four multiplication
operations by the same cost (see appendix 8.2 for full listing):

// one triangle per pass

float divisor = dot(pvec, e1);

// four triangles per pass

float4 divisor4 = pvecx*e1x + pvecy*e1y +

pvecz*e1z;

The 22nd International Conference on Computer Graphics and Vision

62 GraphiCon’2012

Scene # Triangles per
BVH node

GPU Scene Size,
MB

Moller-Trumbore,
seconds (average)

Unit Triangle,
seconds (average)

Quad Moller-
Trumbore,

seconds (average)

Quad Unit
Triangle, seconds

(average)

Buddha,
100.006
triangles

1 9,35 103,33 103,94 - -
2 7,26 95,13 95,44 - -
3 6,38 92,72 93,07 - -
4 5,89 90,91 91,17 89,67 85,36
8 5,15 92,57 94,01 - -
16 4,73 104,53 108,83 - -

Bunny,
69.678

triangles

1 6,51 72,18 73,52 - -
2 4,87 65,48 66,67 - -
3 4,45 62,07 63,94 - -
4 3,99 60,98 62,17 57,35 52,84
8 3,45 62,1 63,29 - -
16 3,14 69,67 70,61 - -

Dragon,
100.012
triangles

1 9,35 210,89 211,67 - -
2 7,26 210,71 211,61 - -
3 6,35 210,68 211,44 - -
4 5,86 210,52 211,21 173,37 168,85
8 5,11 210,69 211,37 - -
16 4,65 210,91 211,66 - -

Table 1: Test scene properties, number of triangles per BVH leaf node, rendering times for different ray-triangle intersection method
for Path Trace setting with 500 samples and max ray depth of 16. GPU NVIDIA GeForce GT 240M. Image resolution: 800x600.

Scene # Triangles per
BVH node

GPU Scene Size,
MB

Moller-Trumbore,
seconds (average)

Unit Triangle,
seconds (average)

Quad Moller-
Trumbore,

seconds (average)

Quad Unit
Triangle, seconds

(average)

Buddha,
100.006
triangles

1 9,35 49,27 49,43 - -
2 7,26 49,78 50,31 - -
3 6,38 51,94 52,18 - -
4 5,89 54,15 55,16 34,3 31,37
8 5,15 66,3 68,64 - -
16 4,73 95,22 98,38 - -

Bunny,
69.678

triangles

1 6,51 33,27 33,79 - -
2 4,87 33,57 34,41 - -
3 4,45 34,68 35,55 - -
4 3,99 38,05 39,06 23,9 20,64
8 3,45 46,57 47,86 - -
16 3,14 60,26 62,56 - -

Dragon,
100.012
triangles

1 9,35 99,27 99,75 - -
2 7,26 99,41 100,96 - -
3 6,35 104,6 105,61 - -
4 5,86 108,35 111,5 57,99 54,91
8 5,11 132,57 138,06 - -
16 4,65 188,55 198,07 - -

Table 2: Test scene properties, number of triangles per BVH leaf node, rendering times for different ray-triangle intersection methods
for Path Trace setting with 500 samples and max ray depth of 16. GPU AMD Radeon HD 6870. Image resolution: 800x600.

Scene # Triangles per
BVH node

GPU Scene Size,
MB

Moller-Trumbore,
seconds (average)

Unit Triangle,
seconds (average)

Quad Moller-
Trumbore,

seconds (average)

Quad Unit
Triangle, seconds

(average)

Buddha 4 5,89 66,59 67,07 63,87 62,13

Bunny 4 3,99 56,82 57,52 53,18 51,17

Dragon 4 5,86 84,76 85,94 80,37 78,64

Table 3: Test scene properties, number of triangles per BVH leaf node, rendering times for different ray-triangle intersection methods
for Path Trace setting with 1000 samples and max ray depth of 16. GPU NVIDIA GeForce GTX 560. Image resolution: 800x600.

