

Irradiance Cache for a GPU Ray Tracer
Vladimir Frolov(1,2) , Konstantin Vostryakov(2), Alexander Kharlamov(2), Vladimir Galaktionov(1),

(1) Keldysh Institute of Applied Mathematics (Russian Academy of Sciences), Moscow, Russia; (2) Nvidia

Figure 1. The presented screenshots where rendered at 1920x1200 resolution on a GTX 560 HW under 5 minutes using Irradiance
Caching (IC) technique. We achieved from 5 to 15 times acceleration compare to our naive path tracing implementation.

Abstract
This work proposes a GPU friendly irradiance caching (IC)
solution, where performance critical parts of an irradiance cache
algorithm are done completely on the GPU. We discuss some
practical problems arising in the implementation of GPU
irradiance caching, and propose solutions for them. The modified
algorithm for the GPU is different from a CPU implementation in
2 ways. The first distinction is a multi-pass construction of
irradiance cache followed by a final rendering stage and the
second distinction is to insert a large record set at once instead of
one by one, as used in traditional approaches. We also consider
some details to efficiently implement look-up operations on the
GPU.
Keywords: GPU, Irradiance Cache, Global Illumination.

1. INTRODUCTION
For the last decade Graphics Processor Units (GPUs) have made a
great advance in performance and have become fully
programmable processors. Several commercial GPU
photorealistic renderers are available today. Most of them use
unbiased path tracing methods in order to minimize intermediate
data creation (photon maps, lightcuts, etc). This results in tracing
up to ten times more rays than biased alternatives. Moreover, path
tracing of complex scenes suffers from highly irregular workload
(per ray)and memory access tends to be random. These issues lead
to inefficient hardware utilization. On the other hand, although
biased approaches have lower complexity they are more difficult
to implement on the GPU.
Our paper illustrates the research that we have performed for GPU
accelerated biased rendering via irradiance caching and path
tracing techniques. The key results of this research are:
� A new GPU friendly IC generation algorithm, performed

before final render pass.
� Introduction of a new method for records insertion into

octree-based cache for fast irradiance interpolation on the
GPU.

Our main contribution is a high quality IC solution that provides
from 5 to 15 times acceleration (with an average PSNR of 40
compared with a GPU accelerated path tracing.

2. RELATED WORK

2.1 GPU ray-tracing
Although fast GPU ray tracing for complex scenes is still a
challenge we do not focus on ray tracing acceleration in this
paper. Aila and Laine's work [Aila and Laine 2009] provides
comprehensive performance analysis of ray tracing on the GPU.
Our ray tracing implementation has approximately the same
performance on diffuse rays (i.e. rays, randomly shot from the
single point over the hemisphere) although it’s of 1.5x factor
slower for coherent frustum tracing. However we have found that
path tracing rays after several bounces can be from 2 to 4 times
slower (than diffuse rays) – this is the case of poor HW utilization
due to random memory access and non-uniform workload.
2.2 CPU Irradiance cache
Irradiance caching decreases the overall cost of indirect
illumination computation by performing full hemisphere sampling
(or final gathering) only at selected points in the scene, caching
the results, and reusing the cached indirect illumination values
between those points through interpolation. It was introduced in
[Ward et al. 1988]. The algorithm can be summarized as follows:
if interpolation is possible then
 reuse cached values through interpolation;
else
 compute new value;
 store it in the cache;
end if;
The number of irradiance cache points is usually of 1 - 2 orders of
magnitude less than the number of pixels – so the irradiance cache
is quite efficient and it can greatly speed up the whole rendering.
However, IC is a challenging algorithm, even on a CPU. It has a
lot of issues and heuristic approaches that make it practical and
suppress its artifacts [Krivanek et al. 2008]. A well-known
irradiance cache algorithm [Ward et al. 1988, Krivanek et al.
2008] cannot be implemented on a GPU in a straightforward way
because of its serial nature:
� Trace one ray
� Evaluate and insert one record at given “transaction”.
It is difficult to parallelize irradiance cache on multi-core CPUs,
although there are several papers available regarding parallel
irradiance caching on CPU ([Debattista et al. 2006, Dubla et al.
2009]. These papers focus on solving the problem of sharing