Scene # Triangles per
BVH node

GPU Scene Size,
MB

Moller-Trumbore,
seconds (average)

Unit Triangle,
seconds (average)

Quad Moller-
Trumbore,

seconds (average)

Quad Unit
Triangle, seconds

(average)
Buddha 4 5,89 38,03 39,41 33,43 31,35

Bunny 4 3,99 36,48 37,97 31,64 29,85

Dragon 4 5,86 65,56 67,09 56,72 54,92

Table 4: Test scene properties, number of triangles per BVH leaf node, rendering times for different ray-triangle intersection methods
for Path Trace setting with 1000 samples and max ray depth of 16. GPU AMD HD7850. Image resolution: 800x600.

EN2: Graphics

Russia, Moscow, October 01–05, 2012 63

4. RESULTS
In this section we describe the results for measurement on three
different scenes. We used scenes from individual objects
courtesy of Stanford scene repository. These scenes are
frequently used to test the performance of ray tracing and global
illumination algorithms. Images were rendered in 800x600
pixels resolution. All performance results in this paper were
measured on 4 different GPUs:

1. NVIDIA GeForce GT 240M (2009), 48 CUDA cores on
1210MHz, 1 GByte of memory with bandwidth of 54.4 GB/sec.
2. AMD HD 6870 (2010), 2 TFLOPs, 1120 Stream Processors
on 900MHz, 1GByte of memory with bandwidth of 134.4
GB/sec.
3. NVIDIA GeForce GTX 560 (2011), 2.1 TFLOPs, 336 CUDA
cores on 1620-1900MHz, 1 GByte of memory with bandwidth
of 128 GB/s.
4. AMD HD 7850 (2012), 1.76 TFLOPs, 1024 Stream
Processors on 860MHz, 2GByte of memory with bandwidth of
153.6 GB/s.

The static properties of data structures for all three scenes along
with average computation time for path-tracing are shown in
Tables 1 and 2. Performance results for BVHs build with
different count of triangles per leaf node are shown in columns
4 and 5. Those results demonstrate that both the number of
triangles per leaf node and the selected intersection method
remarkably affect the performance. Results lead us to
assumption that 4 triangles per leaf node is the optimal number
for BVH traversal.
Moller-Trumbore kernel had proven to be up to 5% faster than
Unit Triangle in all tests while Quad Unit Triangle kernel
shown to be up to 14% faster than Quad Moller-Trumbore.
Our proposed Quad Unit-Triangle method brings moderate
improvements of 5% to 11% on different generations of
NVIDIA hardware except for Dragon scene setup on GT 240M
GPU where it gain about 18% (tables 1 and 3). The situation is
better on VLIW AMD/ATi hardware where it had shown to be
up to 2x times faster than Moller-Trumbore (table 2).
Furthermore we managed to analyze performance of the latest
GPU generation AMD HD 7850 (table 4). As we expected, it
showed consistent results in spite of new architecture and
showed that Quad Unit-Triangle is approximately 20% faster
than Moller-Trumbore method.
Good results are gained for VLIW architecture used in AMD
GPUs where more functional units are available and may be
scheduled by the compiler or hardware simultaneously.
According to description of VLIW architecture, it’s possible to
perform compute operations along with memory access. We
assume that this result is mainly achieved by performing more
linear memory access to GPU global memory, avoiding
branching by unrolling triangle-intersection loop and taking
advantage of denser GPU register usage.
Things are bit different for NVIDIA GPUs like Fermi which
internally operate in a SIMD manner by ganging multiple (32)
scalar threads together into SIMD warps. If a warp’s threads
diverge, the warp serially executes both branches, temporarily
disabling threads that are not on that path. Thus, ray tracing
performance certainly can benefit from loop unrolling and more
linear memory access. But the true cause of performance
improvement lies much deeper in the GPU architecture and
goes beyond the scope of this article.