EN2: Graphics

Russia, Moscow, October 01–05, 2012 39

irradiance cache data structure between different CPU threads and
different machines (cluster systems).
However, the problem is not only in data sharing between threads
and redistributing computational resources (for example between
rendering and IC records evaluation), but it also in the fact that IC
depends on the records insertion order. For example, irradiance
gradients [Krivanek et al. 2008] rely on a serial records insertion.
If one places two records in parallel near each other, the gradients
and, as a result, validity radiuses of these records will be different
compared to serial insertion. The more threads run in parallel, the
more serious this problem becomes so we introduce validity
clamping heuristics to solve it in our GPU implementation.
PBRT 2.0 [Pharr and Humphreys 2010] has multithreaded
implementation of IC. It does the first pass to compute the cache
and the second one to render final image. This approach needs to
be refined for the case of massive parallelism.
2.3 GPU Irradiance cache
GPU irradiance caching was introduced in [Gauton et al. 2005]
and described in details in [Krivanek et al. 2008]. These papers
mainly focus on replacing irradiance interpolation via octree
lookups with splatting to avoid traversing hierarchical structures
on GPUs. The approach used in [Gauton et al. 2005] can be used
for primary rays or interactive visualization in computer games,
however, it has one serious limitation: only one light bounce can
be evaluated either for hemisphere sampling or for final rendering.
Thus, it will be hard to have precise photorealistic result with this
approach. Besides, it was done mainly for rasterization based
engines and cannot be combined directly with a GPU path tracer.
Wang et al. [Wang et al. 2009] presents an efficient approach for
global illumination using photon mapping on the GPU. The key
aspect of this work is to use irradiance cache with photon
mapping and final gathering [Jensen et al. 2002] to quickly
compute smooth indirect illumination. Direct lighting is computed
using ray tracing and supports hard shadows from point light
sources. In this paper irradiance cache point positions are
predicted from the geometry discontinuities. Wang’s approach to
build IC was combined with path tracing in [Frolov et al. 2011] to
focus on rendering images with glossy reflections and shadows
offline. However, both of these approaches work with geometry
term and they use predictive nature without further refinement.
The radiance hints method introduces in [Papaioannou 2011] is a
stable (for animation) and a fast solution for diffuse global
illumination. The method is based on grid based radiance caching
with reflective shadow maps and can handle multiple light
bounces. This method works for interactive rendering with view-
independent algorithm so it can’t control image error that is
strictly needed for photorealistic rendering. Besides, using regular
grid will not allow one to have high precision with reasonable
memory consumption.

3. SUGGESTED APPROACH
Similar to PBRT 2.0 our algorithm consists of 2 main phases. The
first phase is “irradiance cache creation” and the second phase –
“final rendering”. The goal of the first phase is to generate a set of
irradiance cache points that will completely cover the space where
future samples can occur. This separates computing irradiance
cache from using it.
3.1 Creation of irradiance cache
IC creation process consists of multiple passes (20-30 passes, the
maximum number is user controlled). It can be summarized in the
following pseudo code:

procedure Create_IC(ic : out Irradiance_Cache) is
 geomDiscMap : Image;
 irradDiscMap : Image;
 discMap : Texture2D;
 candidates : array of IC_Record;
 smallGroup : array of IC_Record;
 candGroups : array of (array of IC_Record);
 iterNum : Integer;
 -- user controlled
 MAX_PASS_NUMBER : Integer := 30;
 MIN_CAND_TRESHOLD : Integer := 100;
begin
 geomDiscMap := CreateGeometryDiscMap();
 discMap := Build2DMipMapChain(geomDiscMap);
 candidates := Dithering(discMap);

 ic.Insert(candidates);
 iterNum := 0;
 candidates.resize(MIN_CAND_TRESHOLD+1);

 while(candidates.size() >= MIN_CAND_TRESHOLD and
 iterNum < MAX_PASS_NUMBER):

 -- screen space stage
 irradDiscMap := CreateIrradianceDiscMap();
 discMap := Build2DMipMapChain(irradDiscMap);
 candidates := Dithering(discMap);

 -- insert candidates except for pixels
 -- for which we already have records
 ic.Insert({candidates} \ {ic.records});

 -- world space stage
 candidates := SelectIfInterpErrorIsLarge();
 candidates := SortWithZCurve(candidates);
 candGroups := GroupRecords(candidates);

 candidates := []
 for group in candGroups:
 smallGroup := SelectSeveralCands(group);
 candidates.append(smallGroup);
 end for;

 ic.Insert(candidates);
 iterNum := iterNum + 1;
 end while;

end Create_IC;

The ‘Insert’ procedure also evaluates irradiance for each records.
We will discuss its implementation later.
Each pass consists of 2 independent stages. The first stage works
only for visible points. The second stage works for visible and for
points that are not directly visible from the eye. During each pass
and within each stage new irradiance cache records are inserted
into the cache. The very first pass is different from the others and
works with geometry discontinuity like [Wang et al. 2009] and
[Frolov et al. 2011] do. The important aspect of the irradiance
cache generation process is that a large set of points (several
hundred or even thousand points) are selected at once, irradiance
for these points are computed on the GPU and these points are
added to the cache structure in one transaction.
3.1.1 The very first pass (coarse screen space pass)
In the very beginning of the process of irradiance cache creation
we have no information about the scene at all. Owing to this fact,
the goal of this pass is to create first approximation of irradiance
cache that will be used as a starting point for further passes. Our
algorithm tries to predict complexity of different screen parts,
using geometry discontinuity maps and image processing. It

The 22nd International Conference on Computer Graphics and Vision

40 GraphiCon’2012

attempts to place more records in areas where more of them are
needed.
First, we trace rays from the eye position and store hit positions
and normals in separate full screen textures. A mip-map pyramid
for each of these textures is built. Then, each mip-level of surface
discontinuity texture map is evaluated according to this formula:
 surfDisc := k*normDiff + worldPosDiff;
where worldPosDiff and normDiff is a maximum difference
between positions (and normals accordingly) within neighboring
pixels (in an appropriate mip-level). And k is a parameter that
depends on the world scale. Having a discontinuity map, we blend
all of up-scaled mip levels and perform the dithering algorithm on
the resulting image with a binary quantization (i.e. each pixel in
resulting image can have a value equal to 1 or 0). The result of
this dithering is a binary image - a set of initial points; this initial
set is our first approximation of irradiance cache (Fig. 2).
The main idea behind that binary dithering is that it allows us to
represent discontinuity maps (both geometry and irradiance) in
terms of sparse point set – potential IC records.
Dithering Implementation:
Our dithering implementation is deterministic (but we suppose
random or combined solution is also possible). For a given part of
screen it decides (based on user defined threshold) whether we
need to put irradiance cache record in each 32-d, 16-th, 8-th, 4-th
or 2-d pixel.
3.1.2 Screen space stage (1)
The same operation but for irradiance discontinuity is performed
in subsequent passes– calculate irradiance by fetching it from the
cache, build difference image, create mip-map pyramid, blend up-
scaled images, perform dithering and insert newly obtained points
into irradiance cache. This procedure is repeated several times.
Because screen space solution stops producing new points
relatively fast, we disable it after several (3-4) passes and continue
creating the cache only with the world space stage.
3.1.3 World space stage (2)
The presented screen space algorithm works on primary visible
smooth surfaces. However it cannot be used for indirectly visible
surfaces and it tends to miss tiny geometric details. The red
triangle on Fig. 3 represents viewers’ frustum. Red points are not
visible from the camera, however secondary rays can still reach
such regions.
Our goal is, to generate a set of irradiance cache points that
completely cover the space where rays can hit a surface during
path tracing process. We used an idea similar to the clustering
approach that had been used in [Gassenbauer et al. 2011].
Rays are traced from the eye and all hit points are saved on each
bounce if interpolation has unacceptable error estimation from
geometric considerations. All such points are stored in separate
buffer during ray tracing using CUDA ‘atomicAdd’ operation
similar to how DirectX10/11 ‘append buffer’ works.
However, a very large set of points is produced and we need to
select a subset of the best candidates from it. We believe several
approaches can be applied to form clusters; however we used the
simple one that can be easily ported to GPU. At first, we sort
candidates according to 3D Z-Curve [Morton 1966]. After that
we start inserting points into a cluster (around the first point in the
sorted array). However we want to keep the bounding box of the
current cluster within certain limits. If after inserting a point the
bounding box of the current cluster exceeds the maximum
bounding box size, we create a new cluster and continue inserting
candidates into it.