5. CONCLUSION AND FUTURE WORK
We have shown that triangle intersection routines that tend to
have good performance when used separately can behave badly

when used together with acceleration structures like BVH’s due
to incoherent memory access, lack of registers, and so on. So
we focus our work on finding the robust combination of triangle
intersection method and spatial data structure. For now it’s the
Quad Triangle intersection method used along with BVH.
As future work, the implementation could be extended by
several other data structures, such as Kd-Trees, Uniform Grids
along with few different ray-triangle intersection methods that
can be efficiently mapped to GPUs and are likely to show
unexpected results when used together.
Furthermore, shown results can hardly be called ambiguous as
they are pretty much view dependent. Dragon scene showed
18% performance improvement on NVIDIA GT 240M for one
angle of view. For different angles performance may vary,
showing both improvement and deterioration. So, a part of our
future work will be devoted to analysis of more complex and
dynamic scenes where view dependency is not that great.
Unfortunately, we didn’t manage to make in-depth performance
study on latest discreet NVIDIA and integrated Intel GPUs. We
would like to complete out research by taking this GPUs into
account as a part of future work.

6. AKNOLEDGMENTS
This work has been supported by the Foundation for Assistance
to Small Innovative Enterprises, grant no. 10031p/17006.

7. REFERENCES
[Ail09] Aila, T., and Laine, S.. Understanding the Efficiency of
Ray Traversal on GPUs. In Proceedings of High-Performance
Graphics 2009, pages 145–150, New York, NY, USA, 2009.
ACM.
[Are88] J. Arenberg, “Ray-Triangle Intersection with
Barycentric Coordinates”, in Ray Tracing News, edited by Eric
Haines, v l.1, n. 11, November 4, 1988
[Bad90] Badouel, F.: An efficient Ray-Polygon intersection,
Graphic Gems, Academic Press, pp:390-393, 1990.
[Car06] Carr, N.A., Hoberock, J., Crane, K., and Hart, J.C. Fast
GPU ray tracing of dynamic meshes using geometry images. In
GI ’06: Proceedings of Graphics Interface 2006, pages 203–
209, Toronto, Ont., Canada, Canada, 2006. Canadian
Information Processing Society
[Gün07] Günther, J., Popov, S., Seidel, H.-P., and Slusallek, P.
Realtime Ray Tracing on GPU with BVH-based Packet
Traversal. In Proceedings of the IEEE/Eurographics
Symposium on Interactive Ray Tracing 2007, pages 113–118,
September 2007.
[Hav10] Jiří Havel, Adam Herout, "Yet Faster Ray-Triangle
Intersection (Using SSE4)," IEEE Transactions on Visualization
and Computer Graphics, vol. 16, no. 3, pp. 434-438, May-June
2010, doi:10.1109/TVCG.2009.73
[Lau09] Lauterbach, C., Garland, M., Sengupta, S., Luebke, D.,
and Manocha, D. Fast BVH Construction on GPUs. Computer
Graphics Forum, 28(2):375–384, April 2009. (Proceedings of
Eurographics 2007).
[Möl97] Möller, T., Trumbore, B.: Fast, minimum storage ray-
triangle intersection, Journal on Graphic Tools, Vol.2, No.1,
pp.21-28, 1997.
[Seg01] Rafael J. Segura and Francisco R. Feito. Algorithms to
Test RayTriangle Intersection. Comparative Study. In Vaclav
Skala, editor, WSCG 2001 Conference Proceedings, February
2001.
[She07] M. Shevtsov, A. Soupikov, and A. Kapustin, “Ray-
Triangle Intersection Algorithm for Modern CPU
Architectures,” in Proceedings of GraphiCon 2007, 2007, pp.
33–39.