Next, it is possible to select a single point from each cluster with
maximum error however it is not the best approach. Let us
consider a cluster that was formed around the corner of the
Cornell Box. The corner consists of 3 walls and if our cluster
contains points on every wall, we need to select at least one point
on each wall, otherwise we lose useful candidates, because we
know that radiance difference usually corresponds to rapid
changes of the normal field. So, from each cluster we select
several candidates with unique normals and thus, deal with corner
cases.
We terminate the creation process when the maximum number of
passes is reached or when ‘candidates.size()’ becomes small
enough (this parameter is user defined). Due to the stochastic
nature of our IC creation process (world space stage uses random
‘path tracing style’ rays) on some complex scenes there can be a
regions that were not covered by IC records and candidates are
still produced. However, if we stop IC creation process in that
case, it will not introduce a valuable error in the final image
because the probability of rays hit such regions tends to be zero.
3.2 Final rendering
After we have irradiance cache computed we do adaptive path
tracing as described in [Frolov et al. 2011] with fetching indirect
smooth lighting from irradiance cache. Thus, for fast and smooth
indirect lighting we use irradiance caching technique and we use
path tracing for other effects, such as soft shadows, glossy
reflections and refractions, depth of field and motion blur.

4. IMPLEMENTATION AND RESULTS
Our implementation is done using CUDA and C++. All
performance critical parts of the algorithm are done in CUDA.
However, such things as tree construction and some other
algorithms are implemented in C++ on the host.
4.1 Hemisphere sampling
For irradiance computations we use the progressive evaluation
algorithm with Monte Carlo path tracing. All irradiance cache
records are placed in ‘active records list’. For each active record
we use a sequence of randomly distributed (but coherent)
hemisphere samples – 4096, 16384, 65536 and etc. At first we use
4096 rays for all records in the list. If estimated error for a record
is small enough we discard that record from ‘list of active records’
and process remaining records with 16384 rays (the next value in
the sequence). We repeat this process until all records are
evaluated or the maximum number of samples per irradiance
record is achieved. Using the sequence of pre-generated samples
instead of simple random rays is important because we can save
rays coherency at least for the first bounce and have valuable
speed-up (~ 2-4 times) for ray tracing on GPUs.
To evaluate convergency for a record we use the approach
described in [Krivánek et al. 2006] accumulating odd and even
partial sums of lighting integral.
We used ‘Hammersley’ sampling technique described in [Suffern
2007] to cover hemisphere with samples. To have more coherent
groups of rays we used stratification (subdivide the hemisphere
into sectors and generate 32*k rays for each sector where k >= 1).
Actually we just need to group ‘Hammersley’ points in groups of
size 32*k. Initially we do that on the CPU in tangent space. On
the GPU we transform directions from tangent to object space to
get correct hemisphere sampling.
During the hemisphere sampling, we also calculate initial validity
radius for each irradiance cache point using ‘sphere split
approximation’ [Krivanek et al. 2008].

EN2: Graphics

Russia, Moscow, October 01–05, 2012 41

4.2 Insertion records into octree
The insertion process is done on the CPU. Our implementation
inserts a set of records in one transaction, and we modified the
original insertion algorithm, described in [Krivanek et al. 2008]
and [Pharr and Humphreys 2010].
procedure Insert (
 self : inout Irradiance_Cache;
 records : in array of IC_Record) is
begin
 EvaluateIrradiance(records);
 self.auxOctree.Insert(records);
 ValidityRadiusClamping(records, self.auxOctree);
 self.mainOctree.Insert(records);
end Insert;

The problem with inserting multiple records is that in several
cases, we can find a large set of closely-located records, with
overlapping validity radiuses. This is a problem, because in those
regions octree leafs will contain a large list of points and
interpolation becomes slow. This motivated us to develop a
special algorithm for decreasing validity radiuses during insertion.
Our insertion consists of 3 phases. First, we consider irradiance
cache records as points (not as spheres!) and insert them into an
auxiliary octree. This octree will be used to speed-up location of
k-nearest points (irradiance cache records).
We call the second step ‘validity radius clamping’. It treats
irradiance cache records as spheres. The goal of this step is to
decrease validity radius for each point. For each irradiance cache
record it locates k nearest neighbors (k is 4-7) in ‘different
directions’ and if the validity radius of the current point is greater
than the distance to the farthest point, the validity radius is
clamped to this distance.

Figure 1: Angle criterion of filtering nearest neighbors.

By ‘different directions’ we mean that while we look for
neighboring points we calculate the angle between a new
candidate and all the points that we have already found (Fig. 6). If
the angle between the direction to a new point and any direction to
a point we already found is too small, we do not consider this
point, i.e. we do not add it into the nearest neighbors list.
Last we also consider irradiance cache records as spheres. But
validity radiuses of these records were clamped by the previous
step. The goal of the last step is to insert all points into the final
octree that will be used for fetching irradiance from the cache on
the GPU. Validity radius clamping is an important part of the
algorithm. Table 1 shows performance improvements gained by
introducing our validity clamping approach.

Scene IC1 IC2 look-up acceleration

Teapot 29 ms 5.9 ms 4.9 times
Dragon 18 ms 5.0 ms 3.7 times
Conference 25 ms 4.4 ms 5.6 times
Sponza 16 ms 7.1 ms 2.3 times
Cry-Sponza 33 ms 8.3 ms 4.0 times

Table 1. The column marked IC1 presents time (in milliseconds)
required to perform one million look-up operations when validity
radius clamping is disabled. The column marked IC2 presents
time, required to perform one million look-up operations with
enabled validity radius clamping. The last column represents
acceleration factor. All measurements were done with GTX560
HW.
Thus, inspired by Krivánek’s Neighbor Clamping, we introduce a
new validity clamping radius criterion in order to accelerate look-
up operation by means of density control.
4.3 Fast Octree Look-Up
We use interpolation formula proposed by Tabellion and
Lamorlette in [Tabellion and Lamorlette 2004] and stackless
octree look-up as described in [Krivanek et al. 2008]. We have
found that the stackless approach is very efficient on GPUs if only
several irradiance cache records are stored in octree leaves. The
key advantage of the multiple reference octree is the stackless
‘root to leaf’ look-up algorithm. To find all irradiance cache
records, which validity radiuses overlaps with a given point, we
need to traverse from the root to a leaf and then just iterate
through the list of cache points we stored in a leaf.

4.4 Results overview
The results of our renderer are presented in Table 2. We target
high quality images at 1920x1200 resolution and we used world
space irradiance interpolation. As a result our irradiance cache
contains a large record set (100K-200K). Due to the high
precision requirements we usually start irradiance evaluation with
4096 Monte-Carlo samples. The “Conference Room” scene has 6
area lights under the ceiling and a significant part of rendering
time was taken by soft shadows. Due to a weak indirect
component in this scene path tracing converges fast enough and
acceleration factor is lower (only 3 times) compared to other
scenes.
“Sponza” and “Crytek-sponza” scenes (in contrast to Conference
Room) have strong indirect illumination and acceleration on these
2 scenes was even higher (14 and 18 times accordingly) than
expected. For example, having ~200K records for the last scene,
one can't expect more than 1920*1200/200000 = 11 times
acceleration. However we found that on some complex scenes
(even disregarding total triangle count), like “Crytek-sponza”
naive path tracing is inefficient and the ray tracing performance is
far from 60M rays per second. As a result grouping rays to
coherent packets, when sampling hemisphere, provides a great
advantage for GPU ray tracing performance and for the “Sponza”
and “Crytek-sponza” scenes we have super-linear acceleration.
We calculated square error (with ‘The Compressonator’
[Compressonator]) and PSNR (with MatLab) metrics to have a
numerical estimation of an image difference. PSNR, for HDR
images, is much higher (than for LDR) because absolute value of
the signal is higher on HDR images.
4.5 Quality discussion and analysis
For our current implementation we used Monte-Carlo path tracing
to evaluate irradiance. We start from 4096 hemisphere samples
with 2 path tracing bounces and continue to increase the number
of samples with our progressive evaluation algorithm. In contrast
to evaluating IC records, path tracing requires on average ~1000

The 22nd International Conference on Computer Graphics and Vision

42 GraphiCon’2012

 EN2: Graphics

Russia, Moscow, October 01−05, 2012 43

4.5 Quality discussion and analysis

For our current implementation we used Monte-Carlo path

tracing to evaluate irradiance. We start from 4096 hemisphere

samples with 2 path tracing bounces and continue to increase

the number of samples with our progressive evaluation

algorithm. In contrast to evaluating IC records, path tracing

requires on average ~1000 samples per pixel. The produced

noise is high frequency and it is filtered by the human eye.