The 22nd International Conference on Computer Graphics and Vision

64 GraphiCon’2012

[Sny87] Snyder, M., Barr, A.H.: Raytracing complex models
containing surface tesselations, Proceedings of the 14th annual
conference on Computer Graphics, 1987, Vol.21, No.4, pp.119-
128, 1987
[Thr05] Thrane, N., and Simonsen, L.O. A comparison
of acceleration structures for GPU assisted ray tracing. M.Sc.
Thesis, University of Aarhus, Denmark, 2005
[Tor09] Torres, R., Martin, P.J., and Gavilanes, A. Ray Casting
using a Roped BVH with CUDA. In 25th Spring Conference on
Computer Graphics (SCCG 2009), pages 107–114, Budmerice,
Slovakia, April 2009.
[Woo05] S. Woop, J. Schmittler, P. Slusallek, RPU: A
Programmable Ray Processing Unit for Realtime Ray Tracing,
ACM Tranactions Graphics, 24(3), pp. 434-444, 2005
[Wal04] I. Wald, “Realtime ray tracing and interactive global
illumination”, PhD thesis, Saarland University, 2004.
[Zho08] Zhou, K., Hou, Q., Wang, R., and Guo, B. Real-time
KD-tree construction on graphics hardware. In SIGGRAPH
Asia ’08: ACM SIGGRAPH Asia 2008 papers, pages 1–11,
New York, NY.

8. APPENDIX

8.1 Casual Moller-Trumbore GPU Ray-Triangle
Intersection Routine (HLSL code)

float intersect(float3 orig, float3 dir, float3 v0,

float3 v1, float3 v2)

{

 float3 e1 = v1 - v0;

 float3 e2 = v2 - v0;

 float3 normal = normalize(cross(e1, e2));

 float b = dot(normal, ray.dir);

 float3 w0 = ray.orig - v0;

 float a = -dot(normal, w0);

 float t = a / b;

 float3 p = ray.orig + t * ray.dir;

 float uu, uv, vv, wu, wv, inverseD;

 uu = dot(e1, e1);

 uv = dot(e1, e2);

 vv = dot(e2, e2);

 float3 w = p - v0;

 wu = dot(w, e1);

 wv = dot(w, e2);

 inverseD = uv * uv - uu * vv;

 inverseD = 1.0f / inverseD;

 float u = (uv * wv - vv * wu) * inverseD;

 if (u < 0.0f || u > 1.0f)

 return -1.0f;

 float v = (uv * wu - uu * wv) * inverseD;

 if (v < 0.0f || (u + v) > 1.0f)

 return -1.0f;

 UV = float2(u,v);

 return t;

}

8.2 Quad Moller-Trumbore GPU Triangle-Ray
Intersection Routine (HLSL code)

float intersect(float3 orig, float3 dir, float3 v01,

float3 v11, float3 v21, float3 v02, float3 v12, float3

v22, float3 v03, float3 v13, float3 v23, float3 v04,

float3 v14, float3 v24)

{

 float3 e11 = v11 - v01;

 float3 e21 = v21 - v01;
 float3 e12 = v12 - v02;

 float3 e22 = v22 - v02;
 float3 e13 = v13 - v03;

 float3 e23 = v23 - v03;
 float3 e14 = v14 – v04;

 float3 e24 = v24 - v04;

 float4 v0x = float4(v01.x, v02.x, v03.x, v04.x);

 float4 v0y = float4(v01.y, v02.y, v03.y, v04.y);

 float4 v0z = float4(v01.z, v02.z, v03.z, v04.z);

 float4 e1x = float4(e11.x, e12.x, e13.x, e14.x);

 float4 e1y = float4(e11.y, e12.y, e13.y, e14.y);

 float4 e1z = float4(e11.z, e12.z, e13.z, e14.z);

 float4 e2x = float4(e21.x, e22.x, e23.x, e24.x);

 float4 e2y = float4(e21.y, e22.y, e23.y, e24.y);

 float4 e2z = float4(e21.z, e22.z, e23.z, e24.z);

 float4 dir4x = ray.dir.xxxx;

 float4 dir4y = ray.dir.yyyy;

 float4 dir4z = ray.dir.zzzz;

 float4 pvecx = dir4y*e2z - dir4z*e2y;

 float4 pvecy = dir4z*e2x - dir4x*e2z;