However, when we consider irradiance cache, the error will be

splashed over the surface resulting in low frequency noise that

appear to a human eye as “dirty spots” (Fig. 3). To suppress

these artifacts we use more samples per record.

Figure 3: Top row: IC results produced with 1024 and 16384

samples per record. The bottom row: magnified difference

(x32) between corresponding IC result and path traced

reference.

4.6 Bottleneck analysis

We have measured that during irradiance cache construction

~80% of the time is spent on evaluating records (i.e.

hemisphere sampling with Monte-Carlo path tracing) and it

takes ~50-90% of the total rendering time. One way to reduce

this time is to use fewer samples with one bounce. This will

work much faster because on the first bounce we have coherent

sets of rays (and the noise is less than for 2 or more bounces).

However this will prevent us from computing indirect lighting

from multiple diffuse bounces. Another choice is to use photon

mapping with final gathering [Krivanek et al. 2008] instead of

Monte-Carlo path tracing. We believe this idea should give us a

performance benefit and we’ll investigate this in our future

research. We also think that using recursive irradiance cache

[Krivanek et al. 2008] is a promising idea; it allows tracing only

coherent set of rays to transport light from one level of the

cache to another (or even use rasterization).

We perform interpolation in the world space and as a result the

IC generation algorithm places a lot of records near tiny

geometry details. We suppose screen space IC should be used

for primary visible points.

The octree construction (insertion of records) is not a bottleneck

in our implementation; it usually takes ~15% of irradiance

cache construction time. The remaining 5% of the time was

spent on ray tracing during IC construction, building of

discontinuity maps (both geometry and irradiance), data
transfers between GPU and CPU.

Regarding the final rendering, the irradiance cache look-up

operation takes 20% in average of the total rendering time. The

ray tracing (incoherent rays) takes 60-70% of this time and the

rest is taken by the shading related works and pipeline
overhead.

5. LITERATURE

[1] [Aila and Laine2009] Aila, T. and Laine, S. 2009. Understanding
the efficiency of ray traversal on GPUs. In Proceedings of the
Conference on High Performance Graphics 2009 (New Orleans,
Louisiana, August 01 - 03, 2009). S. N.

[2] [Debattista et al. 2006] K. Debattista, L.P. Santos, A. Chalmers,

Accelerating the irradiance cache through parallel component-
based rendering, in: EGPGV2006 - 6th Eurographics Symposium
on Parallel Graphics Visualization. Eurographics, May 2006, pp.
27-34.

[3] [Dubla et al. 2009] Piotr Dubla, Kurt Debattista, Luis Paulo
Santos, and Alan Chalmers. A wait-free shared-memory
irradiance caching. IEEE Computer Graphics and Applications,
2010.

[4] [Frolov et al. 2011] V. Frolov, A. Kharlamov, A. Ignatenko.

“Biased solution of integral illumination via irradiance caching
and path tracing on GPUs”. Programming and Computer
Software. Volume 37, Number 5 (2011), 252-259, DOI:
10.1134/S0361768811050021

[5] [Gauton et al. 2005] Pascal Gautron, Jaroslav Křivánek, Kadi
Bouatouch, and Sumanta Pattanaik. Radiance cache splatting: A
GPU-friendly global illumination algorithm. In Proceedings of
Eurographics Symposium on Rendering, June 2005.

[6] [Gassenbauer et al. 2011] Václav Gassenbauer, Jaroslav Křivánek,

Kadi Bouatouch, Christian Bouville, Mickaël Ribardière.
Improving Performance and Accuracy of Local PCA. 4 NOV
2011 DOI: 10.1111/j.1467-8659.2011.02047.x

[7] [Jensen et al. 2002] Jensen, H. W., Suykens F., Christensen Per

H., Kato T. A Practical Guide to Global Illumination using
Photon Mapping. SIGGRAPH 2002 Course Note #43. ACM, July
2002. (San Antonio, USA, July 21-26).

[8] [Krivánek et al. 2006] Jaroslav Krivánek, Kadi Bouatouch,

Sumanta Pattanaik, Jiríára. Making Radiance and Irradiance
Caching Practical: Adaptive Caching and Neighbor Clamping.
Eurographics Symposium on Rendering, 2006.

[9] [Krivanek et al. 2008] Křivánek, J., Gautron, P., Ward, G., Jensen,

H. W., Christensen, P. H., and Tabellion, E. 2008. Practical
global illumination with irradiance caching. In ACM SIGGRAPH
2008 Classes (Los Angeles, California, August 11 - 15, 2008).
SIGGRAPH '08. ACM, New York, NY, 1-20.

[10] [Manfred and Gunther 2007] Manfred Ernst, Gunther Greiner.
Early Split Clipping for Bounding Volume Hierarchies,
Proceedings of the 2007 IEEE Symposium on Interactive Ray
Tracing, p.73-78, September 10-12, 2007
doi=10.1109/RT.2007.4342593

[11] Morton, G. M. (1966), A computer Oriented Geodetic Data Base;

and a New Technique in File Sequencing, Technical Report,
Ottawa, Canada: IBM Ltd.

[12] [Papaioannou 2011] G. Papaioannou, Real-Time Diffuse Global

Illumination Using Radiance Hint. Presented at High
Performance Graphics 2011,Vancouver, Canada, Aug. 2011.

[13] [Pharr and Humphreys 2010] Pharr M., Humphreys G.: Physically
Based Rendering: From Theory to Implementation, 2nd edition.
Morgan Kaufmann, 2004.

[14] [Suffern 2007] Kevin Suffern. Ray Tracing from the Ground Up

A. K. Peters, Ltd. Natick, MA, USA©2007 ISBN:1568812728
[15] [Tabellion and Lamorlette 2004]Eric Tabellion and Arnauld

Lamorlette. An approximate global illumination system for
computer-generated films. In Proceedings of SIGGRAPH,
2004.DOI: 10.1145/1186562.1015748

[16] [Ward et al. 1988] Ward, G., Rubinstein, F., and Clear, R. 1988. A
ray tracing solution for diffuse interreflection. In SIGGRAPH
1988, Computer Graphics Proceedings.

[17] [Wang et al. 2009] Wang R., Zhou K., Pan, M., and Bao, H. 2009.
An efficient GPU-based approach for interactive global
illumination. ACM Trans. Graph. 28, 3 (Jul. 2009), 1-8.

6. ACKNOWLEDGEMENTS

This work was sponsored by the RFFI (Russian Foundation for

Fundamental Investigations) grant “MOL_A 12-01 31027”.

Scene Number of
Triangles

Number of
IC records

IC creation
time

Render
pass time

Total
time

Naive path
tracing time

Acceleration Square error
(png)

PSNR
(png)

Teapot 25612 27356 18s 35s 56s 300s 5.3 times 2.5 45
Dragon 871426 71883 52s 36s 88s 490s 5.6 times 3.4 43
Conference 331191 89336 64s* 108s 172s 500s 2.9 times 2.3 47
Sponza 66456 161245 123s 17s 140s 1980s 14.1 times 3.9 41
Cry-Sponza 262267 245369 228s 20s 248s 4632s 18.6 times 5.7 38

Figure 4: Path tracing compare to our IC implementation. Difference brighter by 1600% (16 times).
High Quality images and demo program available at http://ray-tracing.ru/upload/gc2012/sandbox.zip

Table 2: Test setup. All scenes were rendered in 1920x1200 on GTX560 HW. For path tracing - max samples per pixel was 4000 (however, this
number was reached for the 2 last scenes). Image difference and square error were computed with ‘The Compressonator’ tool [Compressonator].
For conference Room we started hemisphere evaluation with 1024 hemisphere samples (instead of usual 4096 samples) (*).

The 22nd International Conference on Computer Graphics and Vision

44 GraphiCon’2012