 float4 pvecz = dir4x*e2y - dir4y*e2x;

 float4 divisor = pvecx*e1x + pvecy*e1y + pvecz*e1z;

 float4 invDivisor = float4(1, 1, 1, 1) / divisor;

 float4 orig4x = ray.orig.xxxx;

 float4 orig4y = ray.orig.yyyy;

 float4 orig4z = ray.orig.zzzz;

 float4 tvecx = orig4x - v0x;

 float4 tvecy = orig4y - v0y;

 float4 tvecz = orig4z - v0z;

 float4 u4;

 u4 = tvecx*pvecx + tvecy*pvecy + tvecz*pvecz;

 u4 = u4 * invDivisor;

 float4 qvecx = tvecy*e1z - tvecz*e1y;

 float4 qvecy = tvecz*e1x - tvecx*e1z;

 float4 qvecz = tvecx*e1y - tvecy*e1x;

 float4 v4;

 v4 = dir4x*qvecx + dir4y*qvecy + dir4z*qvecz;

 v4 = v4 * invDivisor;

 float4 t4;

 t4 = e2x*qvecx + e2y*qvecy + e2z*qvecz;

 t4 = t4 * invDivisor;

 float t = -1.0f;

 if(t4.x < t && t4.x > 0)

 if(u4.x >= 0 && v4.x >= 0 && u4.x + v4.x <= 1)

 t = t4.x;

 if(t4.y < t && t4.y > 0)

 if(u4.y >= 0 && v4.y >= 0 && u4.y + v4.y <= 1)
 t = t4.y;

 if(t4.z < t && t4.z > 0)

 if(u4.z >= 0 && v4.z >= 0 && u4.z + v4.z <= 1)
 t = t4.z;

 if(t4.w < t && t4.w > 0)

 if(u4.w >= 0 && v4.w >= 0 && u4.w + v4.w <= 1)
 t = t4.w;

 return t;

}

8.3 BVH Traversal Routine (HLSL code)

struct BvhCell

{

 float4 vmin; //float3 min + uint children

 float4 vmax; //float3 max + uint count

};

bool RayIntersectScene(Ray ray)

{

 uint stack[64], stackPos = 0, node = 0;

 float t = FLT_MAX;

 bool intersect = false;

 BvhCell cellLeft, cellRight;

 BvhCell current = GetNode(node);

 while(1)

 {

 uint count = GetNodeTriangleCount(current);

 if(count > 0)

 { // Leaf Node

 uint offset = GetNodeTriangleOffset(current);

 intersect = RayTrisTest(ray, t, offset, count);

 if(stackPos > 0)

EN2: Graphics

Russia, Moscow, October 01–05, 2012 65

 {

 node = stack[--stackPos];

 current = LoadNode(node);

 }

 else return intersected;

 }

 else

 {

 uint leftNode = GetLeftChildID(node);

 uint rightNode = GetRightChildID(node);

 float lMin, rMin;

 cellLeft = GetNode(leftNode);

 cellRight = GetNode(rightNode);

 bool wantLeft = RayAABBTest(ray, cellLeft, lMin);

 bool wantRight = RayAABBTest(ray, cellRight,

 rMin);

 if(wantLeft && wantRight)

 {

 bool firstLeft = leftMin < rightMin;

 if(firstLeft)

 {

 current = cellLeft;

 node = leftNode;

 stack[stackPos++] = rightNode;

 }

 else

 {

 current = cellRight;

 node = rightNode;

 stack[stackPos++] = leftNode;

 }

 }

 else if(wantRight)

 {

 current = cellRight;

 node = rightNode;

 }

 else if(wantLeft)

 {

 current = cellLeft;

 node = leftNode;

 }

 else

 {

 if(stackPos > 0)

 {

 node = stack[--stackPos];

 current = GetNode(node);

 } else return intersected;

 }

 }

 }

 return intersected;

}

8.4 BVH Data Layout

The 22nd International Conference on Computer Graphics and Vision

66 GraphiCon’2012

